
Practical Contextual Bandits with Regression Oracles

Dylan J. Foster 1 Alekh Agarwal 2 Miroslav Dudı́k 2 Haipeng Luo 3 Robert E. Schapire 2

Abstract
A major challenge in contextual bandits is to
design general-purpose algorithms that are both
practically useful and theoretically well-founded.
We present a new technique that has the empiri-
cal and computational advantages of realizability-
based approaches combined with the flexibility
of agnostic methods. Our algorithms leverage the
availability of a regression oracle for the value-
function class, a more realistic and reasonable
oracle than the classification oracles over poli-
cies typically assumed by agnostic methods. Our
approach generalizes both UCB and LinUCB to
far more expressive possible model classes and
achieves low regret under certain distributional as-
sumptions. In an extensive empirical evaluation,
we find that our approach typically matches or
outperforms both realizability-based and agnostic
baselines.

1. Introduction
We study the design of practically useful, theoretically well-
founded, general-purpose algorithms for the contextual ban-
dits (CBs) problem. In this setting, the learner repeatedly
receives context, then selects an action, resulting in a re-
ceived reward. The aim is to learn a policy, a mapping
from contexts to actions, to maximize the long-term cu-
mulative reward. For instance, a news portal must repeat-
edly choose articles to present to each user to maximize
clicks. Here, the context is information about the user, the
actions are the articles, and the reward might be indicator
of a click. We refer the reader to an ICML 2017 tutorial
(http://hunch.net/

˜

rwil/) for further examples.

CB algorithms can be put into two groups. Some meth-
ods (Langford & Zhang, 2008; Agarwal et al., 2014) are

1Cornell University. Work performed while the author was an
intern at Microsoft Research. 2Microsoft Research 3University
of Southern California. Correspondence to: Dylan J. Foster
<djf244@cornell.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

agnostic in the sense that they are provably effective for
any given policy class and data distribution. In contrast,
realizability-based approaches such as LinUCB and vari-
ants (Chu et al., 2011; Li et al., 2017; Filippi et al., 2010) or
Thompson sampling (Thompson, 1933) assume the data is
generated from a particular parametrized family of models.
Computationally tractable realizability-based algorithms are
only known for specific model families, such as when the
conditional reward distributions come from a generalized
linear model.

The two groups of approaches seem to have different ad-
vantages and disadvantages. Empirically, in the contextual
semibandit setting, Krishnamurthy et al. (2016) found that
the realizability-based LinUCB approach outperforms all
agnostic baselines using a linear policy class. However, the
agnostic approaches were able to overcome this shortcom-
ing by using a more powerful policy class. Computationally,
previous realizability-based approaches have been limited
by their reliance on either closed-form confidence bounds
(as in LinUCB variants), or the ability to efficiently sample
from and frequently update the posterior (as in Thomp-
son sampling). Agnostic approaches, on the other hand,
typically assume an oracle for cost-sensitive classification,
which is computationally intractable in the worst case, but
often practically feasible for many natural policy classes.

In this paper, we aim to develop techniques that combine
the best of both of these approaches. To this end, in Sec-
tion 3, we propose computationally efficient and practical
realizability-based algorithms for arbitrary model classes.
As is often done in agnostic approaches, we assume the avail-
ability of an oracle which reduces to a standard learning
setting and knows how to efficiently leverage the structure
of the model class. Specifically, we require access to a least-
squares regression oracle over the model class that we use
for predicting rewards given contexts. Since regression can
often be solved efficiently, the availability of such an oracle
is a far more reasonable assumption than the cost-sensitive
classification oracle usually assumed, which typically must
solve NP-hard problems. In fact, for this reason, even the
classification oracles are typically approximated by regres-
sion oracles in practice (see, e.g., Beygelzimer & Langford,
2009). Our main algorithmic components here are moti-
vated by and adapted from a recent work of Krishnamurthy
et al. (2017) on cost-sensitive active learning.

http://hunch.net/~rwil/

Practical Contextual Bandits with Regression Oracles

In Section 4, we prove that our algorithms are effective in
achieving low regret under certain distributional assump-
tions. Specifically, we show that our methods enjoy low
regret so long as certain quantities like the disagreement
coefficient (Hanneke, 2014; Krishnamurthy et al., 2017) are
bounded, or when some other distributional coefficients in-
spired by Bastani & Bayati (2015) are well-behaved. As
a special consequence, we obtain nearly dimension-free
results for sparse linear bandits in high dimensions.

Finally, in Section 5, we conduct a very extensive empirical
evaluation of our algorithms on a number of datasets and
against both realizability-based and agnostic baselines. In
this test of practical effectiveness, we find that our approach
gives comparable or superior results in nearly all cases, and
we also validate the distributional assumptions required for
low-regret guarantees on these datasets.

2. Preliminaries
We consider the following contextual bandit protocol. Con-
texts are drawn from an arbitrary space, x ∈ X , actions are
from a finite set, a ∈ A ∶= {1, . . . ,K}, for some fixed K,
and reward vectors are from a bounded set, r ∈ [0,1]K , with
component r(a) denoting the reward for action a ∈ A.

We consider an i.i.d. setting where there is a fixed and un-
known distribution D over the context-reward pairs (x, r),
with DX denoting its marginal over X . At each round
t = 1,2, . . . , T , nature samples (xt, rt) according to D
and reveals xt to the learner. The learner chooses an ac-
tion at ∈ A and observes the reward rt(at). The learner
aims to maximize its reward and compete with strategies
that model the expected reward E[r(a) � x, a] via functions
f ∶ X ×A → [0,1]. We consider mappings f from a given
class F , such as linear predictors or regression trees.

