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Abstract
Direct policy gradient methods for reinforcement
learning and continuous control problems are a
popular approach for a variety of reasons: 1) they
are easy to implement without explicit knowledge
of the underlying model, 2) they are an “end-
to-end” approach, directly optimizing the perfor-
mance metric of interest, 3) they inherently allow
for richly parameterized policies. A notable draw-
back is that even in the most basic continuous
control problem (that of linear quadratic regu-
lators), these methods must solve a non-convex
optimization problem, where little is understood
about their efficiency from both computational
and statistical perspectives. In contrast, system
identification and model based planning in opti-
mal control theory have a much more solid theo-
retical footing, where much is known with regards
to their computational and statistical properties.
This work bridges this gap showing that (model
free) policy gradient methods globally converge to
the optimal solution and are efficient (polynomi-
ally so in relevant problem dependent quantities)
with regards to their sample and computational
complexities.

1. Introduction
Recent years have seen major advances in the control of
uncertain dynamical systems using reinforcement learning
and data-driven approaches; examples range from allowing
robots to perform more sophisticated controls tasks such
as robotic hand manipulation (Tassa et al., 2012; Al Borno
et al., 2013; Kumar et al., 2016; Levine et al., 2016; Tobin
et al., 2017; Rajeswaran et al., 2017a), to sequential deci-
sion making in game domains, e.g., AlphaGo (Silver et al.,
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2016) and Atari game playing (Mnih et al., 2015). Deep
reinforcement learning (DeepRL) is becoming increasingly
popular for tackling such challenging sequential decision
making problems.

Many of these successes have relied on sampling based
reinforcement learning algorithms such as policy gradient
methods, including the DeepRL approaches. For these ap-
proaches, there is little theoretical understanding of their
efficiency, either from a statistical or a computational per-
spective. In contrast, control theory (optimal and adaptive
control) has a rich body of tools, with provable guarantees,
for related sequential decision making problems, partic-
ularly those that involve continuous control. These latter
techniques are often model-based—they estimate an explicit
dynamical model first (via system identification) and then
design optimal controllers.

This work builds bridges between these two lines of work,
namely, between optimal control theory and sample based
reinforcement learning methods, using ideas from mathe-
matical optimization.

1.1. The optimal control problem

In the standard optimal control problem, a dynamical system
is described as

xt+1 = ft(xt, ut, wt) ,

where ft maps a state xt ∈ Rd, a control (the action) ut ∈
Rk, and a disturbance wt, to the next state xt+1 ∈ Rd,
starting from an initial state x0. The objective is to find the
control input ut which minimizes the long term cost,

minimize
T∑
t=0

ct(xt, ut)

such that xt+1 = ft(xt, ut, wt) t = 0, . . . , T.

Here the ut are allowed to depend on the history of observed
states, and T is the time horizon (which can be finite or
infinite). In practice, this is often solved by considering the
linearized control (sub-)problem where the dynamics are
approximated by

xt+1 = Atxt +Btut + wt,
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and the costs are approximated by a quadratic function in
xt and ut, e.g. (Todorov & Li, 2004). The present paper
considers an important special case: the time homogenous,
infinite horizon problem referred to as the linear quadratic
regulator (LQR) problem. The results herein can also be
extended to the finite horizon, time inhomogenous setting,
discussed in Section 5.

We consider the following infinite horizon LQR problem,

minimize E

[ ∞∑
t=0

(x>t Qxt + u>t Rut)

]
such that xt+1 = Axt +But , x0 ∼ D ,

where initial state x0 ∼ D is assumed to be randomly dis-
tributed according to distributionD; the matricesA ∈ Rd×d
and B ∈ Rd×k are referred to as system (or transition) ma-
trices; Q ∈ Rd×d and R ∈ Rk×k are both positive definite
matrices that parameterize the quadratic costs. For clarity,
this work does not consider a noise disturbance but only a
random initial state. The importance of (some) randomiza-
tion for analyzing direct methods is discussed in Section 3.

