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A. Proof of Convergence of Clipped Double Q-Learning
In a version of Clipped Double Q-learning for a finite MDP setting, we maintain two tabular value estimates QA, QB . At
each time step we select actions a∗ = argmaxaQ

A(s, a) and then perform an update by setting target y:

a∗ = argmax
a

QA(s′, a)

y = r + γmin(QA(s′, a∗), QB(s′, a∗)),
(1)

and update the value estimates with respect to the target and learning rate αt(s, a):

QA(s, a) = QA(s, a) + αt(s, a)(y −QA(s, a))

QB(s, a) = QB(s, a) + αt(s, a)(y −QB(s, a)).
(2)

In a finite MDP setting, Double Q-learning is often used to deal with noise induced by random rewards or state transitions,
and so either QA or QB is updated randomly. However, in a function approximation setting, the interest may be more
towards the approximation error and thus we can update both QA and QB at each iteration. The proof extends naturally to
updating either randomly.

The proof borrows heavily from the proof of convergence of SARSA (Singh et al., 2000) as well as Double Q-learning
(Van Hasselt, 2010). The proof of lemma 1 can be found in Singh et al. (2000), building on a proposition from Bertsekas
(1995).

Lemma 1. Consider a stochastic process (ζt,∆t, Ft), t ≥ 0 where ζt,∆t, Ft : X → R satisfy the equation:

∆t+1(xt) = (1− ζt(xt))∆t(xt) + ζt(xt)Ft(xt), (3)

where xt ∈ X and t = 0, 1, 2, .... Let Pt be a sequence of increasing σ-fields such that ζ0 and ∆0 are P0-measurable and
ζt,∆t and Ft−1 are Pt-measurable, t = 1, 2, .... Assume that the following hold:

1. The set X is finite.

2. ζt(xt) ∈ [0, 1],
∑
t ζt(xt) =∞,∑t(ζt(xt))

2 <∞ with probability 1 and ∀x 6= xt : ζ(x) = 0.

3. ||E [Ft|Pt] || ≤ κ||∆t||+ ct where κ ∈ [0, 1) and ct converges to 0 with probability 1.

4. Var[Ft(xt)|Pt] ≤ K(1 + κ||∆t||)2, where K is some constant

Where || · || denotes the maximum norm. Then ∆t converges to 0 with probability 1.

Theorem 1. Given the following conditions:

1. Each state action pair is sampled an infinite number of times.

2. The MDP is finite.

3. γ ∈ [0, 1).

4. Q values are stored in a lookup table.

5. Both QA and QB receive an infinite number of updates.
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6. The learning rates satisfy αt(s, a) ∈ [0, 1],
∑
t αt(s, a) =∞,∑t(αt(s, a))2 <∞ with probability 1 and αt(s, a) =

0,∀(s, a) 6= (st, at).

7. Var[r(s, a)] <∞,∀s, a.

Then Clipped Double Q-learning will converge to the optimal value function Q∗, as defined by the Bellman optimality
equation, with probability 1.

Proof of Theorem 1. We apply Lemma 1 with Pt = {QA0 , QB0 , s0, a0, α0, r1, s1, ..., st, at}, X = S × A,∆t = QAt −
Q∗, ζt = αt.

First note that condition 1 and 4 of the lemma holds by the conditions 2 and 7 of the theorem respectively. Lemma condition
2 holds by the theorem condition 6 along with our selection of ζt = αt.

Defining a∗ = argmaxaQ
A(st+1, a) we have

∆t+1(st, at) = (1− αt(st, at))(QAt (st, at)−Q∗(st, at))
+ αt(st, at)(rt + γmin(QAt (st+1, a

∗), QBt (st+1, a
∗))−Q∗(st, at))

= (1− αt(st, at))∆t(st, at) + αt(st, at)Ft(st, at)),

(4)

where we have defined Ft(st, at) as:

Ft(st, at) = rt + γmin(QAt (st+1, a
∗), QBt (st+1, a

∗))−Q∗t (st, at)
= rt + γmin(QAt (st+1, a

∗), QBt (st+1, a
∗))−Q∗t (st, at) + γQAt (st+1, a

∗)− γQAt (st+1, a
∗)

= FQt (st, at) + ct,

(5)

where FQt = rt + γQAt (st+1, a
∗) − Q∗t (st, at) denotes the value of Ft under standard Q-learning and ct =

γmin(QAt (st+1, a
∗), QBt (st+1, a

∗))− γQAt (st+1, a
∗). As E

[
FQt |Pt

]
≤ γ||∆t|| is a well-known result, then condition 3

of lemma 1 holds if it can be shown that ct converges to 0 with probability 1.

