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Abstract
The local model for differential privacy is emerg-
ing as the reference model for practical applica-
tions of collecting and sharing sensitive informa-
tion while satisfying strong privacy guarantees. In
the local model, there is no trusted entity which
is allowed to have each individual’s raw data as
is assumed in the traditional curator model. Indi-
viduals’ data are usually perturbed before sharing
them. We explore the design of private hypothesis
tests in the local model, where each data entry is
perturbed to ensure the privacy of each participant.
Specifically, we analyze locally private chi-square
tests for goodness of fit and independence testing.

1. Introduction
Hypothesis testing is a widely applied statistical tool used to
test whether given models should be rejected, or not, based
on sampled data from a population. Hypothesis testing was
initially developed for scientific and survey data, but today
it is also an essential tool to test models over collections of
social network, mobile, and crowdsourced data (American
Statistical Association, 2014; Hunter et al., 2008; Steele
et al., 2017). Collected data samples may contain highly
sensitive information about the subjects, and the privacy of
individuals can be compromised when the results of a data
analysis are released. A way to address this concern is by de-
veloping new techniques to support privacy-preserving data
analysis. Among the different approaches, differential pri-
vacy (Dwork et al., 2006b) has emerged as a viable solution:
it provides strong privacy guarantees and it allows to release
accurate statistics. A standard way to achieve differential
privacy is by injecting some statistical noise in the com-
putation of the data analysis. When the noise is carefully
chosen, it helps to protect the individual privacy without
compromising the utility of the data analysis. Several recent
works have studied differentially private hypothesis tests
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that can be used in place of the standard, non-private hypoth-
esis tests (Uhler et al., 2013; Yu et al., 2014; Sheffet, 2015;
Karwa & Slavković, 2016; Wang et al., 2015; Gaboardi
et al., 2016; Kifer & Rogers, 2017; Cai et al., 2017). These
tests work in the curator model of differential privacy. In
this model, the data is centrally stored and the curator care-
fully injects noise in the computation of the data analysis in
order to satisfy differential privacy.

In this work we instead address the local model of privacy,
formally introduced by Raskhodnikova et al. (2008). The
first differentially private algorithm called randomized re-
sponse – in fact it predates the definition of differential
privacy by more than 40 years – guarantees differential pri-
vacy in the local model (Warner, 1965). In this model, there
is no trusted centralized entity that is responsible for the
noise injection. Instead, each individual adds enough noise
to guarantee differential privacy for their own data, which
provides a stronger privacy guarantee than the curator model.
The data analysis is then run over the collection of the in-
dividually sanitized data. The local model of differential
privacy is a convenient model for several applications: for
example it is used to collect statistics about the activity of
the Google Chrome Web browser users (Erlingsson et al.,
2014), and to collect statistics about the typing patterns of
Apple’s iPhone users (Apple Press Info, 2016). Despite
these applications, the local model has received far less at-
tention than the centralized curator model. This is in part
due to the more firm requirements imposed by this model,
which make the design of effective data analysis harder.

Our main contribution is in designing chi-square hypothesis
tests for the local model of differential privacy. Similar to
previous works we focus on goodness of fit and indepen-
dence hypothesis tests. Most of the private chi-square tests
proposed so far are based on mechanisms that add noise in
some form to the aggregate data, e.g. the cells of the con-
tingency tables, or the resulting chi-square statistics value.
These approaches cannot be used in the local model, since
noise needs to be added at the individual’s data level. We
then consider instead general privatizing techniques in the
local model, and we study how to build new hypothesis
tests with them. Each test we present is characterized by a
specific local model mechanism. The main technical chal-
lenge for designing each test is to create statistics, which
incorporate the local model mechanisms, that converge as
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we collect more data to a chi-square distribution, as in the
classical chi-square tests. We then use these statistics to find
the critical value to correctly bound the Type I error.

We present three different goodness of fit tests:
LocalNoiseGOF presents a statistic that guarantees the
convergence to a chi-square distribution under the null hy-
pothesis so that we can use the correct critical values when
local (concentrated) differential privacy is guaranteed by
adding Laplace or Gaussian noise to the individual data;
LocalGenRRGOF also provides a statistic that converges
to a chi-square under the null hypothesis when a private
value for each individual is selected by using a generalized
form of randomized response, which can also be thought of
as an instantiation of the exponential mechanism (McSherry
& Talwar, 2007); finally, LocalBitFlipGOF introduces
a statistic that converges to a chi-square distribution when
the data is privatized using a bit flipping algorithm (Bassily
& Smith, 2015), which provide better accuracy for higher
dimensional data. Further, we develop corresponding in-
dependence tests: LocalNoiseIND (see supplementary
file), LocalGenRRIND, and LocalBitFlipIND. For
all these tests we study their asymptotic behavior. A desider-
ata for private hypothesis tests is to have a guaranteed upper
bound on the probability of a false discovery (or Type I
error) – rejecting a null hypothesis or model when the data
was actually generated from it – and to minimize the prob-
ability of a Type II error, which is failing to reject the null
hypothesis when the model is indeed false. This latter cri-
teria corresponds to the power of the statistical test. We
then present experimental results showing the power of the
different tests which demonstrates that no single local differ-
entially private algorithm is best across all data dimensions
and privacy parameter regimes. However, this evaluation
also shows a relation between the power of the test and the
noncentral parameter of the test statistic that is used. This
suggests that besides looking at the parameters of the test, a
data analyst may need also to consider which test statistic
results in the largest noncentral parameter.