Throughout, assume that A and B are such that the optimal
cost is finite (for example, the controllability of the pair
(A,B) would ensure this). Optimal control theory (Ander-
son & Moore, 1990; Evans, 2005; Bertsekas, 2011; 2017)
shows that the optimal control input can be written as a
linear function in the state,

ut = −K∗xt

where K∗ ∈ Rk×d.

Planning with a known model. For the infinite horizon
LQR problem, planning can be achieved by solving the
Algebraic Riccati Equation (ARE),

P = ATPA+Q−ATPB(BTPB +R)−1BTPA , (1)

for a positive definite matrix P which parameterizes the
“cost-to-go” (the optimal cost from a state going forward).
The optimal control gain is then given as:

K∗ = −(BTPB +R)−1BTPA. (2)

To find P , there are iterative methods, algebraic solution
methods, and (convex) SDP formulations. Solving the ARE
is extensively studied; one approach due to (Kleinman,
1968) (for continuous time) and (Hewer, 1971) (for discrete
time) is to simply run the recursion Pk+1 = Q+ATPkA−
ATPkB(R + BTPkB)−1BTPkA where P1 = Q, which
converges to the unique positive semidefinite solution of the
ARE (since the fixed-point iteration is contractive). Other
approaches are direct and are based on linear algebra, which
carry out an eigenvalue decomposition on a certain block
matrix (called the Hamiltonian matrix) followed by a matrix

inversion (Lancaster & Rodman, 1995). The LQR problem
can also be expressed as a semidefinite program (SDP) with
variable P as given in (Balakrishnan & Vandenberghe, 2003)
(see Section A in the supplement).

However, these formulations: 1) do not directly parameter-
ize the policy, 2) are not “end-to-end” approaches, in that
they are not directly optimizing the cost function of interest,
and 3) it is not immediately clear how to utilize these ap-
proaches in the model-free setting, where the agent only has
simulation access. These issues are outlined in Section A of
the supplement.

1.2. Contributions of this work

Even in the most basic case of the standard linear quadratic
regulator model, little is understood as to how direct (model-
free) policy gradient methods fare. This work provides
rigorous guarantees, showing that, while in fact the approach
deals with a non-convex problem, directly using (model free)
local search methods leads to finding the globally optimal
policy (i.e., a policy whose objective value is ε-close to the
optimal). The main contributions are as follows:

• (Exact case) Even with access to exact gradient evalua-
tion, little is understood about whether or not conver-
gence to the optimal policy occurs, even in the limit,
due to the non-convexity of the problem. This work
shows that global convergence does indeed occur (and
does so efficiently) for gradient descent methods.

• (Model free case) Without a model, this work shows
how one can use simulated trajectories (as opposed to
having knowledge of the model) in a stochastic pol-
icy gradient method, where provable convergence to a
globally optimal policy is guaranteed, with (polynomi-
ally) efficient computational and sample complexities.

• (The natural policy gradient) Natural policy gradient
methods (Kakade, 2001) — and related algorithms
such as Trust Region Policy Optimization (Schulman
et al., 2015) and the natural actor critic (Peters &
Schaal, 2007) — are some of the most widely used and
effective policy gradient methods (see (Duan et al.,
2016)). While many results argue in favor of this
method based on either information geometry (Kakade,
2001; Bagnell & Schneider, 2003) or based on connec-
tions to actor-critic methods (Deisenroth et al., 2013),
these results do not provably show an improved conver-
gence rate. This work is the first to provide a guarantee
that the natural gradient method enjoys a considerably
improved convergence rate over its naive gradient coun-
terpart.

More broadly, the techniques in this work merge ideas from
optimal control theory, mathematical optimization (first
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order and zeroth order), and sample based reinforcement
learning methods. These techniques may ultimately help in
improving upon the existing set of algorithms, addressing
issues such as variance reduction or improving upon the
natural policy gradient method (with, say, a Gauss-Newton
method as in Theorem 7). The Discussion section touches
upon some of these issues.

1.3. Related work

In the reinforcement learning setting, the model is unknown,
and the agent must learn to act through its interactions with
the environment. Here, solution concepts are typically di-
vided into: model-based approaches, where the agent at-
tempts to learn a model of the world, and model-free ap-
proaches, where the agent directly learns to act and does not
explicitly learn a model of the world. The related work on
provably learning LQRs is reviewed from this perspective.