The main assumption this paper follows is that the class F
is rich enough to contain a predictor that perfectly predicts
the expected reward of any action under any context, that is:
Assumption 1 (Realizability). There is a predictor f� ∈ F
such that E[r(a) � x, a] = f�(x, a) ∀x ∈ X , a ∈ A.

This assumption is used by essentially all regression-based
contextual bandit algorithms (Chu et al., 2011; Filippi et al.,
2010; Russo & Van Roy, 2013; Li et al., 2017).

Given a predictor f ∈ F , the associated optimal strategy
⇡f ∶ X → A, called a policy, picks the action with the
highest predicted reward, i.e., ⇡f(x) ∶= argmaxa∈A f(x, a)
(ties broken arbitrarily). Using ⇡� ∶= ⇡f� to denote an
optimal policy, the learner aims to minimize its regret

RegT = ∑T
t=1 rt(⇡�(xt)) −∑T

t=1 rt(at),
which compares the accumulated rewards between the op-
timal policy and the learner’s strategy. The classic Exp4

algorithm (Auer et al., 2002b) achieves an optimal regret
bound of order O(�TK ln �F �) (for any finite F), but the
computational complexity is unfortunately linear in �F �.
Regression Oracle To overcome the computational ob-
stacle, our algorithms reduce the contextual bandit prob-
lem to weighted least-squares regression. Abstracting the
computational complexity, we assume access to a weighted
least-squares regression oracle over the predictor class F ,
which takes any set H of weighted examples (w,x, a, y) ∈
R+ ×X ×A × [0,1] as input, and outputs the predictor with
the smallest weighted squared loss:

ORACLE(H) = argminf∈F ∑(w,x,a,y)∈H w(f(x, a)− y)2.
As mentioned, such regression tasks are very common in
machine learning practice and the availability of such oracle
is thus a very mild assumption.

3. Algorithms
The high-level idea of our algorithms is the following. As
data is collected, we maintain a subset of F , referred to
as the version space, that only contains f ∈ F with small
squared loss on observed data. For a new example, we
construct a confidence interval for the expected reward of
each action based on this version space. Finally, with these
confidence intervals, we either optimistically pick the action
with the highest upper bound, similar to UCB and LinUCB,
or randomize among all actions that are potentially the best.

The challenge here is to maintain such version spaces and
compute upper and lower confidence bounds efficiently, and
we show that this can be done using a binary search together
with a small number of regression oracle calls.

More formally, we define the upper and lower bounds on
the expected reward with respect to a subset F ′ ⊆ F as

HIGHF ′(x, a) =max

f∈F ′ f(x, a), LOWF ′(x, a) = min

f∈F ′ f(x, a).
Our algorithms will induce the confidence bounds by instan-
tiating these quantities using the version space as F ′. To
reduce computation, our algorithms update on a doubling
epoch schedule. There are M = O(logT) epochs and each
epoch m begins at time ⌧m = 2

m−1. At epoch m our al-
gorithms (implicitly) construct a version space Fm ⊆ F ,
and then select an action based on the reward ranges de-
fined by HIGHFm(x, a) and LOWFm(x, a) for each time t
that falls into epoch m. Specifically, we consider two al-
gorithm variants: the first one uniformly at random picks
from actions that are plausible to be the best (see lines 6-7 in
Algorithm 1); the second one simply behaves optimistically
and picks the action with the highest upper bound (see line
9 in Algorithm 2). For technical reasons, the optimistic vari-
ant also performs pure exploration in the first few epochs to
warm-start the algorithm.

Practical Contextual Bandits with Regression Oracles

Algorithm 1 REGCB.ELIMINATION

1: Input: square-loss tolerance �m
2: for epoch m = 1, . . . ,M do

3: Fm ←
�������
∏a∈A Ĝm(�m, a) (OPTION I)
F̂m(�m) (OPTION II)

4: for time t = ⌧m, . . . , ⌧m+1 − 1 do
5: Receive xt and define At as:
6: {a ∶ HIGHFm(xt, a) ≥maxa′∈A LOWFm(xt, a

′)}.
7: Sample at ∼ Unif (At) and receive rt(at).
8: end for
9: end for

To construct these version spaces, we further introduce the
following least-squares notation for any m ≥ 2:

• R̂m(f) = 1

⌧m−1 ∑s<⌧m�f(xs, as) − rs(as)�2,

• F̂m(�) = �f ∈ F � R̂m(f) −minf∈F R̂m(f) ≤ ��,
and also let F̂

1

(�) = F for any �. With this notation Fm

is simply set to F̂(�m) for some �m, and HIGHFm and
LOWFm recover the confidence bounds in UCB (Auer et al.,
2002a) and LinUCB (Chu et al., 2011) for appropriate �m.

Product Classes Sometimes it is desirable to have a prod-
uct predictor class, that is, F = GA, where G ∶ X → [0,1]
is a “base class” and each f ∈ F , described by a K-tuple(ga)a∈A where ga ∈ G, predicts according to f(x, a) =
ga(x). Similar to the general case, we define:

• R̂m(g, a) = 1

⌧m−1 ∑s<⌧m(g(xs) − rs(as))21{as = a},
• Ĝm(�, a) = �g ∈ G � R̂m(g, a) −ming∈G R̂m(g, a) ≤ ��,
and let Ĝ

1

(�, a) = G for any �. In this case we constructFm as∏a∈A Ĝm(�m, a) for some tolerance parameter �m.

