
Inductive Two-Layer Modeling with Parametric Bregman Transfer

A. Proofs
Proof for Theorem 1

Restatement of Theorem 1: There exists a loss L that satisfies all the three conditions if, and only if, f is affine.

Proof. The “if” part is trivial as we just need to set L(�, z) = ||�� f(z)||

2. To see the “only if” part, consider the sublevel
set of L at 0: S = {(�, z) : L(�, z)  0}. By grounding and unique recovery, S = {(f(z), z) : z}. And by the joint
convexity of L, S is convex. So for any z1, z2, ( 12 (f(z1) + f(z2)),

1
2 (z1 + z2)) is in S. But (f( 12 (z1 + z2)),

1
2 (z1 + z2))

is the only element in S with the second component being 1
2 (z1 + z2). So 1

2 (f(z1) + f(z2)) = f(

1
2 (z1 + z2)). So f is

affine.

Proof for Lemma 1

Restatement of Lemma 1: S is convex, bounded, and closed. In addition,

�S(T ) =

(

tr(T ) T 2 T

+1 otherwise
. (18)

Proof. Since T is a convex cone, the right-hand side is a sublinear function. To show two sublinear functions f and g are
equal, it suffices to show that their “unit balls” are equal, i.e. {x : f(x)  1} = {x : g(x)  1}. The unit ball of the
left-hand side, by definition, is S . The unit ball of the right-hand side is: {T : T 2 T , tr(T )  1}. But this is exactly the
definition of S in (7).

B. Extensions to hard tanh and non-elementwise transfers
Elementwise transfer. When using the hard tanh transfer, we have F ⇤

h

(�) =

1
2 k�k

2 if the L1 norm k�k1 :=

max

ij

|�

ij

|  1, and 1 otherwise. As a result, we get the same objective function as in (6), only with T

h

changed into
{�

0
� : k�k1  1} and the domain of A changed into {A :

P

i

|A
ij

|  1, 8 j}. Given the negative gradient G ⌫ 0 of
the objective, the polar operator boils down to solving

max

�2Rh⇥t:k�k11
tr(G0

�

0
�) = h max

�2[0,1]t
�0G� = h max

�2[0,1]t
kA�k2 , where A0A = G. (19)

This problem is NP-hard, but an approximate solution with constant multiplicative guarantee can be found in O(t2) time
(Steinberg, 2005). Note for computation we do not even need an expression of the convex hull of T

h

.

Non-elementwise transfer. The Bregman divergence can be further leveraged to convexify transfer functions that are not
applied elementwise. For example, consider the soft-max function that is commonly used in machine learning and deep
learning:

f(x) =

 

h

X

k=1

exk

!�1

(ex1 , . . . , exh
)

0.

Clearly the range of f is Sh

= {z 2 Rh

: z > 0,10
z = 1}. The potential function F (x) is simply

F (x) = log

h

X

k=1

exk , (20)

and its Fenchel dual is

F ⇤
(�) =

8

<

:

h

P

k=1
�
k

log �
k

if � 2 Sh

1 otherwise
. (21)



Inductive Two-Layer Modeling with Parametric Bregman Transfer

Therefore the objective in (4) can be instantiated into

min

�j2Sh
max

R1=0,�j2Sh

t

X

j=1

F ⇤
(�

j

)�

1

2

k(�� ⇤)X 0
k

2
�

1

2

k�R0
k

2
� F ⇤

(⇤)� `⇤(R). (22)

where � = (�1, . . . ,�t

) 2 Rh⇥t and ⇤ = (�1, . . . ,�t

) 2 Rh⇥t. Here S

h is the closure of Sh: {z 2 Rh

+ : 1

0
z = 1}, i.e.

the h dimensional probability simplex.