Model-based learning approaches. In the context of
LQRs, the agent can attempt to learn the dynamics of “the
plant” (i.e., the model) and then plan, using this model, for
control synthesis. Here, the classical approach is to learn
the model with subspace-based system identification (Ljung,
1999). Fiechter (1994) provides a provable learning (and
non-asymptotic) result, where the quality of the policy ob-
tained is shown to be near optimal (efficiency is in terms of
the persistence of the training data and the controllability
Gramian). Abbasi-Yadkori & Szepesvári (2011) also pro-
vides provable, non-asymptotic learning results in a regret
context, using a bandit algorithm that achieves lower sam-
ple complexity (by balancing exploration-exploitation more
effectively); the computational efficiency of this approach
is less clear.

More recently, Dean et al. (2017) expands on an explicit
system identification process, where a robust control syn-
thesis procedure is adopted that relies on a coarse model
of the plant matrices (A and B are estimated up to some
accuracy level, naturally leading to a “robust control” setup
to then design the controller based in the coarse model).
Tighter analysis for sample complexity was given in Tu &
Recht (2018); Simchowitz et al. (2018). Arguably, this is
the most general (and non-asymptotic) result that is efficient
from a statistical perspective. Computationally, the method
works with a finite horizon to approximate the infinite hori-
zon. This result only needs the plant to be controllable; the
work herein needs the stronger assumption that the initial
policy in the local search procedure is a stable controller
(an assumption which may be inherent to local search pro-
cedures, discussed in Section 5). Another recent line of
work (Hazan et al., 2017; 2018; Arora et al., 2018) treat
the problem of learning a linear dynamical system as an
online learning problem. (Hazan et al., 2017; Arora et al.,
2018) are restricted to systems with symmetric dynamics

(symmetric A matrix), while (Hazan et al., 2018) handles a
more general setting. This line of work can handle the case
when there are latent states (i.e., when the observed output
is a linear function of the state, and the state is not observed
directly) and does not need to do system identification first.
On the other hand, they don’t output a succinct linear policy
as Dean et al. (2017) or this paper.

Model-free learning approaches. Model-free approaches
that do not rely on an explicit system identification step
typically either: 1) estimate value functions (or state-action
values) through Monte Carlo simulation which are then used
in some approximate dynamic programming variant (Bert-
sekas, 2011), or 2) directly optimize a (parameterized) pol-
icy, also through Monte Carlo simulation. Model-free ap-
proaches for learning optimal controllers are not well under-
stood from a theoretical perspective. Here, Bradtke et al.
(1994) provides an asymptotic learnability result using a
value function approach, namely Q-learning.

2. Preliminaries and Background
2.1. Exact Gradient Descent

This work seeks to characterize the behavior of (direct)
policy gradient methods, where the policy is linearly pa-
rameterized, as specified by a matrix K ∈ Rk×d which
generates the controls:

ut = −Kxt
for t ≥ 0. The cost of this K is denoted as:

C(K) := Ex0∼D

[ ∞∑
t=0

(x>t Qxt + u>t Rut)

]
where {xt, ut} is the trajectory induced by following K,
starting with x0 ∼ D. The importance of (some) random-
ization, either in x0 or noise through having a disturbance,
for analyzing gradient methods is discussed in Section 3.
Here, K∗ is a minimizer of C(·).

Gradient descent on C(K), with a fixed stepsize η, follows
the update rule:

K ← K − η∇C(K) .

It is helpful to explicitly write out the functional form of the
gradient. Define PK as the solution to:

PK = Q+K>RK + (A−BK)>PK(A−BK) .

and, under this definition, it follows that C(K) can be writ-
ten as:

C(K) = Ex0∼D x
>
0 PKx0 .

Also, define ΣK as the (un-normalized) state correlation
matrix, i.e.