Our two procedures are described in Algorithms 1 and 2.

3.1. Efficient Reward-Range Computation

Algorithms 1 and 2 hinge on the computation of the bounds
HIGHFm and LOWFm . This can be carried out efficiently
via a small number of calls to the regression oracle.

Specifically, to calculate the confidence bounds for a given
pair (x, a), we augment the data set Hm with a single exam-
ple (x, a, r) with a weight w. For the upper bound HIGHFm

we use r = 2; for the lower bound r = −1 (these values are
chosen as they lie outside the reward range). By changing
the weight w, we trade-off the loss on this single example
against that on the history Hm. The binary search over w
identifies—up to a given precision—the weight w at which

Algorithm 2 REGCB.OPTIMISTIC

1: Input: square-loss tolerance �m
number of warm-start epochs M

0

2: for time t = 1, . . . , ⌧M0 − 1 do
3: Receive xt, play at ∼ Unif (A), and receive rt(at).
4: end for
5: for epoch m =M

0

, . . . ,M do
6: Fm ← F̂m(�m).
7: for time t = ⌧m, . . . , ⌧m+1 − 1 do
8: Receive xt.
9: Select at = argmaxa∈A HIGHFm(xt, a).

10: Receive rt(at).
11: end for
12: end for

the empirical regret on Hm is exactly the desired toler-
ance �, with the corresponding prediction on x, a yielding
HIGHF̂m(�)(x, a) or LOWF̂m(�)(x, a) (see Algorithm 3).

In Appendix A.1 we prove that this strategy works as in-
tended and in O(log(1�↵)) iterations computes the confi-
dence bounds up to a precision of ↵.
Theorem 1. Let Hm = {(xs, as, rs(as))}⌧m−1s=1 . If the func-
tion class F is convex and closed under pointwise conver-
gence, then the calls

zHIGH ← BINSEARCH(HIGH, (x, a),Hm,�,↵)
zLOW ← BINSEARCH(LOW, (x, a),Hm,�,↵)

terminate after O(log(1�↵)) oracle invocations and

�HIGHF̂m(�)(x, a) − zHIGH� ≤ ↵,
�LOWF̂m(�)(x, a) − zLOW� ≤ ↵.

Compared to the procedure from Krishnamurthy et al.
(2017), Algorithm 3 is much simpler and achieves an ex-
ponential improvement in terms of oracle calls, namely
O(log(1�↵)) as opposed to O(1�↵), when F is convex.
Compared to oracles for cost-sensitive classification, con-
vexity is not a strong assumption for regression oracles.
When F is not convex, reward bounds can be computed in
O(1�↵) oracle calls (see Krishnamurthy et al. 2017).

4. Regret Guarantees
In this section we provide regret guarantees for RegCB
(Algorithm 1 and Algorithm 2). Note that RegCB is not
minimax optimal: while it can obtain O��KT log�F �� re-
gret or even logarithmic regret under certain distributional
assumptions, which we describe shortly, for some instances
it can make as many as �F � mistakes, which is suboptimal:
Proposition 1. For every ✏ ∈ (0,1] and N ∈ N there exists
a class of reward predictors satisfying Assumption 1 with

Practical Contextual Bandits with Regression Oracles

Algorithm 3 BINSEARCH

1: Input: bound type ∈ {LOW,HIGH}, target pair (x, a)
history H , radius � > 0, precision ↵ > 0

2: Based on bound type: r←2 if HIGH and r←−1 if LOW
3: Let R(f) ∶= ∑(x′,a′,r′)∈H(f(x′, a′) − r′)2
4: Let R̃(f,w) ∶= R(f) + w

2

(f(x, a) − r)2
5: wL ← 0, wH ← ��↵

// Invoke oracle twice

6: fL ← argminf∈F R̃(f,wL), zL ← fL(x, a)
7: fH ← argminf∈F R̃(f,wH), zH ← fH(x, a)
8: Rmin ← R(fL)
9: �← ↵��(r − zL)3

10: while �zH − zL� > ↵ and �wH −wL� >� do
11: w ← (wH +wL)�2

// Invoke oracle.

12: f ← argmin

˜f∈F R̃(˜f,w), z ← f(x, a)
13: if R(f) ≥ Rmin + � then
14: wH ← w, zH ← z
15: else
16: wL ← w, zL ← z
17: end if
18: end while
19: return zH.

�F � = N + 1 and a distribution for which both Algorithms 1
and 2 have regret lower bounded by (1−✏) ⋅min

�N, ⌦̃(T)�.
Proposition 1 is proved in Appendix A.2. The proof builds
on a well-known albeit rather pathological instance. In
contrast, our strong empirical results in the following section
show that such instances are not encountered in practice. In
order to understand the typical behavior of such algorithms,
prior works have considered structural assumptions such
as finite eluder dimension (Russo & Van Roy, 2013) or
disagreement coefficients (Hanneke, 2014; Krishnamurthy
et al., 2017). In the next two subsections, we use similar
ideas to analyze the regret incurred by our algorithm. We
assume that HIGHFm and LOWFm are computed exactly,
but extension to the approximate case is straightforward.