When h = 2, F ⇤
(�) is the negative entropy function, and it can be approximated by a

2 [(�1�0.5)2+(�2�0.5)2]+c, where a
and c are chosen such that c = F ⇤

(

1
21) = log

1
2 and a

2 (0.5
2
+0.52)+c = F ⇤

((0, 1)0) = 0. For general h, we can similarly
approximate F ⇤

(�) by a

2

�

���

1
h

1

�

�

2
+c, with c = F ⇤

(

1
h

1) = log

1
h

and a

2 [(1�
1
h

)

2
+

h�1
h

2 ]+c = F ⇤
((1, 0, . . . , 0)0) = 0.

Since 1

0� = 1, this approximation is in turn equal to a k�k2 + d where d = c � a/(2h). As a result, (22) can be
approximated by (setting a = 1 to ignore scaling)

min

�j2Sh
max

R1=0,�j2Sh

1

2

k�k

2
�

1

2

k(�� ⇤)X 0
k

2
�

1

2

k�R0
k

2
�

1

2

k⇤k

2
� `⇤(R). (23)

Once more we can apply change of variable by ⇤ = �A. Since � � 0, ⇤ � 0, �0
1 = 1, and ⇤

0
1 = 1, we easily derive

the domain of A as A0
1 = 1 and A � 0. So using T = �

0
�, we finally arrive at the convexified objective:

min

T2Th

max

R1=0,A�0,A

0
1=1

1

2

tr(T )�
1

2

tr(T (I �A)X 0X(I �A0
))�

1

2

tr(TR0R)�

1

2

tr(TAA0
)� `⇤(R), (24)

where T

h

is the convex hull of {�0
� : � 2 Rh⇥t

+ ,�0
1 = 1}. So given the negative gradient G ⌫ 0 of the objective, the

polar operator aims to compute

max

�2Rh⇥t
+ :�0

1=1

tr(G0
�

0
�) = max

�1,...,�h2Rt
+

h

X

k=1

kA�
k

k

2 s.t.
h

X

k=1

�
k

= 1, where A0A = G. (25)

This problem is NP-hard (Steinberg, 2005), but an approximate solution with provable guarantee is still possible. For
example, in the case that h = 2, we have �2 = 1� �1, and the problem becomes

max

�12[0,1]t
kA�1k

2
+ kA(1� �1)k

2
= max

�12[0,1]t

�

�A
�

�1 �
1
21
�

�

�

2
+ constant (26)

= max

�2[� 1
2 ,

1
2 ]

t

kA�k2 + constant. (27)

This again admits an approximate solution with constant multiplicative guarantee that can be computed in O(t2) time
(Steinberg, 2005).

Note the T

h

in this case, as well as that in the hard tanh case above, is closely related to the completely positive matrix
cone, because � 2 Rh⇥t

+ .

C. Dataset description
The experiments made use of 4 “real” world datasets - G241N (241 ⇥ 1500) from (Chapelle), Letter (vowel letters A-E
vs non vowel letters B-F) (16⇥ 20000) from (UCI, 1990), CIFAR-SM (bicycle and motorcycle vs lawn- mower and tank)
(256 ⇥ 1526) from (Aslan et al., 2013) and (Krizhevsky & Hinton, 2009) and CIFAR-10 (ship vs truck) (256 ⇥ 12000)

from (Krizhevsky & Hinton, 2009), where red channel features are preprocessed by averaging pixels in both the CIFAR
datasets.
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D. Additional results
Here we include run time results of our baselines FFNN and LOCAL.

100 200 1000 2000
Letter 0.05 0.09 1.84 2.53

G241N 0.035 0.057 0.45 N/A
XOR 0.03 0.04 0.16 1.41

CIFAR-10 0.051 0.1 1.9 2.55

Table 6. Training times (in minutes) for LOCAL on 100, 200, 1000, and 2000 training examples

100 200 1000 2000
Letter 0.0031 0.0025 0.006 0.0075

G241N 0.023 0.028 0.054 N/A
XOR 0.02 0.03 0.03 0.03

CIFAR-10 0.047 0.039 0.073 0.1

Table 7. Training times (in minutes) for FFNN on 100, 200, 1000, and 2000 training examples
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