ΣK = Ex0∼D

∞∑
t=0

xtx
>
t .
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Lemma 1. (Policy Gradient Expression) The policy gradi-
ent is:

∇C(K) = 2
(
(R+B>PKB)K −B>PKA

)
ΣK

Later for simplicity, define EK to be

EK =
(
(R+B>PKB)K −B>PKA

)
,

as a result the gradient can be written as ∇C(K) =
2EKΣK .

Proof. Observe:

CK(x0) = x>0 PKx0

= x>0
(
Q+K>RK

)
x0

+ x>0 (A−BK)>PK(A−BK)x0

= x>0
(
Q+K>RK

)
x0

+ CK((A−BK)x0) .

Let ∇ denote the gradient with respect to K, note that
∇CK((A − BK)x0) has two terms (one with respect to
K in the subscript and one with respect to the input (A−
BK)x0), this implies

∇CK(x0) = 2RKx0x
>
0 − 2B>PK(A−BK)x0x

>
0

+∇CK(x1)|x1=(A−BK)x0

= 2
(
(R+B>PKB)K −B>PKA

) ∞∑
t=0

xtx
>
t

using recursion and that x1 = (A−BK)x0. Taking expec-
tations completes the proof.

2.2. Review: (Model free) sample based policy gradient
methods

Sample based policy gradient methods introduce some ran-
domization for estimating the gradient.

REINFORCE.(Williams, 1992; Sutton et al., 2000) Let
πθ(u|x) be a parametric stochastic policy, where u ∼
πθ(·|x). The policy gradient of the cost, C(θ), is:

∇C(θ) = E

[ ∞∑
t=0

Qπθt (xt, ut)∇ log πθ(ut|xt)

]
,

where Qπθ (x, u) = E

[ ∞∑
t=0

ct|x0 = x, u0 = u

]
,

where the expectation is with respect to the trajectory
{xt, ut} induced under the policy πθ and where Qπθ (x, u)
is referred to as the state-action value. The REINFORCE al-
gorithm uses Monte Carlo estimates of the gradient obtained
by simulating πθ.

The natural policy gradient. The natural policy gradi-
ent (Kakade, 2001) follows the update:

θ ← θ − η G−1
θ ∇C(θ),where:

Gθ = E

[ ∞∑
t=0

∇ log πθ(ut|xt)∇ log πθ(ut|xt)>
]
,

whereGθ is the Fisher information matrix. There are numer-
ous succesful related approaches (Peters & Schaal, 2007;
Schulman et al., 2015; Duan et al., 2016). An important
special case is using a linear policy with additive Gaussian
noise (Rajeswaran et al., 2017b), i.e.

πK(x, u) = N (Kx, σ2I) (3)

where K ∈ Rk×d and σ2 is the noise variance. Here, the
natural policy gradient of K (when σ is considered fixed)
takes the form:

K ← K − η∇C(K)Σ−1
K (4)

To see this, one can verify that the Fisher matrix of size
kd× kd, which is indexed as [GK ](i,j),(i′,j′) where i, i′ ∈
{1, . . . k} and j, j′ ∈ {1, . . . d}, has a block diagonal form
where the only non-zeros blocks are [GK ](i,·),(i,·) = ΣK
(this is the block corresponding to the i-th coordinate of
the action, as i ranges from 1 to k). This form holds more
generally, for any diagonal noise.

Zeroth order optimization. Zeroth order optimization is a
generic procedure (Conn et al., 2009; Nesterov & Spokoiny,
2015) for optimizing a function f(x), using only query
access to the function values of f(·) at input points x (and
without explicit query access to the gradients of f ). This
is also the approach in using “evolutionary strategies” for
reinforcement learning (Salimans et al., 2017). The generic
approach can be described as follows: define the perturbed
function as

fσ2(x) = Eε∼N (0,σ2I)[f(x+ ε)]

For small σ, the smooth function is a good approximation
to the original function. Due to the Gaussian smoothing,
the gradient has the particularly simple functional form (see
Conn et al. (2009); Nesterov & Spokoiny (2015)):

∇fσ2(x) =
1

σ2
Eε∼N (0,σ2I)[f(x+ ε)ε] .

This expression implies a straightforward method to obtain
an unbiased estimate of the ∇fσ2(x), through obtaining
only the function values f(x+ ε) for random ε.