2. Related Works
There have been several works in developing private hypoth-
esis test for categorical data, but all look at the traditional
model of (concentrated) differential privacy instead of the
local model, which we consider here. Several works have
explored private statistical inference for GWAS data, (Uhler
et al., 2013; Yu et al., 2014; Johnson & Shmatikov, 2013).
Following these works, there has also been general work in
private chi-square hypothesis tests, where the main tests are
for goodness of fit and independence testing, although some
do extend to more general tests (Wang et al., 2015; Gaboardi
et al., 2016; Kifer & Rogers, 2017; Cai et al., 2017; Kak-
izaki et al., 2017). Among these, the works most related to

ours are the ones by Gaboardi et al. (2016); Kifer & Rogers
(2017). One of our mechanisms, LocalNoiseGOF, can
be seen as an adaptation of their techniques to the local
model. However, the other mechanisms we introduce differ
substantially and require novel asymptotic analyses. There
has also been work in private hypothesis testing for ordinary
least squares regression (Sheffet, 2015).

Duchi et al. (2013b;a) focus on controlling disclosure risk
in statistical estimation and inference by ensuring the anal-
ysis satisfies local differential privacy. In their work, they
show that a generalized version of randomized response
gives optimal sample complexity for estimating the multi-
nomial probability vector. We use this idea as the basis for
our hypothesis test LocalBitFlipGOF. Kairouz et al.
(2014) also considers hypothesis testing in the local model,
although they measure utility in terms of f -divergences and
do not give a decision rule, i.e. when to reject a given
null hypothesis. We provide statistics whose distributions
asymptotically follow a chi-square distribution, which al-
lows for approximating statistical p-values that can be used
in a decision rule. We consider their extremal mechanisms
and empirically confirm their result that for small privacy
regimes (small ε) one mechanism has higher utility than
other mechanisms and for large privacy regimes (large ε) a
different mechanism outperforms the other. However, we
measure utility in terms of the power of a locally private
hypothesis test subject to a given Type I error bound. Other
notable works in the local privacy model include Pastore &
Gastpar (2016); Kairouz et al. (2016); Ye & Barg (2017)

Independent of this work, another paper (Sheffet, 2018)
has addressed local private hypothesis testing. Sheffet
(2018) considers finite sample complexity by showing cer-
tain test quantities take different values under the null- and
alternative-hypothesis. In this work, we design and ana-
lyze asymptotic statistical tests and empirically evaluate the
performance of each test for finite samples.

3. Preliminaries
We consider datasets xxx = (x1, · · · , xn) ∈ Xn in some
data universe X , typically X = {0, 1}d where d is the
dimensionality. We first present the standard definition
of differential privacy, as well as its variant concentrated
differential privacy. We say that two datasets xxx,xxx′ ∈ Xn
are neighboring if they differ in at most one element, i.e.
∃i ∈ [n] such that xi 6= x′i and ∀j 6= i, xj = x′j .
Definition 3.1 (Dwork et al. (2006b;a)). An algorithm
M : Xn → Y is (ε, δ)-differentially private (DP) if for
all neighboring datasets xxx,xxx′ ∈ Xn and for all outcomes
S ⊆ Y , we have Pr [M(xxx) ∈ S] ≤ eεPr [M(xxx′) ∈ S] + δ.

Definition 3.2 (Bun & Steinke (2016)). An algorithm
M : Xn → Y is ρ-zero-mean concentrated differ-
entially private (zCDP) if for all neighboring datasets



Local Private Hypothesis Testing: Chi-Square Tests

xxx,xxx′ ∈ Xn, we have the following bound for all t >
0 where the expectation is over outcomes y ∼ M(xxx),

E
[
exp

(
t
(

ln
(

Pr[M(xxx)=y]
Pr[M(xxx′)=y]

)
− ρ
))]
≤ et2ρ.

Note that in both of these privacy definitions, it is assumed
that all the data is stored in a central location and the al-
gorithm M can access all the data. Most of the work in
differential privacy has been in this trusted curator model.
We then define local differential privacy, formalized by
Raskhodnikova et al. (2008) and Dwork & Roth (2014),
which does not require the subjects to release their raw data,
rather each data entry is perturbed to prevent the true entry
from being stored. Thus, local differential privacy ensures
one of the strongest privacy guarantees.
Definition 3.3 (LR Oracle). Given a dataset xxx, a local ran-
domizer oracle LRxxx(·, ·) takes as input an index i ∈ [n] and
an ε-DP algorithm R, and outputs y ∈ Y chosen according
to the distribution of R(xi), i.e. LRxxx(i, R) = R(xi).

Definition 3.4 (Raskhodnikova et al. (2008)). An algorithm
M : Xn → Y is (ε, δ)-local differentially private (LDP) if
it accesses the input database xxx via the LR oracle LRxxx with
the following restriction: if LR(i, Rj) for j ∈ [k] areM’s
invocations of LRxxx on index i, then each Rj for j ∈ [k] is
(εj , δj)- DP and

∑k
j=1 εj ≤ ε,

∑k
j=1 δj ≤ δ.

From this we have that a (ε, δ)-LDP algorithm is also (ε, δ)-
DP. Note that these definitions can be extended to include
ρ-local zCDP (LzCDP) where each local randomizer is ρj-
zCDP and

∑k
j=1 ρj ≤ ρ. We point out the following con-

nection between LzCDP and LDP , which follows directly
from results in (Bun & Steinke, 2016)
Lemma 3.5. If M : Xn → Y is (ε, 0)-LDP then it
is also ε2/2-LzCDP. If M is ρ-LzCDP, then it is also((
ρ+

√
2ρ ln(2/δ)

)
, δ
)

-LDP for any δ > 0.