Let y = rt + γmin(QBt (st+1, a
∗), QAt (st+1, a

∗)) and ∆BA
t (st, at) = QBt (st, at)−QAt (st, at), where ct converges to 0

if ∆BA converges to 0. The update of ∆BA
t at time t is the sum of updates of QA and QB :

∆BA
t+1(st, at) = ∆BA

t (st, at) + αt(st, at)
(
y −QBt (st, at)− (y −QAt (st, at))

)
= ∆BA

t (st, at) + αt(st, at)
(
QAt (st, at)−QBt (st, at)

)
= (1− αt(st, at))∆BA

t (st, at).

(6)

Clearly ∆BA
t will converge to 0, which then shows we have satisfied condition 3 of lemma 1, implying that QA(st, at)

converges to Q∗t (st, at). Similarly, we get convergence of QB(st, at) to the optimal vale function by choosing ∆t =
QBt −Q∗ and repeating the same arguments, thus proving theorem 1.

B. Overestimation Bias in Deterministic Policy Gradients
If the gradients from the deterministic policy gradient update are unnormalized, this overestimation is still guaranteed to
occur under a slightly stronger condition on the expectation of the value estimate. Assume the approximate value function is
equal to the true value function, in expectation over the steady-state distribution, with respect to policy parameters between
the original policy and in the direction of the true policy update:

Es∼π [Qθ(s, πnew(s))] = Es∼π [Qπ(s, πnew(s))]

∀φnew ∈ [φ, φ+ β(φtrue − φ)] such that β > 0.
(7)

Noting that φtrue maximizes the rate of change of the true value ∆π
true = Qπ(s, πtrue(s))−Qπ(s, πφ(s)), ∆π

true ≥ ∆π
approx. By

the given condition 7 the maximal rate of change of the approximate value must be at least as great ∆θ
approx ≥ ∆π

true. Given
Qθ(s, πφ) = Qπ(s, πφ) this implies Qθ(s, πapprox(s)) ≥ Qπ(s, πtrue(s)) ≥ Qπ(s, πapprox(s)), showing an overestimation of
the value function.
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Table 1. A complete comparison of hyper-parameter choices between our DDPG and the OpenAI baselines implementation (Dhariwal
et al., 2017).

Hyper-parameter Ours DDPG

Critic Learning Rate 10−3 10−3

Critic Regularization None 10−2 · ||θ||2
Actor Learning Rate 10−3 10−4

Actor Regularization None None
Optimizer Adam Adam
Target Update Rate (τ ) 5 · 10−3 10−3

Batch Size 100 64
Iterations per time step 1 1
Discount Factor 0.99 0.99
Reward Scaling 1.0 1.0
Normalized Observations False True
Gradient Clipping False False
Exploration Policy N (0, 0.1) OU, θ = 0.15, µ = 0, σ = 0.2

C. DDPG Network and Hyper-parameter Comparison
DDPG Critic Architecture

(state dim, 400)
ReLU
(action dim + 400, 300)
ReLU
(300, 1)

DDPG Actor Architecture

(state dim, 400)
ReLU
(400, 300)
ReLU
(300, 1)
tanh

Our Critic Architecture

(state dim + action dim, 400)
ReLU
(action dim + 400, 300)
RelU
(300, 1)

Our Actor Architecture

(state dim, 400)
ReLU
(400, 300)
RelU
(300, 1)
tanh
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D. Soft Actor-Critic Implementation Details
For our implementation of Soft Actor-Critic (Haarnoja et al., 2018) we use the code provided by the author (https:
//github.com/haarnoja/sac), using the hyper-parameters described by the paper. We use a Gaussian mixture
policy with 4 Gaussian distributions, except for the Reacher-v1 task, where we use a single Gaussian distribution due to
numerical instability issues in the provided implementation. We use the environment-dependent reward scaling as described
by the authors, multiplying the rewards by 3 for Walker2d-v1 and Ant-v1, and 1 for all remaining environments.

For fair comparison with our method, we train for only 1 iteration per time step, rather than the 4 iterations used by the
results reported by the authors. This along with fewer total time steps should explain for the discrepancy in results on some
of the environments. Additionally, we note this comparison is against a prior version of Soft Actor-Critic, while the most
recent variant uses our Clipped Double Q-learning and produces competitive results to TD3 on most tasks.

E. Learning Curves
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Figure 1. Ablation over the varying modifications to our DDPG (AHE), comparing the subtraction of delayed policy updates (TD3 - DP),
target policy smoothing (TD3 - TPS) and Clipped Double Q-learning (TD3 - CDQ).
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Figure 2. Ablation over the varying modifications to our DDPG (AHE), comparing the addition of delayed policy updates (AHE + DP),
target policy smoothing (AHE + TPS) and Clipped Double Q-learning (AHE + CDQ).
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Figure 3. Comparison of TD3 and the Double Q-learning (DQ-AC) and Double DQN (DDQN-AC) actor-critic variants, which also
leverage delayed policy updates and target policy smoothing.

https://github.com/haarnoja/sac
https://github.com/haarnoja/sac
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