3. The (non-convex) Optimization Landscape
This section provides a brief characterization of the opti-
mization landscape, in order to help provide intuition as
to why global convergence is possible and as to where the
analysis difficulties lie.
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Lemma 2. (Non-convexity) If d ≥ 3, there exists an LQR
optimization problem, minK C(K), which is not convex,
quasi-convex, and star-convex.

The specific example is given in supplementary material
(Section B). In particular, there can be two matrices K and
K ′ where both C(K) and C(K ′) are finite, but C((K +
K ′)/2) is infinite.

For a general non-convex optimization problem, gradient
descent may not even converge to the global optima in the
limit. The optimization problem of LQR satisfies a special
gradient domination condition, which makes it much easier
to optimize:
Lemma 3. (Gradient domination) Let K∗ be an optimal
policy. Suppose K has finite cost and σmin(ΣK) > 0. It
holds that

C(K)− C(K∗) ≤ ‖ΣK∗‖
σmin(ΣK)2σmin(R)

‖∇C(K)‖2F .

This lemma can be proved by analyzing the “advantage”
of the optimal policy Σ∗ to Σ in every step. The detailed
lemma and the full proof is deferred to supplementary mate-
rial.

As a corollary, this lemma provides a characterization of the
stationary points.
Corollary 4. (Stationary point characterization) If
∇C(K) = 0, then either K is an optimal policy or ΣK
is rank deficient.

Note that the covariance ΣK � Σ0 := Ex0∼Dx0x
>
0 . There-

fore, this lemma is the motivation for using a distribu-
tion over x0 (as opposed to a deterministic starting point):
Ex0∼Dx0x

>
0 being full rank guarantees that ΣK is full rank,

which implies all stationary points are a global optima. An
additive disturbance in the dynamics model also suffices.

The concept of gradient domination is important in the non-
convex optimization literature (Polyak, 1963; Nesterov &
Polyak, 2006; Karimi et al., 2016). A function f : Rd → R
is said to be gradient dominated if there exists some constant
λ, such that for all x,

f(x)−min
x′

f(x′) ≤ λ‖∇f(x)‖2 .

If a function is gradient dominated, this implies that if the
magnitude of the gradient is small at some x, then the func-
tion value at x will be close to that of the optimal function
value.

Using the fact that ΣK � Σ0, the following corollary of
Lemma 3 shows that C(K) is gradient dominated.
Corollary 5. (Gradient Domination) Suppose Ex0∼Dx0x

>
0

is full rank. Then C(K) is gradient dominated, i.e.

C(K)− C(K∗) ≤ λ〈∇C(K),∇C(K)〉

where λ = ‖ΣK∗‖
σmin(Σ0)2σmin(R) is a problem dependent constant

(and 〈·, ·〉 denotes the trace inner product).

Naively, one may hope that gradient domination immedi-
ately implies that gradient descent converges quickly to the
global optima. This would indeed be the case if the C(K)
were a smooth function1: if it were the case that C(K) is
both gradient dominated and smooth, then classical mathe-
matical optimization results (Polyak, 1963) would not only
immediately imply global convergence, these results would
also imply convergence at a linear rate. These results are
not immediately applicable due to it is not straightforward
to characterize the (local) smoothness properties of C(K);
this is a difficulty well studied in the optimal control theory
literature, related to robustness and stability.

Similarly, one may hope that recent results on escaping
saddle points (Nesterov & Polyak, 2006; Ge et al., 2015;
Jin et al., 2017) immediately imply that gradient descent
converges quickly to the global optima, due to that there are
no (spurious) local optima. Again, for reasons related to
smoothness this is not the case.

The main reason that the LQR objective cannot satisfy the
smoothness condition globally is that the objective becomes
infinity when the matrix A − BK becomes unstable (i.e.
has an eigenvalue that is outside of the unit circle in the
complex plane). At the boundary between stable and unsta-
ble policies, the objective function quickly becomes infinity,
which violates the traditional smoothness conditions be-
cause smoothness conditions would imply quadratic upper-
bounds for the objective function.