4.1. Disagreement-based Analysis

Disagreement coefficients come from the active learning
literature (Hanneke, 2014), and roughly assume that given a
set of functions which fit the historical data well, the prob-
ability that these functions make differing predictions on
a new example is small. This rules out the bad case of
Proposition 1, where a near-optimal predictor significantly
disagrees from the others on each context. Our develop-
ment in this subsection largely follows Krishnamurthy et al.
(2017), with appropriate modifications to translate from ac-
tive learning to contextual bandits. We begin with a formal
definition of the disagreement coefficient.

Definition 1 (Disagreement Coefficient). The disagreement
coefficient for F (with respect to DX) is defined as

✓
0

∶= sup

�>0,">0
�

"
PrDX �x ∈ Dis(F(")) and

∃a ∈ AF(")(x) ∶WF(")(x, a) > ��.
Here F(") is the set of all predictors f whose greedy poli-
cies have regret at most ", Dis(F(")) is the set of x’s where
the greedy policies of at least two functions in F(") choose
different actions, AF(x) = �f∈F�argmaxa∈A f(x, a)�,
and WF(x, a) is the difference between the upper and lower
bounds HIGHF(x, a) − LOWF(x, a). Formal definitions of
these quantities can be found in Appendix A.3. Informally,
the disagreement coefficient is small if on most contexts
either all f ∈ F(") choose the same action according to
their greedy policies or all actions chosen by those policies
have a low range of predicted rewards.

The following theorem provides regret bounds in terms of
the disagreement coefficient. In all theorems we use Õ to
suppress polynomial terms in logT , logK, and log(1��),
where � is the failure probability. Moreover, all results can
be improved to be logarithmic (in T) under the standard
Massart noise condition (see the appendix for the details).
Theorem 2. With �m = (M−m+1)C�

⌧m−1 and C� =
16 log �2�G�KT 2

�
�, Algorithm 1 with Option I incurs RegT =

Õ �T 3
4 (log �G�) 1

4
√
✓
0

K� with probability at least 1 − �.

See Theorem 5 in Appendix A.3 for the full version of this
theorem, which applies to infinite classes and additionally
obtains faster rates under the Massart noise condition.

Discussion Theorem 2 critically uses the product class
structure, specifically the fact that the set At computed by
the algorithm coincides with the disagreement set AFm(xt)
for t ∈ {⌧m, . . . , ⌧m+1 − 1}. This is true for product classes,
but not necessarily for general (non-product) predictor
classes. Computing the disagreement set efficiently for
non-product classes is a challenge for future work.

While bounding the disagreement coefficients a priori often
requires strong assumptions on the model class and the dis-
tribution, the size of disagreement set can be easily checked
empirically under the product class assumption, and we
include this diagnostic in our experimental results.

Finally, while the disagreement coefficient enables the anal-
ysis of Algorithm 1, it is not obvious how to use it to analyze
Algorithm 2. Our analysis crucially requires that any plausi-
bly optimal action a be chosen with a reasonable probability,
something which the optimistic algorithm fails to ensure.

4.2. Moment-based Analysis

The disagreement-based analysis of Theorem 2 is not
entirely satisfying, because even for linear predictors (e.g.,

Practical Contextual Bandits with Regression Oracles

as in LinUCB, Chu et al. 2011), fairly strong assumptions on
DX (e.g., log-concavity) are required to bound the disagree-
ment coefficient ✓

0

(Hanneke, 2014). To generalize the
analysis to richer than linear classes without distributional
assumptions on the contexts, prior work has used the notion
of eluder dimension (Russo & Van Roy, 2013). It remains
challenging, however, to show examples with a small eluder
dimension beyond linearly parameterized functions. In
addition, taking the worst-case over all histories, as in eluder
dimension, is overly pessimistic for i.i.d. contextual bandits.

To address the shortcomings of both the disagreement-based
analysis as well as eluder dimension for i.i.d. settings, we
define two new distributional properties which we will use
to analyze the regret of both of our algorithms.
Definition 2 (Surprise bound). The surprise bound L

1

> 0
is the smallest constant such that for all f ∈ F , x ∈ X , and
a ∈ A, the gap (f(x, a) − f�(x, a))2 is at most

L
1

⋅Ex′∼DX Ea′∼Unif(A)��f(x′, a′) − f�(x′, a′)�2� .

The surprise bound is small if functions with a small ex-
pected squared error relative to f� (under a uniform choice
of actions) do not encounter a much larger squared error on
any single context-action pair.

The second quantity, which we call the implicit exploration
coefficient (or IEC) relates the expected regression error
under actions chosen by the optimal policy to the worst-case
error on any other context-action pair. For � ∈ (0,1] define
U�(a) = {x � f�(x, a) ≥ f�(x, a′) + � ∀a′ ≠ a}.
Definition 3 (Implicit exploration coefficient—IEC). For
any � ∈ (0,1], the implicit exploration coefficient L

2,� > 0
is the smallest constant such that for all f ∈ F , x ∈ X , and
a ∈ A, the gap (f(x, a) − f�(x, a))2 is at most

L
2,�Ex′∼DX Ea′∼Unif(A)�1�x′ ∈ U�(a′)� (1)

⋅ �f(x′, a′) − f�(x′, a′)�2�.
We now make two remarks about these definitions and their
impact on the performance of Algorithms 1 and 2.

