
Automatic Goal Generation for Reinforcement Learning Agents

A. Implementation details
A.1. Replay buffer

In addition to training our policy on the goals that were
generated in the current iteration, we also save a list (“regu-
larized replay buffer”) of goals that were generated during
previous iterations (update replay). These goals are
also used to train our policy, so that our policy does not
forget how to achieve goals that it has previously learned.
When we generate goals for our policy to train on, we sam-
ple two thirds of the goals from the Goal GAN and we
sample the one third of the goals uniformly from the replay
buffer. To prevent the replay buffer from concentrating in a
small portion of goal space, we only insert new goals that
are further away than ε from the goals already in the buffer,
where we chose the goal-space metric and ε to be the same
as the ones introduced in Section 3.1.

A.2. Goal GAN Initialization

In order to begin our training procedure, we need to ini-
tialize our goal generator to produce an initial set of goals
(initialize GAN). If we initialize the goal generator
randomly (or if we initialize it to sample uniformly from the
goal space), it is likely that, for most (or all) of the sampled
goals, our initial policy would receives no reward due to the
sparsity of the reward function. Thus we might have that all
of our initial goals g have R̄g(π0) < Rmin, leading to very
slow training.

To avoid this problem, we initialize our goal generator to
output a set of goals that our initial policy is likely to be
able to achieve with R̄g(πi) ≥ Rmin . To accomplish this,
we run our initial policy π0(at | st, g) with goals sampled
uniformly from the goal space. We then observe the set
of states Sv that are visited by our initial policy. These
are states that can be easily achieved with the initial policy,
π0, so the goals corresponding to such states will likely
be contained within SI0 . We then train the goal generator
to produce goals that match the state-visitation distribution
pv(g), defined as the uniform distribution over the set f(Sv).
We can achieve this through traditional GAN training, with
pdata(g) = pv(g). This initialization of the generator allows
us to bootstrap the Goal GAN training process, and our
policy is able to quickly improve its performance.

B. Experimental details
B.1. Ant specifications

The ant is a quadruped with 8 actuated joints, 2 for each
leg. The environment is implemented in Mujoco (Todorov
et al., 2012). Besides the coordinates of the center of mass,
the joint angles and joint velocities are also included in the
observation of the agent. The high degrees of freedom make

navigation a quite complex task requiring motor coordina-
tion. More details can be found in Duan et al. (2016), and
the only difference is that in our goal-oriented version of
the Ant we append the observation with the goal, the vector
from the CoM to the goal and the distance to the goal. For
the Free Ant experiments the objective is to reach any point
in the square [−5m, 5m]2 on command. The maximum
time-steps given to reach the current goal are 500.

B.2. Ant Maze Environment

The agent is constrained to move within the maze environ-
ment, which has dimensions of 6m x 6m. The full state-
space has an area of size 10 m x 10 m, within which the
maze is centered. To compute the coverage objective, goals
are sampled from within the maze according to a uniform
grid on the maze interior. The maximum time-steps given
to reach the current goal are 500.

B.3. Point-mass specifications

For the N-dim point mass of Section 5.3, in each episode
(rollout) the point-mass has 400 timesteps to reach the goal,
where each timestep is 0.02 seconds. The agent can accel-
erate in up to a rate of 5 m/s2 in each dimension (N = 2
for the maze). The observations of the agent are 2N dimen-
sional, including position and velocity of the point-mass.

B.4. Goal GAN design and training

After the generator generates goals, we add noise to each
dimension of the goal sampled from a normal distribution
with zero mean and unit variance. At each step of the al-
gorithm, we train the policy for 5 iterations, each of which
consists of 100 episodes. After 5 policy iterations, we then
train the GAN for 200 iterations, each of which consists
of 1 iteration of training the discriminator and 1 iteration
of training the generator. The generator receives as input 4
dimensional noise sampled from the standard normal dis-
tribution. The goal generator consists of two hidden layers
with 128 nodes, and the goal discriminator consists of two
hidden layers with 256 nodes, with relu nonlinearities.