To solve this problem, it is observed that when the policy
K is not too close to the boundary, the objective satisfies an
almost-smoothness condition:

Lemma 6. (“Almost” smoothness) C(K) satisfies:

C(K ′)− C(K) = −2Tr(ΣK′(K −K ′)>EK)

+ Tr(ΣK′(K −K ′)>(R+B>PKB)(K −K ′))

To see why this is related to smoothness (e.g. compare to
Equation 13), suppose K ′ is sufficiently close to K so that:

ΣK′ ≈ ΣK +O(‖K −K ′‖)

and the leading order term 2Tr(ΣK′(K
′−K)>EK) would

then behave as Tr((K ′ −K)>∇C(K)), and the remaining
terms will be second order in K −K ′.

Quantify the Taylor approximation ΣK′ ≈ ΣK +O(‖K −
K ′‖) is one of the key steps in proving the convergence of
policy gradient.

1A differentiable function f(x) is said to be smooth if the
gradients of f are continuous. Equivalently, see the definition in
Equation 13.
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4. Main Results
First, results on exact gradient methods are provided. From
an analysis perspective, this is the natural starting point;
once global convergence is established for exact methods,
the question of using simulation-based, model-free methods
can be approached with zeroth-order optimization methods
(where gradients are not available, and can only be approxi-
mated using samples of the function value).

Notation. ‖Z‖ denotes the spectral norm of a matrix Z;
Tr(Z) denotes the trace of a square matrix; σmin(Z) denotes
the minimal singular value of a square matrix Z. Also, it is
helpful to define

µ := σmin(Ex0∼Dx0x
>
0 )

4.1. Model-based optimization: exact gradient methods

We consider three exact update rules. For gradient descent,
the update is

Kn+1 = Kn − η∇C(Kn). (5)

For natural policy gradient descent, the direction is defined
so that it is consistent with the stochastic case, as per Equa-
tion 4, in the exact case the update is:

Kn+1 = Kn − η∇C(Kn)Σ−1
Kn

(6)

For Gauss-Newton method, the update is:

Kn+1 = Kn − η(R+B>PKnB)−1∇C(Kn)Σ−1
Kn

. (7)

The standard policy iteration algorithm(Howard, 1964) that
tries to optimize a one-step deviation from the current policy
is equivalent to a special case of the Gauss-Newton method
when η = 1 (for the case of policy iteration, convergence in
the limit is provided in (Todorov & Li, 2004; Ng et al., 2002;
Liao & Shoemaker, 1991), along with local convergence
rates.)

The Gauss-Newton method requires the most complex or-
acle to implement: it requires access to ∇C(K), ΣK , and
R+B>PKB; it also enjoys the strongest convergence rate
guarantee. At the other extreme, gradient descent requires
oracle access to only ∇C(K) and has the slowest conver-
gence rate. The natural policy gradient sits in between,
requiring oracle access to ∇C(K) and ΣK , and having a
convergence rate between the other two methods.

Theorem 7. (Global Convergence of Gradient Methods)
Suppose C(K0) is finite and µ > 0.

• Gauss-Newton case: For a stepsize η = 1 and for

N ≥ ‖ΣK
∗‖

µ
log

C(K0)− C(K∗)
ε

,

the Gauss-Newton algorithm (Equation 7) enjoys the
following performance bound:

C(KN )− C(K∗) ≤ ε

• Natural policy gradient case: For a stepsize

η =
1

‖R‖+ ‖B‖2C(K0)
µ

and for

N ≥‖ΣK
∗‖

µ

(
‖R‖

σmin(R)
+
‖B‖2C(K0)

µσmin(R)

)
log

C(K0)− C(K∗)
ε

,

natural policy gradient descent (Equation 6) enjoys the
following performance bound:

C(KN )− C(K∗) ≤ ε .

• Gradient descent case: For an appropriate (constant)
setting of the stepsize η,

η = poly

(
µσmin(Q)

C(K0)
,

1

‖A‖
,

1

‖B‖
,

1

‖R‖
, σmin(R)

)
and for

N ≥‖ΣK
∗‖

µ
log

C(K0)− C(K∗)
ε

poly

(
C(K0)

µσmin(Q)
, ‖A‖, ‖B‖, ‖R‖, 1

σmin(R)

)
,

gradient descent (Equation 5) enjoys the following
performance bound:

C(KN )− C(K∗) ≤ ε .