• By definition, L
2,� is non-decreasing in �. For Al-

gorithm 1 we can simply use � = 0, for which L
2,0

is defined by replacing the right-hand side of (1)
with L2,0

K
Ex∼DX [(f(x,⇡�(x)) − f�(x,⇡�(x)))2].

The analysis of Algorithm 2 requires � > 0, and this �
must be used to tune the algorithm’s warm-start period.

• We always have L
1

≤ L
2,0, but L

1

may be much
smaller. L

1

appears in the regret bound of Algorithm 2,
but not Algorithm 1.

We now state the regret bound for Algorithm 1 with a general
class F , and employ the shorthand C ′� = 16 log �2�F �T 2

�
�.

Theorem 3. With �m = (M−m+1)C′�⌧m−1 , Algorithm 1 with Op-

tion II incurs RegT = Õ ��TL
2,0 log �F �� with probability

at least 1 − �.

We now move on to describe the performance guarantee
for Algorithm 2. Because this optimistic strategy does not
explore as readily as the elimination-based strategy of Al-
gorithm 1, the analysis requires both that (i) the IEC L

2,�

be invoked for some � > 0 and (ii) that the algorithm use a
warm-start period whose size grows as 1��2.

Theorem 4. With �m = (M−m+1)C′�
⌧m−1 and M

0

= 2 +
�
log

2

�
1 + (2M+3)L1C

′
�

�2 �� for any � ∈ (0,1), Algorithm 2

incurs RegT = Õ �L1 log�F �
�2 +�TL

2,� log �F �� with proba-
bility at least 1 − �.

As Algorithm 2 requires a warm start, the regret bounds
of Theorem 4 are always worse than those of Theorem 3.
Appendix A.4 contains full versions of these theorems, The-
orem 6 and Theorem 7, which obtain faster rates under the
Massart noise condition and apply to infinite classes.

Linear classes For concreteness, let us discuss the regret of
both algorithms in a linear setting with a fixed feature map
� ∶ X ×A → Rd and F = {(x, a)� w��(x, a) �w ∈W}
for some W ⊆ Rd (e.g., as in LinUCB). In the basic
`
2

-bounded case, L
1

and L
2,� can be bounded in terms

of the minimum eigenvalues of Ex[�(x, a)�(x, a)�] and
Ex�1{x ∈ U�(a)}�(x, a)�(x, a)��, respectively. When
predictors are s-sparse we can instead obtain bounds in
terms of (A) ∶= minw≠0∶ �w�0≤2sw�Aw �w�w, the mini-
mum restricted eigenvalue for 2s-sparse predictors (Raskutti
et al., 2010). For Algorithm 1 this yields a near dimension-
independent bound on RegT of

Õ �s�KT log d � �Ex��(x,⇡�(x))�(x,⇡�(x))���� .1
This improves upon the moment matrix conditions of Bas-
tani & Bayati (2015), although our algorithm requires non-
convex optimization oracles.2 Note that without the scal-
ing with K as in our result, a

√
d dependence is unavoid-

able (Abbasi-Yadkori et al., 2012). The result highlights
the strengths of our analysis in the best case compared with
eluder dimension, which does not adapt to sparsity struc-
tures. On the other hand, for the standard LinUCB setting,
our result is inferior by at least a factor of K.

Discussion Our analysis is influenced by the results of
Bastani & Bayati (2015) for the (high-dimensional) linear
setting, but extends to general classes F , and when applied
to Algorithm 1 with linear classes, the assumed bound on

1See Proposition 3, Lemma 9, and Theorem 3 in the appendix.
2Also, since the class F is non-convex, this requires the slower

binary search algorithm of Krishnamurthy et al. (2017).

Practical Contextual Bandits with Regression Oracles

L
2,� is weaker than their “diversity condition”. Similar

assumptions have been used to analyze purely greedy linear
contextual bandits (Bastani et al., 2017; Kannan et al.,
2018); our assumptions are strictly weaker.

5. Experiments
We compared our new algorithms with existing oracle-based
alternatives. In addition to showing that RegCB3 has strong
empirical performance, our experiments provide a more
extensive empirical study of oracle-based contextual bandit
algorithms than any past works (e.g., Agarwal et al., 2014,
Krishnamurthy et al., 2016). Description of the datasets,
benchmark algorithms, and oracle configurations, as well as
further experimental results are included in Appendix B.

Datasets We begin with 10 datasets with full reward in-
formation and simulate bandit feedback by withholding the
rewards for actions not selected by the algorithm. We use
two large-scale learning-to-rank datasets, Microsoft MSLR-
WEB30k (mslr) (Qin & Liu, 2010) and Yahoo! Learn-
ing to Rank Challenge V2.0 (yahoo) (Chapelle & Chang,
2011), which were previously used to evaluate contextual
semibandits (Krishnamurthy et al., 2016). We also use eight
classification datasets from the UCI repository (Lichman,
2013), summarized in Table 1 of Appendix B.1.

The ranking datasets have natural rewards (relevances), but
the rewards for the classification datasets always have multi-
class structure (1 for the correct action and 0 for all others).
To ensure that we evaluate the full generality of the CB set-
ting, we create eight “noisy” UCI datasets by sampling new
rewards for the datasets according to a noisy reward matrix
model described in Appendix B. This yields additional 8
datasets for a total of 18. On each dataset we consider sev-
eral replicates obtained by randomly permuting examples
and, on noisy UCI, also randomly generating rewards. All
the methods are evaluated on the same set of replicates.