B.5. Policy and optimization

The policy is defined by a neural network which receives as
input the goal appended to the agent observations described
above. The inputs are sent to two hidden layers of size 32
with tanh nonlinearities. The final hidden layer is followed
by a linear N -dimensional output, corresponding to acceler-
ations in the N dimensions. For policy optimization, we use
a discount factor of 0.998 and a GAE lambda of 0.995. The
policy is trained with TRPO with Generalized Advantage
Estimation implemented in rllab (Schulman et al., 2015a;b;
Duan et al., 2016). Every ”update policy” consists of 5

Automatic Goal Generation for Reinforcement Learning Agents

iterations of this algorithm.

C. Study of GoalGAN goals
To label a given goal (Section 4.1), we could empirically
estimate the expected return for this goal R̄g(πi) by per-
forming rollouts of our current policy πi. The label for this
goal is then set to yg = 1

{
Rmin ≤ R̄g(πi) ≤ Rmax

}
.

Nevertheless, having to execute additional rollouts just for
labeling is not sample efficient. Therefore, we instead use
the rollouts that were used for the most recent policy update.
This is an approximation as the rollouts where performed
under πi−1, but as we show in Figs. 8a-8b, this small “de-
lay” does not affect learning significantly. Indeed, using the
true label (estimated with three new rollouts from πi) yields
the Goal GAN true label curves that are only slightly better
than what our method does. Furthermore, no matter what
labeling technique is used, the success rate of most goals is
computed as an average of at most four attempts. Therefore,
the statement Rmin ≤ R̄g(πi) will be unchanged for any
value of Rmin ∈ (0, 0.25). Same for R̄g(πi) ≤ Rmax and
Rmax ∈ (0.75, 1). This implies that the labels estimates
(and hence our automatic curriculum generation algorithm)
is almost invariant for any value of the hypermparameters
Rmin and Rmax in these ranges.

In the same plots we also study another criteria to choose
the goals to train on that has been previously used in the
literature: learning progress (Baranes & Oudeyer, 2013b;
Graves et al., 2017). Given that we work in a continuous
goal-space, estimating the learning progress of a single goal
requires estimating the performance of the policy on that
goal before the policy update and after the policy update
(potentially being able to replace one of these estimations
with the rollouts from the policy optimization, but not both).
Therefore the method does require more samples, but we
deemed interesting to compare how well the metrics allow
to automatically build a curriculum. We see in the Figs. 8a-
8b that the two metrics yield a very similar learning, at least
in the case of Ant navigation tasks with sparse rewards.

D. Goal Generation for Free Ant
Similar to the experiments in Figures 3 and 4, here we show
the goals that were generated for the Free Ant experiment in
which a robotic quadruped must learn to move to all points
in free space. Figures 9 and 10 show the results. As shown,
our method produces a growing circle around the origin;
as the policy learns to move the ant to nearby points, the
generator learns to generate goals at increasingly distant
positions.

(a) Free Ant - Variants

(b) Maze Ant - Variants

Figure 8. Learning curves comparing the training efficiency of our
method and different variants. All plots are an average over 10
random seeds.

E. Learning for Multi-path point-mass
To clearly observe that our GoalGAN approach is capable of
fitting multimodal distributions, we have plotted in Fig. 11
only the samples coming from the GoalGAN (i.e. no sam-
ples from the replay buffer). Also, in this environment there
are several ways of reaching every part of the maze. This is
not a problem for our algorithm, as can be seen in the full
learning curves in Fig.12, where we see that all runs of the
algorithm reliably reaches full coverage of the multi-path
maze.

F. Comparisons with other methods
F.1. Asymmetric self-play (Sukhbaatar et al., 2017)

Although not specifically designed for the problem pre-
sented in this paper, it is straight forward to apply the method
proposed by Sukhbaatar et al. (2017) to our problem. An
interesting study of its limitations in a similar setting can be
found in (Florensa et al., 2017b).

Automatic Goal Generation for Reinforcement Learning Agents

(a) Iteration 10 (b) Iteration 100 (c) Iterartion 300

Figure 9. Goals that our algorithm trains on (200 sampled from the
Goal GAN, 100 from the replay). “High rewards” (green) are goals
with R̄g(πi) ≥ Rmax; GOIDi (blue) have appropriate difficulty
for the current policy Rmin ≤ R̄g(πi) ≤ Rmax. The red ones
have Rmin ≥ R̄g(πi)

(a) Iteration 10:
Coverage = 0.037

(b) Iteration 100:
Coverage = 0.4

(c) Iteration 300:
Coverage = 0.86

Figure 10. Visualization of the policy performance for different
parts of the state space (same policy training as in Fig. 9). For
illustration purposes, the feasible state-space is divided into a
grid, and a goal location is selected from the center of each grid
cell. Each grid cell is colored according to the expected return
achieved on this goal: Red indicates 100% success; blue indicates
0% success.