In comparison to model-based approaches, these results
require the (possibly) stronger assumption that the initial
policy is a stable controller, i.e. C(K0) is finite (an assump-
tion which may be inherent to local search procedures). The
Discussion mentions this as direction of future work.

The proof for Gauss-Newton algorithm is simple based on
the characterizations in Lemma 3 and Lemma 6, and is
given below. The proof for natural policy gradient and
gradient descent are more involved, and are deferred to
supplementary material.

Lemma 8. Suppose that:

K ′ = K − η(R+B>PKB)−1∇C(K)Σ−1
K , .

If η ≤ 1, then

C(K ′)− C(K∗) ≤
(

1− ηµ

‖ΣK∗‖

)
(C(K)− C(K∗))
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Algorithm 1 Model-Free Policy Gradient (and Natural Pol-
icy Gradient) Estimation

1: Input: K, number of trajectories m, roll out length `,
smoothing parameter r, dimension d

2: for i = 1, · · ·m do
3: Sample a policy K̂i = K + Ui, where Ui is drawn

uniformly at random over matrices whose (Frobe-
nius) norm is r.

4: Simulate K̂i for ` steps starting from x0 ∼ D. Let
Ĉi and Σ̂i be the empirical estimates:

Ĉi =
∑̀
t=1

ct , Σ̂i =
∑̀
t=1

xtx
>
t

where ct and xt are the costs and states on this trajec-
tory.

5: end for
6: Return the (biased) estimates:

∇̂C(K) =
1

m

m∑
i=1

d

r2
ĈiUi , Σ̂K =

1

m

m∑
i=1

Σ̂i

Proof. Observe K ′ = K − η(R+B>PKB)−1EK . Using
Lemma 6 and the condition on η,

C(K ′)− C(K)

= −2ηTr(ΣK′E
>
K(R+B>PKB)−1EK) +

η2Tr(ΣK′E
>
K(R+B>PKB)−1EK)

≤ −ηTr(ΣK′E
>
K(R+B>PKB)−1EK)

≤ −ησmin(ΣK′)Tr(E>K(R+B>PKB)−1EK)

≤ −ηµTr(E>K(R+B>PKB)−1EK)

≤ −η µ

‖ΣK∗‖
(C(K)− C(K∗)) ,

where the last step uses Lemma 3.

With this lemma, the proof of the convergence rate of the
Gauss Newton algorithm is immediate.

Proof. (of Theorem 7, Gauss-Newton case) The theorem
is due to that η = 1 leads to a contraction of 1− ηµ

‖ΣK∗‖ at
every step.

4.2. Model free optimization: sample based policy
gradient methods

In the model free setting, the controller has only simulation
access to the model; the model parameters, A, B, Q and R,
are unknown. The standard optimal control theory approach
is to use system identification to learn the model, and then
plan with this learned model This section proves that model-
free, policy gradient methods also lead to globally optimal

policies, with both polynomial computational and sample
complexities (in the relevant quantities).

Using a zeroth-order optimization approach (see Sec-
tion 2.2), Algorithm 1 provides a procedure to find (bounded
bias) estimates, ∇̂C(K) and Σ̂K , of both∇C(K) and ΣK .
These can then be used in the policy gradient and natural
policy gradient updates. For policy gradient we have

Kn+1 = Kn − η ̂∇C(Kn). (8)

For natural policy gradient we have:

Kn+1 = Kn − η ̂∇C(Kn)Σ̂−1
Kn

. (9)

In both Equations (8) and (9), Algorithm 1 is called at every
iteration to provide the estimates of∇C(Kn) and ΣKn .

The choice of using zeroth order optimization vs using RE-
INFORCE (with Gaussian additive noise, as in Equation 3)
is primarily for technical reasons2. It is plausible that the
REINFORCE estimation procedure has lower variance. One
additional minor difference, again for technical reasons, is
that Algorithm 1 uses a perturbation from the surface of a
sphere (as opposed to a Gaussian perturbation).