4. Chi-Square Hypothesis Tests
As was studied in (Gaboardi et al., 2016), (Wang et al.,
2015), and (Kifer & Rogers, 2017), we will study hypothesis
tests with categorical data. A null hypothesis, or model H0

is how we might expect the data to be generated. The goal
for hypothesis testing is to reject the null hypothesis if the
data is not likely to have been generated from the given
model. As is common in statistical inference, we want to
design hypothesis tests to bound the probability of a false
discovery (or Type I error), i.e. rejecting a null hypothesis
when the data was actually generated from it, by at most
some amount α, such as 5%. However, designing tests that
achieve this is easy, because we can just ignore the data
and always fail to reject the null hypothesis, i.e. have an
inconclusive test. Thus, we want additionally to design our
tests so that they can reject H0 if the data was not actually
generated from the given model. We then want to minimize

the probability of a Type II error, which is failing to reject
H0 when the model is false, subject to a given Type I error.

For goodness of fit testing, we assume that each individual’s
dataXXXi for i ∈ [n] is sampled i.i.d. from Multinomial(1, ppp)
where ppp ∈ Rd>0 and pppᵀ · 111 = 1. The classical chi-square
hypothesis test (without privacy) forms the histogramHHH =
(H1, · · · , Hd) =

∑n
i=1XXXi and computes the chi-square

statistic T =
∑d
j=1

(Hj−np0j)
2

np0j
. The reason for using this

statistic is that it converges in distribution to χ2
d−1 as more

data is collected, i.e. n → ∞, when H0 : ppp = ppp0 holds.
Hence, we can ensure the probability of false discovery to be
close to α as long as we only reject H0 when T > χ2

d−1,1−α
where the critical value χ2

d−1,1−α is defined as the following

quantity Pr
[
χ2
d−1 > χ2

d−1,1−α

]
= α.

Prior Private Chi-square Tests in the Curator Model.
One approach for chi-square private hypothesis tests is to
add noise (Gaussian or Laplace) directly to the histogram
to ensure privacy and then use the classical test statis-
tic (Gaboardi et al., 2016; Wang et al., 2015) . Note that the
resulting asymptotic distribution needs to be modified for
such changes to the statistic – it is no longer a chi-square ran-
dom variable. To introduce the different statistics, we will
consider goodness of fit testing after adding noise ZZZ from
distribution Dn to the histogram of counts H̃HH = HHH + ZZZ,
which ensures ρ-zCDP when D = N (0, 1/ρ) and ε-DP
whenD = Lap(2/ε). The chi-square statistic then becomes

T̃ (D) =

d∑
i=1

(
Hi + Zi − np0

i

)2
np0

i

where ZZZ ∼ Dn. (1)

The previous works then show that this statistic converges in
distribution to a linear combination of chi-squared variables,
when D ∼ N (0, 1/ρ) and ρ is also decreasing with n.

Kifer & Rogers (2017) showed that modifying the chi-
square statistic to account for the additional noise leads
to tests with better empirical power. The projected statis-
tic from Kifer & Rogers (2017) is the following where
we use projection matrix Π

defn
=
(
Id − 1

d111111ᵀ
)
, middle ma-

trix Mσ = Π
(
Diag

(
ppp0 + σ

)
− ppp0

(
ppp0
)ᵀ)−1

Π, and sam-
ple noise ZZZ ∼ Dn, with ĤHH = HHH +ZZZ

T
(n)
KR (σ;D) = n

(
ĤHH

n
− ppp0

)ᵀ

Mσ

(
ĤHH

n
− ppp0

)
(2)

We use D = Lap(2/ε) with σ = 8
nε2 for an ε-DP

claim or D = N (0, 1/ρ) with σ = 1
nρ for a ρ-zCDP

claim. When comparing the power of all our tests, we
will be considering the alternate H1 : ppp = ppp1

n where
ppp1
n = ppp0 + ∆∆∆√

n
where 111ᵀ∆∆∆ = 0.
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Theorem 4.1 (Kifer & Rogers (2017)). Under the null hy-
pothesis H0 : ppp = ppp0, the statistic T

(n)
KR

(
1
nρ ; N (0, 1/ρ)

)
given in (2) for ρ > 0 converges in distribution to χ2

d−1.
Further, under the alternate hypothesis H1 : ppp = ppp1

n, the
resulting asymptotic distribution is a noncentral chi-square
random variable with d− 1 degrees of freedom and noncen-
tral parameter ∆∆∆ᵀ

(
Diag(ppp0)− ppp0

(
ppp0
)ᵀ

+ 1/ρId
)−1

∆∆∆

When D = Lap(2/ε), Gaboardi et al. (2016) showed that
we can still obtain the null hypothesis distribution using
Monte Carlo simulations to estimate the critical value, since
the asymptotic distribution will no longer be chi-square.
That is, we can obtainm samples from the statistic under the
null hypothesis with Laplace noise added to the histogram
of counts. We can then guarantee that the probability of a
false discovery is at most α as long as m > d1/αe.

