
Fourier Policy Gradients

A. Fourier Series and Approximation
Formally, the Fourier series is an expansion of a periodic
function f(x) of period 2L in terms of an infinite summation
of sines and cosines. For clarity, we give the univariate case
– the multivariate result can be found in literature.

f(x) = u0 +
1X

m=1

um cos(m!0x) +
1X

m=1

vm sin(m!0x),

(26)
where !0 , ⇡

L and the coefficients for the series are:

um =
1
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Z L

�L
f(x) cos(m!0x)dx,
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L

Z L

�L
f(x) sin(m!0x)dx.

By writing sine and cosine terms in their complex exponen-
tial forms, it is possible to define a complex Fourier series
for real valued functions as

f(x) =
m=1X

m=�1
cmeim!0x, (27)

cm =
1

2L
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�L
f(x0)e�im!0x

0
dx0.

(26) and (27) are equivalent if we set cm as:

cm =

8
><

>:

1
2 (um + ivm) for m < 0,

u0 for m = 0,
1
2 (um � ivm) for m > 0.

In reality, we cannot sum to infinity and instead use the
series to approximate f(x) to a finite value of m. Just as
a Taylor series approximation becomes more accurate by
using higher and higher order polynomials xm, a Fourier
series expansion becomes more accurate by using sinusoids
of higher and higher frequencies m!0. However, a Fourier
series approximation approximates the function over its
whole period, whereas the Taylor series does so only in a
local neighbourhood of the given point.

Although the Fourier series is defined for periodic functions,
it is still applicable to aperiodic functions. For bounded
aperiodic functions, we define the period 2L to be the size
of the domain of f(x) and then integrate over this domain to
obtain the Fourier coefficients. Intuitively, this is equivalent
to repeating the bounded function periodically over an infi-
nite domain. Aperiodic functions that are not bounded may
be approximated by defining Fourier series over a bounded
region of the function. As the size of this bounded region
increases, and consequently the period 2L increases, the
Fourier series approximation becomes more accurate and
approaches a Fourier transform. Thus, for aperiodic un-
bounded functions, a Fourier series approximates a Fourier
transform.

We now formalise the idea of taking the limit of the period
going to infinity (L ! 1) for a complex Fourier series
representation of any general function f(x). Firstly, it is
convenient to rewrite (27) as:

f(x) =
1

2⇡

m=1X

m=�1

Z L

�L
f(x0)e�im!0x

0
dx0eim!0x!0.

Taking the limit as L ! 1 (Stein & Shakarchi, 2003) gives
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ei!xd!

| {z }
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,

which is exactly equivalent to (7).

The integrals in the definition of the Fourier transform arise
from taking a Fourier series representation of a function and
letting the number of coefficients go to infinity.

B. n-Dimensional Fourier Transforms
Definitions Firstly, we make the definition of a n-
dimensional Fourier transform precise: Consider a func-
tion f(·) : Rn ! R. For x = (x1, x2, ...xn)> 2 Rn and
! = (!1,!2, ...!n)> 2 Rn, we have:

F (f(x)) ,
Z

x
f(x)e�i!>xdx,

=

nz }| {Z

x1

...

Z

xn

f(x)e�i!>xdx1...dxn.

The corresponding n-Dimensional inverse Fourier transform
is defined as:

F�1 (f(x)) ,
⇣ 1

2⇡

⌘n
Z

!
f(x)ei!

>xd!,

=
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2⇡

⌘n

nz }| {Z

!1

...

Z

!n

f(x)ei!
>!d!1...d!n.

We define the Fourier transform of a vector/matrix quantity
as simply the Fourier transform of individual elements of
the vector/matrix. For example, the Fourier transform of
matrix

⇥
F (x)

⇤
jk

= fjk(x) is found from:

h
F(F (x))

i

jk
, F (fjk(x)) . (28)

And similarly for the inverse Fourier transform:
h
F�1(F (x))

i

jk
, F�1 (fjk(x)) .
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Multiplication-Derivative Identities We now derive
multi-dimension analogues to the single dimension
multiplication-derivative property, which we state here:

F
✓

@

@xj
f(x)

◆
= i!jF(f(x)). (29)

Proofs of (29) are commonplace in Fourier Analysis refer-
ences (Stein & Shakarchi, 2003). We start with a vector
identity:
Lemma 1 (Multiplication-Derivative Property: Vectors).
Given a function f(x) with Fourier transform F (f(x)),
multiplying F (f(x)) by the vector i! in the frequency

domain is equivalent to taking the first order derivative

rxf(x) in the action domain, that is:

i!F (f(x)) = F(rxf(x)).

Proof. Consider the elements of the vector i!F (f(x)):
h
i!F (f(x))

i

j
= i!jF (f(x)) .

Using the single dimension multiplication-derivative prop-
erty from (29) yields:

h
i!F (f(x))

i

j
= F

✓
@

@xj
f(x)

◆
.

Using the definition of the Fourier transform of a vector
from (28) gives our main result:

i!F (f(x)) = F(rxf(x)).

We now derive a similar identity for matrices:
Lemma 2 (Multiplication-Derivative Property: Matrices).
Given a function f(x) with Fourier transform F (f(x)),
multiplying F (f(x)) by the matrix (i!)(i!)> in the fre-

quency domain is equivalent to taking the second order

derivative r(2)
x f(x) in the action domain, that is:

(i!)(i!)>F (f(x)) = F
⇣
r(2)

x f(x)
⌘
.

Proof. Consider the elements of the matrix
(i!)(i!)>F (f(x)):
h
(i!)(i!)>F (f(x))

i

jk
= (i!j)(i!k)F (f(x)) .