Algorithms We evaluate Algorithms 1 and 2 against three
baselines, all based on various optimization-oracle assump-
tions. First two are agnostic baselines, ✏-Greedy (Langford
& Zhang, 2008) and the minimax-optimal ILOVETOCON-
BANDITS (ILTCB) strategy of Agarwal et al. (2014).4

✏-Greedy and ILTCB both assume cost-sensitive classifica-
tion oracles and come with theoretical guarantees. The
third baseline is a bootstrapping-based exploration strat-
egy of Dimakopoulou et al. (2017) (Bootstrap-TS), which
uses bootstrapping to estimate confidence intervals and then
performs Thompson sampling to select an action based on
the intervals. This algorithm represents a computationally

3RegCB refers collectively to both Algorithms 1 and 2.
4We use an implementation available at https://github.

com/akshaykr/oracle_cb, which was also used by Krish-
namurthy et al. (2016).

tractable alternative to Thompson sampling as it works in
the regression-oracle model we consider here, but it does
not have a theoretical analysis.5

Note that the LinUCB algorithm (Chu et al., 2011; Abbasi-
Yadkori et al., 2011), which is a natural baseline as well,
coincides with our Algorithm 2 (with a linear oracle), so we
only plot the performance of RegCB with a linear oracle.

All of the algorithms update on an epoch schedule with
epoch lengths of 2

i�2, which is a theoretically rigorous
choice for each algorithm.

Oracles We consider two baseline predictor classes F : `
2

-
regularized linear functions (Linear) and gradient-boosted
depth-5 regression trees (GB5) (Friedman, 2001). For the
regularized linear class, Algorithm 2 is equivalent to LinUCB
on an epoch schedule.6 See Appendix B.3 for details.

When running both RegCB variants with the GB5 oracle,
we use a simple heuristic to substantially speed up the com-
putation. At the beginning of each epoch m, we find the
best regression-tree ensemble on the dataset so far (i.e., with
respect to R̂m). Throughout the epoch, we keep the struc-
ture of the ensemble fixed and in each call to ORACLE(H)
we only re-optimize the predictions in leaves. This can be
solved in closed form, similar to LinUCB, so the full binary
search procedure (Algorithm 3) does not need to be run.

Parameter Tuning We evaluate each algorithm for eight
exponentially spaced parameter values across five replicates.
For ✏-Greedy we tune the constant ✏, and for ILTCB we
tune a certain smoothing parameter (see Appendix B). For
Algorithms 1 and 2 we set �m = � for all m and tune �. For
Algorithm 2 we use a warm start of 0. We tune a confidence
parameter similar to � for Bootstrap-TS.

Evaluation Each dataset is split into “training data”, for
which algorithm receives one example at a time and must
predict online, and a holdout validation set. Validation is
performed by simulating the algorithm’s predictions on ex-
amples from the holdout set without allowing the algorithm
to incorporate these examples. We also plot the validation
reward of a “supervised” baseline obtained by training the
oracle (either Linear or GB5) on the entire training set at
once (including rewards for all actions).

For Algorithms 1 and 2 we show average reward at various
numbers of training examples for the best fixed parameter
value in each dataset. For the baselines, we take the
pointwise maximum of the average reward across all
parameter values for each number of examples. Thus,

5It is not known how to implement the standard formulation of
Thompson sampling for contextual bandits (e.g., Russo & Van Roy
2013) with optimization oracles.

6More precisely, it is equivalent to the well-known OFUL vari-
ant of LinUCB (Abbasi-Yadkori et al., 2011).

https://github.com/akshaykr/oracle_cb
https://github.com/akshaykr/oracle_cb

Practical Contextual Bandits with Regression Oracles

the curves for our methods correspond to an actual run of
the algorithm, while the baselines are an upper envelope
aggregating multiple parameter values.

Results: Performance Figure 1 shows average reward of
each algorithm on a holdout validation set for three repre-
sentative datasets, letter from UCI, letter-noise
(the variant with simulated rewards), and yahoo.

RegCB (both Algorithms 1 and 2) outperforms all baselines
on the unmodified UCI datasets (e.g., letter in Figure 1).
On the noisy variants (e.g., letter+N in Figure 1), the
performance of the ILTCB and Bootstrap-TS benchmarks im-
proves significantly, with Bootstrap-TS slightly edging out
the rest of the algorithms. On the yahoo ranking dataset
(Figure 1, right), the ordering of the algorithms in perfor-
mance is similar to noisy UCI datasets.

Validation performance plots for all datasets are in Ap-
pendix B. Overall, RegCB methods and Bootstrap-TS gen-
erally dominate the field. While Bootstrap-TS can outper-
form RegCB methods when using GB5 models, the gap is
typically quite small. For linear models, RegCB methods
generally outperform Bootstrap-TS, hinting that the approx-
imate binary search might be hurting RegCB with GB5
models. We also observe that when RegCB methods outper-
form Bootstrap-TS, the gap is often quite large. We will see
further evidence of this behavior in the next set of results.