5. Local Private Goodness of Fit
We now turn to designing local private goodness of fit tests.
We first show how the existing statistics from the previous
section can be adapted to the local setting and then develop
new tests based on the generalized randomized response
mechanism that returns one of d > 1 categories and bit
flipping (Bassily & Smith, 2015). Each test is locally pri-
vate because it perturbs each individual’s data through a
local randomizer. However, each of them has a different
asymptotic behavior and so we need different analyses to
identify the different critical values. We empirically check
the power of each test to see which tests outperform others
in different parameter regimes. An interesting result of this
analysis is that the power of a test is directly related to the
size of the noncentral parameter of the chi-square statistic
under the alternate distribution.

Testing with Noise Addition. In the local model we can
add ZZZi ∼ N

(
000, 1

ρ Id

)
independent noise to each individ-

ual’s data XXXi to ensure ρ-LzCDP or ZZZi
i.i.d.∼ Lap

(
2
ε

)
in-

dependent noise toXXXi to ensure ε-LDP. In either case, the
resulting noisy histogram ĤHH = HHH +ZZZ where ZZZ =

∑
iZZZi

will have variance that scales with n for fixed privacy param-
eters ε, ρ > 0. Consider the case where we add Gaussian
noise, which results in the following histogram, ĤHH = HHH+ZZZ

where ZZZ ∼ N
(
000, nρ Id

)
. Thus, we can use either statistic

T̃ (ρ/n) or T
(n)
KR (ρ/n), with the latter statistic typically hav-

ing better empirical power (Kifer & Rogers, 2017). We then
give our first local private hypothesis test in Algorithm 1.

Theorem 5.1. LocalNoiseGOF is ρ-LzCDP when D =
N (0, 1/ρ) and ε-LDP when D = Lap(2/ε).

Although we cannot guarantee the probability of a Type I
error at most α due to the fact that we use the asymptotic

Algorithm 1 Locally Private GOF Test:LocalNoiseGOF

Input: xxx = (xxx1, · · · ,xxxn), ρ, α, H0 : ppp = ppp0.
LetHHH =

∑n
`=1 xxx`

if D = N (0, n/ρ) then
Set q = T

(n)
KR (n/ρ;D) given in (2).

if q > χ2
d−1,1−α Decision← Reject.

else Decision← Fail to Reject.
end if
if D =

∑n
i=1 Lap(2/ε) then

Set q = T
(n)
KR

(
8n/ε2;D

)
given in (2).

Sample m > d1/αe from the distribution of
T

(n)
KR

(
8n/ε2;D

)
assuming H0

Set τ to be the d(m+ 1)(1− α)eth largest sample.
if q > τ Decision← Reject.
else Decision← Fail to Reject.

end if
Output: Decision

distribution (as in the tests from prior work and the classical
chi-square tests without privacy), we expect the Type I errors
to be similar to those from the nonprivate test. Note that
the test can be modified to accommodate arbitrary noise
distributions, e.g. Laplace to ensure differential privacy.
In this case, we can use a Monte Carlo (MC) approach to
estimate the critical value τ that ensures the probability of a
Type I error is at most α if we reject H0 when the statistic
is larger than τ . For the local setting, if each individual
perturbs each coordinate by adding Lap (2/ε) then this will
ensure our test is ε-LDP. However, the sum of independent
Laplace random variables is not Laplace, so we will need to
estimate a sum of n independent Laplace random variables
using MC. We can do this by sampling m entries from the
exact distribution under H0 to find the critical value. In the
experiments section we will use this method to compare the
power of the other local private tests with the one of the
version of LocalNoiseGOF using Laplace noise, which
has a better power than the one using Gaussian noise.

Testing with Generalized Randomized Response.
Rather than having to add noise to each component of
the original histogram, we consider applying randomized
response to obtain a LDP hypothesis test. We will use
a generalized form of randomized response given in
Algorithm 2 which takes a single data entry from the set
{eee1, · · · , eeed}, where eeej ∈ Rd is the standard basis element
with a 1 in the jth coordinate and is zero elsewhere, and
reports the original entry with probability slightly more
than uniform and otherwise reports a different element with
equal probability. Note thatMGenRR is ε-DP.

We have the following result when we useMGenRR on each
data entry to obtain a private histogram.
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Algorithm 2 Generalized Randomized Response:MGenRR

Input: xxx ∈ {eee1, · · · , eeed}, ε.
Let q(xxx,zzz) = 1{xxx = zzz}
Select x̌xx with probability exp[ε q(xxx,x̌xx)]

eε−1+d
Output: x̌xx

Lemma 5.2. If we have histogram HHH =
∑n
i=1XXXi,

where {XXXi}
i.i.d.∼ Multinomial(1, ppp) and we write ȞHH =∑n

i=1MGenRR(XXXi, ε) for each i ∈ [n], then ȞHH ∼
Multinomial(n, p̌pp) where

p̌pp = ppp

(
eε

eε + d− 1

)
+ (1 − ppp)

(
1

eε + d− 1

)
. (3)

Once we have ȞHH , we can create a chi-square statistic by
subtracting ȞHH by its expectation and dividing the difference
by the expectation. Hence testing H0 : ppp = ppp0 after the
generalized randomized response mechanism, is equivalent
to testing H0 : ppp = p̌pp0 with data ȞHH .

We can then form a chi-square statistic using the histogram
ȞHH which will have the correct asymptotic distribution.
Theorem 5.3. Let HHH ∼ Multinomial(n,ppp) and ȞHH be
given in Theorem 5.2 with privacy parameter ε > 0.
Under the null hypothesis H0 : ppp = ppp0, we have for
p̌pp0 = 1

eε+d−1

(
eεppp0 + (1− ppp0)

)
,

T
(n)
GenRR (ε) =

d∑
j=1

(Ȟj − np̌0
j )

2

np̌0
j

D→ χ2
d−1. (4)

Further, with alternate H1 : ppp = ppp1
n, the resulting asymp-

totic distribution is a noncentral chi-square distribution
with d − 1 degrees of freedom and noncentral parameter,(

eε−1
eε+d−1

)2∑d
j=1

∆2
j

p̌0j
.