Using the single dimension multiplication-derivative prop-
erty from (29) twice yields:
h
(i!)(i!)>F (f(x))

i

jk
= (i!j)F

✓
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Using the definition of the Fourier transform of a matrix
from (28) gives our main result:

i!F (f(x)) = F(r(2)
x f(x)).

C. Auxiliary Function Properties
Lemma 3 (nth Order Derivative of Auxiliary Function).
Given an auxiliary function �̃(µ� a) = �(a) for a policy

�, we may relate the m-th order derivative of �̃ w.r.t. µ to

the mth order derivative of � w.r.t. a as:

⇣
r(m)�̃

⌘
(µ� a) = (�1)nr(m)

a �(a) 8 m � 0.

Proof. For m = 1 From the chain rule we write:
⇣
r�̃

⌘
(µ� a) = rµ�̃(µ� a).

Let ⌫ = µ� a s.t. �̃(µ� a) = �̃(⌫). Using the chain rule
again for rµ�̃(µ� a) yields:

rµ�̃(⌫) = rµ⌫r⌫ara�̃(⌫).

Now, rµ⌫ = I and r⌫a = �I . Substituting yields:

rµ�̃(µ� a) = (�1)ra�̃(⌫).

Substituting �̃(⌫) = �̃(µ � a) = �(a) gives our main
result for m = 1:

⇣
r�̃

⌘
(µ� a) = (�1)ra�(a).

Finally, taking m� 1 more derivatives will give our main
result:

⇣
r(m)�̃

⌘
(µ� a) = (�1)mr(m)

a �(a).

D. Turntable Experimental Setup Details
The turntable domain is a toy continuous control task. The
goal is to align a disk to a desired angle by rotating it around
its axis. The action is an angle in the range a 2 [�⇡,⇡]
and the observations are the current position of the disk and
the target position, both expressed as angles. The reward
is set to sin(↵ + ↵target) � 1

4 |a|. For DPG, we used the
OpenAI baseline implementation, where both the actor and
the critic are represented using neural networks. For Fourier-
EPG, we used the same setup but changed the critic to be
trigonometric critic of the form sin(↵+ ↵target � a) + w|a|
with a tuneable weight w and the actor update given by
Equation (23). The exploration policy was Gaussian with
fixed standard deviation � = 0.05 in both cases.
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E. Gaussian Derivatives
We derive specific analytical solutions for the Gaussian
policy � = N (µ,⌃) from Section 4.1. The following
identities (Petersen & Pedersen, 2012) will be useful:

ra� = �⌃�1(a� µ)�, (30)

r(2)
a � =

⇣
⌃�1(a� µ)(a� µ)>⌃�1 �⌃�1

⌘
�.(31)

Zeroth order (M = 0) Substituting for ra� from (30)
and r(2)

a � from (31) in (17) and (18) respectively, we obtain
our analytic expression:

Îµ =

Z

a
⌃�1(a� µ)Q̂�da,

Î
⌃

1
2
=

Z

a

⇣
(⌃

1
2 )�>(a� µ)(a� µ)>⌃�1

� (⌃
1
2 )�>

⌘
Q̂�da.

First order (M = 1) Substituting for ra� from (30) in
(20), we obtain our analytic expression:

Î
⌃

1
2
=

Z

a
(⌃

1
2 )�>(a� µ)(raQ̂)>�da.

F. Proofs
Corollary 2.1. Let  be a parameter that does
not depend upon µ. We can write Î (st) =

r 

R
a Q̂(st,a)�✓(a|st)da as:

Î (s) = F�1
⇣
F(Q̂)r F(�̃)

⌘
(µ).

Proof. Using Theorem 2, we obtain the following expres-
sion for Î (st):

Î (st) = r F�1
⇣
F(Q̂)F(�̃)

⌘
(µ).

Using Leibniz’s rule for integration under the integral, we
move the derivative inside of the inverse Fourier transform,
obtaining our result:

Î (st) = F�1
⇣
F(Q̂)r F(�̃)

⌘
(µ).

G. Complete Periodic Critic Derivation
We now derive the analytic update from (22) for our periodic
critic. Firstly, for ease of analysis we re-write our critic

using the hyperbolic function:

Q̂(a) = cos(f>
a� h),

=
ei(f

>a�h) + e�i(f>a�h)

2
,

=
e�iheif

>a + eihe�if>a

2
.

Taking the Fourier transform yields:

F
⇣
Q̂
⌘
=
1

2


e�ih(2⇡)n

nY

j=1

�(!j � fj)

+ eih(2⇡)n
nY

j=1

�(!j + fj)

�
,

=(2⇡)n

e�ih�(! � f) + eih�(! + f)

2

�
.

Recall that the characteristic function of the Gaussian aux-
iliary function is F

⇣
�̃
⌘
= e�!>⌃! . Now taking inverse

Fourier transforms of F(Q̂)F(�̃) yields:

F�1(F(Q̂)F(�̃))(a) =
1

(2⇡)n

Z
F(Q̂)F(�̃)ei!

Tad!,

=
1

2

Z
e�!>⌃!

h
e�ih�(! � f) + eih�(! + f)ei!

Ta
i
d!,

=
1

2

Z
e�!>⌃!

h
ei(!

Ta�h)�(! � f) + ei(!
Ta+h)�(! + f)

i
d!,

= e�f>⌃f

"
ei(f

Ta�h) + e�i(fTa�h)

2

#
,

= e�f>⌃f cos(fT
a� h),

where we have used the hyperbolic definition of cos to
derive our desired result in the final line.