F.2. SAGG-RIAC (Baranes & Oudeyer, 2013b)

In our implementation of this method, we use TRPO as
the “Low-Level Goal-Directed Exploration with Evolving
Context”. We therefore implement the method as batch: at
every iteration, we sample Nnew new goals {yi}i=0...Nnew

,
then we collect rollouts of tmax steps trying to reach them,
and perform the optimization of the parameters using all
the collected data. The detailed algorithm is given in the
following pseudo-code.

UpdateRegions(R, yf ,Γyf) is exactly the Algorithm 2 de-
scribed in the original paper, and Self-generate is the ”Ac-
tive Goal Self-Generation (high-level)” also described in
the paper (Section 2.4.4 and Algorithm 1), but it’s repeated
Nnew times to produce a batch of Nnew goals jointly. As
for the competence Γyg , we use the same formula as in
their section 2.4.1 (use highest competence if reached close
enough to the goal) and C(yg, yf) is computed with their
equation (7). The collect rollout function resets the
state s0 = sreset and then applies actions following the
goal-conditioned policy πθ(·, yg) until it reaches the goal or
the maximum number of steps tmax has been taken. The
final state, transformed in goal space, yf is returned.

As hyperparameters, we have used the recommended ones in
the paper, when available: p1 = 0.7, p2 = 0.2, p3 = 0.1.

Figure 11. Iteration
10 Goal GAN
samples (Fig. 5b
without replay
samples)

Figure 12. Learning curves of our algo-
rithm on Multi-path Point-mass Maze, con-
sistently achieving full coverage

Algorithm 2 Generative Goal with Sagg-RIAC

Hyperparameters: window size ζ, tolerance threshold
εmax, competence threshold εC , maximum time horizon
tmax, number of new goals Nnew, maximum number of
goals gmax, mode proportions (p1, p2, p3)
Input: Policy πθ0(sstart, yg), goal bounds BY , reset
position srest
Output: Policy πθN (sstart, yg)
R←

{
(R0,ΓR0)

}
whereR0 = Region(BY), ΓR0 = 0

for i← 1 to N do
goals← Self-generate Nnew goals: {yj}j=0...Nnew

paths = []
while number steps in(paths) < batch size do

Reset s0 ← srest
yg ← Uniform(goals)
yf , Γyg , path ←
collect rollout(πθi(·, yg), sreset)
paths.append(path)
UpdateRegions(R, yf , 0)
UpdateRegions(R, yg,Γyg)

end while
πθi+1

← train πθi with TRPO on collected paths
end for

For the rest, the best performance in an hyperparameter
sweep yields: ζ = 100, gmax = 100. The noise for mode(3)
is chosen to be Gaussian with variance 0.1, the same as the
tolerance threshold εmax and the competence threshold εC .

As other details, in our tasks there are no constraints to
penalize for, so ρ = ∅. Also, there are no sub-goals. The
reset value r is 1 as we reset to sstart after every reaching
attempt. The number of explorative movements q ∈ N has
a less clear equivalence as we use a policy gradient update
with a stochastic policy πθ instead of a SSA-type algorithm.

Automatic Goal Generation for Reinforcement Learning Agents

(a) Iteration 2 (b) Iteration 20 (c) Iterartion 300

Figure 13. Goals sampled by SAGG-RIAC (same policy training as in Fig. 14). “High rewards” (in green) are goals with R̄g(πi) ≥ Rmax;
GOIDi (in blue) are those with the appropriate level of difficulty for the current policy (Rmin ≤ R̄g(πi) ≤ Rmax). The red ones have
Rmin ≥ R̄g(πi)

(a) Iteration 2:
Num. of Regions = 54

(b) Iteration 100:
Num. of Regions = 1442

(c) Iteration 300:
Num. of Regions = 15420

Figure 14. Visualization of the regions generated by the SAGG-RIAC algorithm