We then base our LDP goodness of fit test on this result to
obtain the correct critical value to reject the null hypothesis
based on a chi-square distribution. The test is presented in
Algorithm 3. The following result is immediate from the

Algorithm 3 Local DP GOF Test: LocalGenRRGOF

Input: xxx = (xxx1, · · · ,xxxn), ε, α, H0 : ppp = ppp0.
Let p̌pp0 = 1

eε+d−1

(
eεppp0 + (1− ppp0)

)
.

Let ȞHH =
∑n
i=1MGenRR(xxxi, ε).

Set q =
∑d
j=1

(Ȟj−np̌0j )
2

np̌0j

if q > χ2
d−1,1−α Decision← Reject.

else Decision← Fail to Reject.
Output: Decision

generalized randomized response mechanism being ε-DP
and the fact that we use it as a local randomizer.

Theorem 5.4. LocalGenRRGOF is ε-LDP.

Testing with Bit Flipping. Note that the noncentral pa-
rameter in Theorem 5.3 goes to zero as d grows large due

to the coefficient being
(

eε−1
eε+d−1

)2

. Thus, for large dimen-
sional data the generalized randomized response cannot
reject a false null hypothesis. We next consider another dif-
ferentially private algorithmM : {eee1, · · · , eeed} → {0, 1}d,
given in Algorithm 4 used in (Bassily & Smith, 2015) that
flips each bit with some biased probability. 1

Algorithm 4 Bit Flip Local Randomizer:Mbit

Input: xxx ∈ {eee1, · · · , eeed}, ε.
for j ∈ [d] do

Set zj = xj with probability eε/2

eε/2+1
, otherwise zj =

(1− xj).
end for

Output: zzz

Theorem 5.5. The algorithmMbit is ε-DP.

We then want to form a statistic based on the output
zzz ∈ {0, 1}d that is asymptotically distributed as a chi-square
under the null hypothesis. We defer the proof to the supple-
mentary material.

Lemma 5.6. Consider XXXi ∼ Multinomial(1, ppp) for each
i ∈ [n]. We define the following covariance matrix Σ(ppp) and

mean vector p̃pp =
[(eε/2−1)ppp+1]

eε/2+1
, in terms of αε =

(
eε/2−1
eε/2+1

)
Σ(ppp) =α2

ε [Diag (ppp)− ppp (ppp)
ᵀ
] +

eε/2(
eε/2 + 1

)2 Id (5)

The histogram H̃HH =
∑n
i=1Mbit(XXXi) has the following

asymptotic distribution
√
n
(
H̃HH
n − p̃pp

)
D→ N (000,Σ(ppp)) . Fur-

ther, Σ(ppp) is invertible for any ε > 0 and ppp > 000.

Following a similar analysis in (Kifer & Rogers, 2017), we
can form the following statistic for null hypothesis H0 :

ppp = ppp0 in terms of the histogram H̃HH and projection matrix
Π = Id − 1

d111111ᵀ, as well as the covariance Σ = Σ
(
ppp0
)

and
mean p̃pp0 both given in (5) where we replace ppp with ppp0:

T
(n)
BitFlip (ε) = n

(
H̃HH

n
− p̃pp0

)ᵀ

ΠΣ−1Π

(
H̃HH

n
− p̃pp0

)
(6)

We can then design a hypothesis test based on the outputs
fromMbit in Algorithm 5

Theorem 5.7. LocalBitFlipGOF is ε-LDP.
1Special thanks to Adam Smith for recommending to use this

particular algorithm.
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Figure 1: The coefficient on ∆∆∆ᵀ∆∆∆ in the noncentral parameter for the local private tests where “LocalGaussGOF" is
LocalNoiseGOF with Gaussian noise, LocalGenRRGOF, and LocalBitFlipGOF for various dimensions d and ε.

Algorithm 5 Local DP GOF Test: LocalBitFlipGOF

Input: xxx = (xxx1, · · · ,xxxn), ε, α, H0 : ppp = ppp0.
Let H̃HH =

∑n
i=1Mbit(xxxi, ε).

Set q = T
(n)
BitFlip (ε)

if q > χ2
d−1,1−α Decision← Reject.

else Decision← Fail to Reject.
Output: Decision

We now show that the statistic in (6) is asymptotically dis-
tributed as χ2

d−1, with proof in the supplementary file.

Theorem 5.8. If the null hypothesis H0 : ppp = ppp0 holds, then
the statistic T

(n)
BitFlip (ε) is asymptotically distributed as a chi-

square, i.e. T
(n)
BitFlip (ε)

D→ χ2
d−1. Further, if we consider the

alternate H1 : ppp = ppp1 then T
(n)
BitFlip (ε) converges in distribu-

tion to a noncentral chi-square with d−1 degrees of freedom

and noncentral parameter
(
eε/2−1
eε/2+1

)2

·∆∆∆ᵀΣ(ppp0)−1∆∆∆.