Theorem 9. (Global Convergence in the Model Free Set-
ting) Suppose C(K0) is finite, µ > 0, and that x0 ∼ D has
norm bounded by L almost surely. Also, for both the policy
gradient method and the natural policy gradient method,
suppose Algorithm 1 is called with parameters:

m, `, 1/r =poly
(
C(K0),

1

µ
,

1

σmin(Q)
, ‖A‖, ‖B‖, ‖R‖,

1

σmin(R)
, d, 1/ε, L2/µ

)
.

• Natural policy gradient case: For a stepsize

η =
1

‖R‖+ ‖B‖2C(K0)
µ

and for

N ≥‖ΣK
∗‖

µ

(
‖R‖

σmin(R)
+
‖B‖2C(K0)

µσmin(R)

)
log

2(C(K0)− C(K∗))
ε

,

then, with high probability, i.e. with probability greater
than 1− exp(−d), the natural policy gradient descent
update (Equation 9) enjoys the following performance
bound:

C(KN )− C(K∗) ≤ ε .
2The correlations in the state-action value estimates in REIN-

FORCE are more challenging to analyze.
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• Gradient descent case: For an appropriate (constant)
setting of the stepsize η,

η = poly

(
µσmin(Q)

C(K0)
,

1

‖A‖
,

1

‖B‖
,

1

‖R‖
, σmin(R)

)
and for

N ≥‖ΣK
∗‖

µ
log

C(K0)− C(K∗)
ε

× poly

(
C(K0)

µσmin(Q)
, ‖A‖, ‖B‖, ‖R‖, 1

σmin(R)

)
,

then, with high probability, gradient descent (Equa-
tion 8) enjoys the following performance bound:

C(KN )− C(K∗) ≤ ε .

This theorem gives the first polynomial time guarantee for
policy gradient and natural policy gradient algorithms in the
LQR problem.

Proof Sketch The model free results (Theorem 9) are
proved in the following three steps:

1. Prove that when the roll out length ` is large enough,
the cost function C and the covariance Σ are approxi-
mately equal to the corresponding quantities at infinite
steps.

2. Show that with enough samples, Algorithm 1 can es-
timate both the gradient and covariance matrix within
the desired accuracy.

3. Prove that both gradient descent and natural gradient
descent can converge with a similar rate, even if the
gradient/natural gradient estimates have some bounded
perturbations.

The proofs are technical and are deferred to supplementary
material. We have focused on proving polynomial relation-
ships in our complexity bounds, and did not optimize for
the best dependence on the relevant parameters.

5. Conclusions and Discussion
This work has provided provable guarantees that model-
based gradient methods and model-free (sample based) pol-
icy gradient methods convergence to the globally optimal
solution, with finite polynomial computational and sam-
ple complexities. Taken together, the results herein place
these popular and practical policy gradient approaches on a
firm theoretical footing, making them comparable to other
principled approaches (e.g., subspace system identification
methods and algebraic iterative approaches).

Finite C(K0) assumption, noisy case, and finite horizon
case. These methods allow for extensions to the noisy case
and the finite horizon case. This work also made the assump-
tion that C(K0) is finite, which may not be easy to achieve
in some infinite horizon problems. The simplest way to
address this is to model the infinite horizon problem with a
finite horizon one; the techniques developed in Section D.1
shows this is possible. This is an important direction for
future work.

Open Problems.

• Variance reduction: This work only proved efficiency
from a polynomial sample size perspective. An inter-
esting future direction would be in how to rigorously
combine variance reduction methods and model-based
methods to further decrease the sample size.

• A sample based Gauss-Newton approach: This work
showed how the Gauss-Newton algorithm improves
over even the natural policy gradient method, in the ex-
act case. A practically relevant question for the Gauss-
Newton method would be how to both: a) construct a
sample based estimator b) extend this scheme to deal
with (non-linear) parametric policies.

• Robust control: In model based approaches, optimal
control theory provides efficient procedures to deal
with (bounded) model mis-specification. An important
question is how to provably understand robustness in a
model free setting.
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