Results: Aggregate Performance To rigorously draw
conclusions about overall performance, Figure 2 aggregates
performance across all datasets. We compute “normalized
relative loss” for each algorithm by rescaling the validation
reward (computed as in Figure 1) so that, at each round, the
best performing algorithm has loss 0 and the worst has loss
1. In each plot of Figure 2 we consider normalized relative
losses at a specific cutoff time (1000 examples in the left
plot, and all examples in the center and right), and for each
method we plot the number of datasets where it achieves
loss below a threshold, as a function of the threshold. Thus,
curves towards top left corner correspond to methods that
achieve lower relative loss on more datasets. The intercept
at loss 0 is the number of datasets where an algorithm is
the best, and the intercept at 0.99 is the number of datasets
where the it is not the worst (so the distance from top is the
number of datasets where it is the worst). Solid lines are
runs with GB5 and dashed lines are with the Linear oracle.

The aggregate performance with the GB5 oracle across all
datasets can be briefly summarized as follows: RegCB al-
ways beats ✏-Greedy and ILTCB, but sometimes loses out
to Bootstrap-TS, and Bootstrap-TS itself sometimes under-
performs relative to the other baselines, especially on the
UCI datasets. Even when RegCB is not the best, it is al-
most always within 20% of the best. The elimination and
optimistic variants of RegCB have comparable performance,

with elimination performing slightly better in aggregate.

The RegCB algorithms with the GB5 oracle also dominate
the ✏-Greedy, ILTCB, and Bootstrap-TS baselines when they
are equipped with Linear oracles (the dashed lines in Fig-
ure 2). When the RegCB algorithms use the Linear ora-
cle they also dominate the baselines with the Linear oracle
across all datasets, including Bootstrap-TS.7 This suggests
that the gap between RegCB and Bootstrap-TS for GB5 may
be due to the approximation of fixing the ensemble structure
in each epoch, as noted earlier.

Results: Confidence Width The analysis of RegCB relies
on assumptions on D (disagreement coefficient or moment
parameters) that are not easy to verify. The main role of
these parameters is to control the rate at which confidence
width WFm(xt, a) = HIGHFm(xt, a) − LOWFm(xt, a)
used in RegCB shrinks, since small widths imply that the
algorithm makes good decisions and thus has low regret.

To investigate whether the width indeed shrinks empirically,
we compute WFm(xt, a) on each dataset for Algorithm 2
and Bootstrap-TS, where a is the “optimistic” action with
highest upper confidence bound under each algorithm. Fi-
nally for both Algorithm 2 and Bootstrap-TS we compute the
size of the “disagreement set” At, defined in Algorithm 1,
which measures how many actions the algorithm thinks are
plausibly best.8

Figure 3 shows width and disagreement for a representative
sample of datasets under the GB5 oracle; the remaining
datasets are in Appendix B. The figure suggests that our
distributional assumptions are reasonable for real-world
datasets. In particular, for our algorithm, the width decays
roughly as T −1�3 for letter and T −1�2 for letter+N
and yahoo. Interestingly, the best hyper-parameter set-
ting for Bootstrap-TS on letter yields low but essentially
constant (i.e., not shrinking) width, and obtains a poor val-
idation reward in Figure 1 (left). This suggests that while
the Bootstrap-TS confidence intervals are small, they may
not be faithful in the sense of containing f�(x, a).
6. Conclusion and Discussion
This work serves as a starting point for what we hope will
be a fruitful line of research on oracle-efficient contextual
bandit algorithms in realizability-based settings. We have
shown that the RegCB family of algorithms have strong
empirical performance and enjoy nice theoretical properties.

7The aggregate plots for RegCB with the Linear oracle can be
found in Appendix B along with additional aggregate plots.

8This set is well-defined for both RegCB-Opt and Bootstrap-TS
even through neither algorithm instantiates it explicitly. For the
yahoo and mslr datasets this �At� is technically a lower bound
on the true disagreement set size �AFm(xt)� because our classesF
do not have product structure on these datasets—see Section 4.1.

Practical Contextual Bandits with Regression Oracles

Figure 1. Validation performance for three representative datasets as a function of the number of rounds t of interaction. The number of
rounds t is on a log scale. For each dataset, we show separately the performance with the GB5 oracle and the Linear oracle.

Figure 2. Aggregate performance across all datasets, at various sample sizes; solid lines — GB5 oracle; dashed lines — Linear oracle.
Left: All datasets (the UCI datasets, their noisy variants, and the Microsoft and Yahoo ranking datasets) at 1000 examples (datasets with
fewer examples dropped). Center: All datasets at their final round. Right: Unmodified UCI at their final round.

Figure 3. For each dataset, disagreement set size as a function of number of rounds t (with t on a log scale), and the log-log plot of the
width of the optimistic action (the action chosen by Algorithm 2) as a function of t. Plots are averaged using a sliding window of length
20. Black lines on the width plots are best linear fits, whose slopes give the rate of the width decay as follows: letter/Bootstrap-TS: −0.05,
letter/RegCB: −0.34, letter-noise/Bootstrap-TS: −0.33, letter-noise/RegCB: −0.51, yahoo/Bootstrap-TS: −0.26, yahoo/RegCB: −0.52.

These results suggest several compelling future directions.

First, is there a regression oracle–based algorithm that
achieves the optimal Õ(�KT log �F �) regret? For example,
is it possible to oraclize regressor elimination of Agarwal
et al. (2012)?

Second, given the competitive empirical performance of

Bootstrap-TS, are there reasonable assumptions as in Sec-
tion 4 under which it can be analyzed? There is recent work
in this direction for linear models (Lu & Van Roy, 2017).