Comparison of Noncentral Parameters. We now com-
pare the noncentral parameters of the three local private tests
we presented in Algorithms 1, 3 and 5. We consider the null
hypothesis ppp0 = (1/d, · · · , 1/d) for d > 2, and alternate
H1 : ppp = ppp0 + ∆∆∆√

n
. In this case, we can easily compare the

various noncentral parameters for various privacy parame-
ters and dimensions d. In Figure 1 we give the coefficient to
the term ∆∆∆ᵀ∆∆∆ in the noncentral parameter of the asymptotic
distribution for each local private test presented thus far.
The larger this coefficient is, the better the power will be
for any alternate ∆∆∆ vector. Note that in LocalNoiseGOF,
we set ρ = ε2/8 which makes the variance the same as
for a random variable distributed as Lap(2/ε) for an ε-DP
guarantee – recall that LocalNoiseGOF with Gaussian
noise does not satisfy ε-DP for any ε > 0. We give re-
sults for ε ∈ {1, 2, 3, 4} which are all in the range of pri-
vacy parameters that have been considered in actual locally
differentially private algorithms used in practice.2 From

2In (Erlingsson et al., 2014), we know that Google uses ε =
ln(3) in RAPPOR and from Aleksandra Korolova’s Twitter post
on Sept. 13, 2016 https://twitter.com/korolova/

the plots, we see how LocalGenRRGOF may outperform
LocalBitFlipGOF depending on the privacy parameter
and dimension of the data. We can use these plots to deter-
mine which test to use given ε and the dimension of data
d. When H0 is not uniform, we can use the noncentral pa-
rameters given for each test to find the test with the largest
noncentral parameter for a particular privacy budget ε.

Empirical Results. We then empirically compare the
power between LocalNoiseGOF with Laplace noise
in Algorithm 1, LocalGenRRGOF in Algorithm 3, and
LocalBitFlipGOF in Algorithm 5. Recall that all three
of these tests have the same privacy benchmark of local
differential privacy. For LocalNoiseGOF with Laplace
noise, we will use m = 999 samples in our Monte Carlo
simulations. In our experiments we fix α = 0.05 and
ε ∈ {1, 2, 4}. We then consider null hypotheses of the
form ppp0 = (1/d, 1/d, · · · , 1/d) and alternate H1 : ppp =
ppp0 + η(1,−1, · · · , 1,−1) for some η > 0. In Figure 2, we
plot the number of times our tests correctly rejects the null
hypothesis in 1000 independent trials for various sample
sizes n and privacy parameters ε. From Figure 2, we can
see that the test statistics that have the largest noncentral
parameter for a particular dimension d and privacy parame-
ter ε will have the best empirical power. When d = 4, we
see that LocalGenRRGOF performs the best. However,
for d = 40 it is not so clear cut. When ε = 4, we can see
that LocalGenRRGOF does the best, but then when ε = 2,
LocalBitFlipGOF does best. Thus, the best Local DP
Goodness of Fit test depends on the noncentral parameter,
which is a function of ε, the null hypothesis ppp0, and alternate
ppp = ppp0 + ∆∆∆. Note that the worst local DP test also depends
on the privacy parameter and the dimension d. Based on
our empirical results, we see that no single locally private
test is best for all data dimensions. However, knowing the
corresponding noncentral parameter for a given problem is
useful in determining which tests to use. Indeed, the larger
the noncentral parameter is the higher the power will be.

status/775801259504734208, Apple uses ε = 1, 4.
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Figure 2: Plot 1 & 2: comparison of empirical power among the classical non-private test and the local private tests:
LocalNoiseGOF with Laplace noise (solid line), LocalGenRRGOF (dashed line), and LocalBitFlipGOF (dotted
line); in Plot 1 d = 4 and η = 0.01, in Plot 2 d = 40 and η = 0.005. Plot 3 & 4: comparison of empirical power among
classical non-private test versus local private tests: adding Laplace noise (solid line) which is described in the supplementary
file, LocalGenRRIND (dashed line), and LocalBitFlipIND (dotted line) for the contingency table data distribution
given in (12) where Plot 3 (r, c) = (2, 2) and η = 0.01, Plot 4 (r, c) = (10, 4) and η = 0.005.

6. Local Private Independence Tests
Our techniques can be extended to include composite hy-
pothesis tests, where we test whether the data comes from
a whole family of probability distributions. We will focus
on independence testing, but much of the theory can be
extended to general chi-square tests. We will closely follow
the presentation and notation as in (Kifer & Rogers, 2017).

We consider two multinomial random variables
{UUU `}n`=1

i.i.d.∼ Multinomial(1,πππ(1)) for πππ(1) ∈ Rr,
{VVV `}n`=1

i.i.d.∼ Multinomial(1,πππ(2)) for πππ(2) ∈ Rc and
no component of πππ(1) or πππ(2) is zero and each sums
to 1. Without loss of generality, we will consider an
individual to be in one of r groups who reports a data
record that is in one of c categories. The collected
data consists of n joint outcomes HHH whose (i, j)th
coordinate is Hi,j =

∑n
`=1 1{U`,i = 1 & V`,j = 1}.

Note that HHH is then the contingency table over the
joint outcomes. Under the null hypothesis of inde-
pendence between {UUU `}n`=1 and {VVV `}n`=1, for prob-
ability vector ppp(πππ(1),πππ(2)) = πππ(1)

(
πππ(2)

)ᵀ
, we have

HHH ∼ Multinomial
(
n,ppp(πππ(1),πππ(2))

)
What makes this test difficult is that the analyst does not
know the data distribution ppp(πππ(1),πππ(2)) and so cannot sim-
ply plug it into the chi-square statistic. Rather, we use
the data to estimate the best guess for the unknown prob-
ability distribution that satisfies the null hypothesis. Note
that without privacy, each individual ` ∈ [n] is reporting a
r × c matrixXXX` which would be 1 in exactly one location.
Thus we can alternatively write the contingency table as
HHH =

∑n
`=1XXX`. We then use the three local private algo-

rithms we presented earlier to see how we can form a private
chi-square statistic for independence testing. We want to be
able to ensure the privacy of both the group and the category
that each individual belongs to. Due to space we will only
cover private independence tests that use the generalized
randomized response mechanism from Algorithm 2 and the

bit flipping local randomizer from Algorithm 4. We defer
our independence test with noise addition in the local setting
to the supplementary file.

Testing with Generalized Randomized Response. We
want to design an independence test when the data is
generated from MGenRR given in Algorithm 2. In this
case our contingency table can be written as ȞHH ∼
Multinomial

(
n, p̌pp(πππ(1),πππ(2))

)
where βε = 1

eε+rc−1 and
we use (3) to get

p̌pp(πππ(1),πππ(2)) = βε

(
(eε − 1)πππ(1)

(
πππ(2)

)ᵀ
+ 111
)

(7)

We then obtain an estimate for the unknown parameters,

π̌ππ(1) =
1

βε (eε − 1)

(
Ȟi,·

n
− cβε : i ∈ [r]

)
,

π̌ππ(2) =
1

βε (eε − 1)

(
Ȟ·,j
n
− rβε : j ∈ [c]

)

ŤTT (n)

GenRR (ε) =
∑
i,j

(
Ȟi,j − np̌i,j

(
π̌ππ(1), π̌ππ(2)

))2

np̌i,j(π̌ππ
(1), π̌ππ(2))

(8)

We can then prove the following result, where the full proof
is in the supplementary file.

Theorem 6.1. Assuming UUU and VVV are independent with
true probability vectors πππ(1),πππ(2) > 0 respectively, then as
n→∞ we have ŤTT (n)

GenRR (ε)
D→ χ2

(r−1)(c−1).

We then use this result to design Algorithm 6.

Theorem 6.2. LocalGenRRIND is ε-LDP.

Testing with Bit Flipping. Lastly, we design an in-
dependence test when the data is reported via Mbit
in Algorithm 4. Assuming that HHH =

∑n
`=1XXX` ∼
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Algorithm 6 Local DP IND Test: LocalGenRRIND

Input: xxx = (xxx1, · · · ,xxxn), ε, α, H0 : ppp = ppp0.
Let ȞHH =

∑n
i=1MGenRR(xxxi, ε).

Set q = ŤTT (n)

GenRR (ε) from (8)
if q > χ2

d−1,1−α, Decision← Reject.
else Decision← Fail to Reject.

Output: Decision

Multinomial
(
n,ppp(πππ(1),πππ(2))

)
, then we know that replac-

ing ppp0 with ppp(πππ(1),πππ(2)) in Section 5 gives us the following
asymptotic distribution (treating the contingency table of
values as a vector) with covariance matrix Σ(·) given in (5)

√
n

H̃HHn −

(
eε/2 − 1

eε/2 + 1

)
πππ(1)

(
πππ(2)

)ᵀ
+

1

eε/2 + 1︸ ︷︷ ︸
p̃pp(πππ(1),πππ(2))




D→ N
(
000,Σ

(
πππ(1)

(
πππ(2)

)ᵀ))
(9)

Similar to analysis for Theorem 6.1, we start with a rough
estimate for the unknown parameters which converges in
probability to the true estimates, so we use αε =

(
eε/2−1
eε/2+1

)
to get

π̃ππ
(1)

=

(
1

αε

)(
H̃i,·

n
− c

eε/2 + 1
: i ∈ [r]

)

π̃ππ
(2)

=

(
1

αε

)(
H̃·,j
n
− r

eε/2 + 1
: j ∈ [c]

)
(10)

We then give the resulting statistic, parameterized by the
unknown parameters πππ(`), for ` ∈ {1, 2}. For middle matrix

M̃ = ΠΣ
(
π̃ππ

(1)
(
π̃ππ

(2)
)ᵀ)−1

Π, we have

T̃TT
(n)

BitFlip

(
θθθ(1), θθθ(2); ε

)
=

1

n

(
H̃HH − np̃pp

(
θθθ(1), θθθ(2)

))ᵀ
M̃
(
H̃HH − np̃pp

(
θθθ(1), θθθ(2)

))
(11)

Minimizing T̃TT
(n)

BitFlip

(
θθθ(1), θθθ(2); ε

)
over (θθθ(1), θθθ(2)) results in

a statistic that is distributed as a chi-square random variable,
we defer the full proof to the supplementary file.
Theorem 6.3. Under the null hypothesis where UUU
and VVV are independent with true probability vectors
πππ(1),πππ(2) > 0 respectively, then we have as n → ∞,

minθθθ(1),θθθ(2)

{
T̃TT

(n)

BitFlip

(
θθθ(1), θθθ(2); ε

)} D→ χ2
(r−1)(c−1).

We present the test in Algorithm 7. The following result
follows from same privacy analysis as before.
Theorem 6.4. LocalBitFlipIND is ε-LDP.