Finally, randomizing uniformly or putting all the mass on
the optimistic choice are two extreme cases of choosing
amongst the plausibly optimal actions. Are there better ran-
domization schemes that lead to stronger regret guarantees?

Practical Contextual Bandits with Regression Oracles

Acknowledgements
We thank Akshay Krishnamurthy and Alberto Bietti for
helpful discussions.

References
Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. Improved

algorithms for linear stochastic bandits. In Advances in
Neural Information Processing Systems, pp. 2312–2320,
2011.

Abbasi-Yadkori, Y., Pal, D., and Szepesvari, C. Online-
to-confidence-set conversions and application to sparse
stochastic bandits. In Artificial Intelligence and Statistics,
pp. 1–9, 2012.

Agarwal, A., Dudı́k, M., Kale, S., Langford, J., and
Schapire, R. E. Contextual bandit learning with pre-
dictable rewards. In International Conference on Artifi-
cial Intelligence and Statistics, pp. 19–26, 2012.

Agarwal, A., Hsu, D., Kale, S., Langford, J., Li, L., and
Schapire, R. Taming the monster: A fast and simple algo-
rithm for contextual bandits. In International Conference
on Machine Learning, pp. 1638–1646, 2014.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time
analysis of the multiarmed bandit problem. Machine
learning, 47(2-3):235–256, 2002a.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E.
The nonstochastic multiarmed bandit problem. SIAM
Journal on Computing, 32(1):48–77, 2002b.

Bastani, H. and Bayati, M. Online decision-making with
high-dimensional covariates. 2015.

Bastani, H., Bayati, M., and Khosravi, K. Exploiting the
natural exploration in contextual bandits. arXiv preprint
arXiv:1704.09011, 2017.

Beygelzimer, A. and Langford, J. The offset tree for learn-
ing with partial labels. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, pp. 129–138. ACM, 2009.

Chapelle, O. and Chang, Y. Yahoo! learning to rank chal-
lenge overview. In Proceedings of the Learning to Rank
Challenge, pp. 1–24, 2011.

Chu, W., Li, L., Reyzin, L., and Schapire, R. E. Contextual
bandits with linear payoff functions. In International
Conference on Artificial Intelligence and Statistics, pp.
208–214, 2011.

Dimakopoulou, M., Athey, S., and Imbens, G. Estima-
tion considerations in contextual bandits. arXiv preprint
arXiv:1711.07077, 2017.

Dudı́k, M., Langford, J., and Li, L. Doubly robust policy
evaluation and learning. In Proceedings of the 28th In-
ternational Conference on International Conference on
Machine Learning, pp. 1097–1104. Omnipress, 2011.

Filippi, S., Cappe, O., Garivier, A., and Szepesvári, C. Para-
metric bandits: The generalized linear case. In Advances
in Neural Information Processing Systems, pp. 586–594,
2010.

Friedman, J. H. Greedy function approximation: a gradient
boosting machine. Annals of statistics, pp. 1189–1232,
2001.

Hanneke, S. Theory of disagreement-based active learning.
Foundations and Trends® in Machine Learning, 7(2-3):
131–309, 2014.

Kannan, S., Morgenstern, J., Roth, A., Waggoner, B., and
Wu, Z. S. A Smoothed Analysis of the Greedy Algorithm
for the Linear Contextual Bandit Problem. ArXiv e-prints,
January 2018.

Krishnamurthy, A., Agarwal, A., and Dudik, M. Contex-
tual semibandits via supervised learning oracles. In Ad-
vances In Neural Information Processing Systems, pp.
2388–2396, 2016.

Krishnamurthy, A., Agarwal, A., Huang, T.-K., Daume III,
H., and Langford, J. Active learning for cost-sensitive
classification. International Conference on Machine
Learning, 2017.

Langford, J. and Zhang, T. The epoch-greedy algorithm for
multi-armed bandits with side information. In Advances
in neural information processing systems, pp. 817–824,
2008.

Li, L., Lu, Y., and Zhou, D. Provable optimal algorithms
for generalized linear contextual bandits. International
Conference on Machine Learning, 2017.

Lichman, M. UCI machine learning repository, 2013. URL
http://archive.ics.uci.edu/ml.

Lu, X. and Van Roy, B. Ensemble sampling. In Advances in
Neural Information Processing Systems, pp. 3260–3268,
2017.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al. Scikit-learn: Machine learn-
ing in python. Journal of Machine Learning Research,
12(Oct):2825–2830, 2011.

Qin, T. and Liu, T.-Y. Mslr: Microsoft learning to rank
dataset. 2010. URL http://www.microsoft.

com/en-us/research/project/mslr/.

http://archive.ics.uci.edu/ml
http://www.microsoft.com/en-us/research/project/mslr/
http://www.microsoft.com/en-us/research/project/mslr/

Practical Contextual Bandits with Regression Oracles

Raskutti, G., Wainwright, M. J., and Yu, B. Restricted eigen-
value properties for correlated gaussian designs. Jour-
nal of Machine Learning Research, 11(Aug):2241–2259,
2010.

Rockafellar, R. T. Convex analysis. Princeton university
press, 1970.

Russo, D. and Van Roy, B. Eluder dimension and the sample
complexity of optimistic exploration. In Advances in
Neural Information Processing Systems, pp. 2256–2264,
2013.

Thompson, W. R. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, 25(3/4):285–294, 1933.