Algorithm 7 Local DP IND Test: LocalBitFlipIND

Input: (xxx1, · · · ,xxxn), ε, α.
Let H̃HH =

∑n
i=1Mbit(xxxi, ε).

q = minπππ(1),πππ(2)

{
T̃TT

(n)

BitFlip

(
πππ(1),πππ(2); ε

)}
from (11).

if q > χ2
(r−1)(c−1),1−α Decision← Reject.

else Decision← Fail to Reject.
Output: Decision

Empirical Results. As we did for the goodness of fit tests,
we empirically compare the power for our various tests for
independence. We consider the null hypothesis that the two
sequences of categorical random variables {UUU `}n`=1 and
{VVV `}n`=1 are independent of one another. Under an alternate
hypothesis, we generate the contingency data according to a
non-product distribution. We fix the distribution ppp1 for the
contingency table to be of the following form, where πππ(1) ∈
Rr is the unknown distribution for {UUU `}n`=1, πππ(2) ∈ Rc is
the unknown distribution for {VVV `}n`=1, and r, c are even

ppp1 = πππ(1)
(
πππ(2)

)ᵀ
+ η(1,−1, · · · ,−1, 1)ᵀ(1,−1, · · · ,−1, 1) (12)

Note that the hypothesis test does not know the underly-
ing πππ(i) for i ∈ {1, 2}, but to generate the data we must
fix these distributions. We show power results when the
marginal distributions satisfy πππ(1) = (1/r, · · · , 1/r) and
πππ(2) = (1/c, · · · , 1/c). In Figure 2, we give results for
various n and ε ∈ {1, 2, 4} .

7. Conclusion
We have designed several hypothesis tests, each depend-
ing on different local differentially private algorithms. We
showed that each statistic has a noncentral chi-square dis-
tribution when the data is drawn from some alternate
hypothesis H1. Depending on the form of the alter-
nate probability distribution, the dimension of the data,
and the privacy parameter, either LocalGenRRGOF or
LocalBitFlipGOF gave the best power. This corrob-
orates the results from Kairouz et al. (2014) who showed
that in hypothesis testing, different privacy regimes have
different optimal local differentially private mechanisms,
although utility in their work was in terms of KL divergence.
Our results show that the power of the test is directly related
to the noncentral parameter of the test statistic that is used.
This requires the data analyst to carefully consider alternate
hypotheses, as well as the data dimension and privacy pa-
rameter for a particular test and then see which test statistic
results in the largest noncentral parameter.
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Karwa, V. and Slavković, A. Inference using noisy degrees:
Differentially private β-model and synthetic graphs. Ann.
Statist., 44(P1):87–112, 02 2016.

Kifer, D. and Rogers, R. A New Class of Private Chi-Square
Hypothesis Tests. In Singh, A. and Zhu, J. (eds.), Proceed-
ings of the 20th International Conference on Artificial



Local Private Hypothesis Testing: Chi-Square Tests

Intelligence and Statistics, volume 54 of Proceedings of
Machine Learning Research, pp. 991–1000, Fort Laud-
erdale, FL, USA, 20–22 Apr 2017. PMLR.

McSherry, F. and Talwar, K. Mechanism design via differen-
tial privacy. In Annual IEEE Symposium on Foundations
of Computer Science (FOCS), Providence, RI, October
2007. IEEE.

Pastore, A. and Gastpar, M. Locally differentially-private
distribution estimation. In 2016 IEEE International Sym-
posium on Information Theory (ISIT), pp. 2694–2698,
July 2016. doi: 10.1109/ISIT.2016.7541788.

Raskhodnikova, S., Smith, A., Lee, H. K., Nissim, K., and
Kasiviswanathan, S. P. What can we learn privately? 2013
IEEE 54th Annual Symposium on Foundations of Com-
puter Science, 00:531–540, 2008. ISSN 0272-5428. doi:
doi.ieeecomputersociety.org/10.1109/FOCS.2008.27.

Sheffet, O. Differentially private least squares: Estima-
tion, confidence and rejecting the null hypothesis. arXiv
preprint arXiv:1507.02482, 2015.

Sheffet, O. Locally private hypothesis testing. CoRR,
abs/1802.03441, 2018. URL http://arxiv.org/
abs/1802.03441.

Steele, J. E., Sundsøy, P. R., Pezzulo, C., Alegana, V. A.,
Bird, T. J., Blumenstock, J., Bjelland, J., Engø-Monsen,
K., de Montjoye, Y.-A., Iqbal, A. M., Hadiuzzaman,
K. N., Lu, X., Wetter, E., Tatem, A. J., and Bengtsson, L.
Mapping poverty using mobile phone and satellite data.
Journal of The Royal Society Interface, 14(127), 2017.
ISSN 1742-5689. doi: 10.1098/rsif.2016.0690.

Uhler, C., Slavkovic, A., and Fienberg, S. E. Privacy-
preserving data sharing for genome-wide association stud-
ies. Journal of Privacy and Confidentiality, 5(1), 2013.

Wang, Y., Lee, J., and Kifer, D. Differentially private hypoth-
esis testing, revisited. arXiv preprint arXiv:1511.03376,
2015.

Warner, S. L. Randomized response: A survey technique for
eliminating evasive answer bias. Journal of the American
Statistical Association, 60:63–69, 1965.

Ye, M. and Barg, A. Optimal schemes for discrete distribu-
tion estimation under local differential privacy. In 2017
IEEE International Symposium on Information Theory
(ISIT), pp. 759–763, June 2017. doi: 10.1109/ISIT.2017.
8006630.

Yu, F., Fienberg, S. E., Slavkovic, A. B., and Uhler, C.
Scalable privacy-preserving data sharing methodology for
genome-wide association studies. Journal of Biomedical
Informatics, 50:133–141, 2014.

http://arxiv.org/abs/1802.03441
http://arxiv.org/abs/1802.03441

