
Hyperbolic Entailment Cones

A. Geodesics in the Hyperboloid Model
The hyperboloid model is (Hn, 〈·, ·〉1), where Hn := {x ∈
Rn,1 : 〈x, x〉1 = −1, x0 > 0}. The hyperboloid model can
be viewed from the extrinsically as embedded in the pseudo-
Riemannian manifold Minkowski space (Rn,1, 〈·, ·〉1) and
inducing its metric. The Minkowski metric tensor gR

n,1

of
signature (n, 1) has the components

gR
n,1

=


−1 0 . . . 0
0 1 . . . 0
0 0 . . . 0
0 0 . . . 1


The associated inner-product is 〈x, y〉1 := −x0y0 +∑n

i=1 xiyi. Note that the hyperboloid model is a Rieman-
nian manifold because the quadratic form associated with
gH is positive definite.

In the extrinsic view, the tangent space at Hn can be de-
scribed as TxHn = {v ∈ Rn,1 : 〈v, x〉1 = 0}. See Robbin
& Salamon (2011); Parkkonen (2013).

Geodesics of Hn are given by the following theorem (Eq
(6.4.10) in Robbin & Salamon (2011)):
Theorem 6. Let x ∈ Hn and v ∈ TxHn such that 〈v, v〉 =
1. The unique unit-speed geodesic φx,v : [0, 1]→ Hn with
φx,v(0) = x and φ̇x,v(0) = v is

φx,v(t) = x cosh(t) + v sinh(t). (38)

B. Proof of Theorem 1
Proof. From theorem 6, appendix A, we know the expres-
sion of the unit-speed geodesics of the hyperboloid model
Hn. We can use the Egregium theorem to project the
geodesics of Hn to the geodesics of Dn. We can do that
because we know an isometry ψ : Dn → Hn between the
two spaces:

ψ(x) := (λx − 1, λxx), ψ−1(x0, x
′) =

x′

1 + x0
(39)

Formally, let x ∈ Dn, v ∈ TxDn with gD(v, v) = 1. Also,
let γ : [0, 1]→ Dn be the unique unit-speed geodesic in Dn
with γ(0) = x and γ̇(0) = v. Then, by Egregium theorem,
φ := ψ ◦ γ is also a unit-speed geodesic in Hn. From
theorem 6, we have that φ(t) = x′ cosh(t) + v′ sinh(t), for
some x′ ∈ Hn, v′ ∈ Tx′Hn. One derives their expression:

x′ = ψ ◦ γ(0) = (λx − 1, λxx) (40)

v′ = φ̇(0) =
∂ψ(y0, y)

∂y

∣∣∣∣
γ(0)

γ̇(0) =

[
λ2x〈x, v〉

λ2x〈x, v〉x+ λxv

]

Inverting once again, γ(t) = ψ−1◦φ(t), one gets the closed-
form expression for γ stated in the theorem.

One can sanity check that indeed the formula from theorem
1 satisfies the conditions:

• dD(γ(0), γ(t)) = t, ∀t ∈ [0, 1]

• γ(0) = x

• γ̇(0) = v

• limt→∞ γ(t) := γ(∞) ∈ ∂Dn

C. Proof of Corollary 1.1
Proof. Denote u = 1√

gDx(v,v)
v. Using the notations from

Thm. 1, one has expx(v) = γx,u(
√
gDx (v, v)). Using Eq. 3

and 6, one derives the result.

D. Proof of Corollary 1.2
Proof. For any geodesic γx,v(t), consider the plane spanned
by the vectors x and v. Then, from Thm. 1, this plane
contains all the points of γx,v(t), i.e.

{γx,v(t) : t ∈ R} ⊆ {ax+ bv : a, b ∈ R} (41)

E. Proof of Lemma 2
Proof. Assume the contrary and let x ∈ Dn \ {0} s.t.
ψ(‖x‖) > π

2 . We will show that transitivity implies that

∀x′ ∈ ∂Sψ(x)
x : ψ(‖x′‖) ≤ π

2
(42)

If the above is true, by moving x′ on any arbitrary (continu-
ous) curve on the cone border ∂Sψ(x)

x that ends in x, one
will get a contradiction due to the continuity of ψ(‖ · ‖).

We now prove the remaining fact, namely Eq. 42. Let
any arbitrary x′ ∈ ∂Sψ(x)

x . Also, let y ∈ ∂Sψ(x)
x be any

arbitrary point on the geodesic half-line connecting x with
x′ starting from x′ (i.e. excluding the segment from x to
x′). Moreover, let z be any arbitrary point on the spoke
through x′ radiating from x′, namely z ∈ Ax′ (notation
from Eq. 15). Then, based on the properties of hyperbolic
angles discussed before (based on Eq. 8), the angles ∠yx′z
and ∠zx′x are well-defined.



Hyperbolic Entailment Cones

From Cor. 1.2 we know that the points O, x, x′, y, z are
coplanar. We denote this plane by P . Furthermore, the
metric of the Poincaré ball is conformal with the Euclidean
metric. Given these two facts, we derive that

∠yx′z + ∠zx′x = ∠(yx′x) = π (43)

thus

min(∠yx′z,∠zx′x) ≤ π

2
(44)

It only remains to prove that

∠yx′z ≥ ψ(x′) & ∠zx′x ≥ ψ(x′) (45)

Indeed, assume w.l.o.g. that ∠yx′z < ψ(x′). Since
∠yx′z < ψ(x′), there exists a point t in the plane P such
that

∠Oxt < ∠Oxy & ψ(x′) ≥ ∠tx′z > ∠yx′z (46)

Then, clearly, t ∈ S
ψ(x′)
x′ , and also t /∈ S

ψ(x)
x , which

contradicts the transitivity property (Eq. 20).

F. Proof of Theorem 3
Proof. We first need to prove the following fact:

Lemma 7. Transitivity implies that for all x ∈ Dn \ {0},
∀x′ ∈ ∂Sψ(x)

x :

sin(ψ(‖x′‖)) sinh(‖x′‖D) ≤ sin(ψ(‖x‖)) sinh(‖x‖D).
(47)

Proof. We will use the exact same figure and notations of
points y, z as in the proof of lemma 2. In addition, we
assume w.l.o.g that

∠yx′z ≤ π

2
(48)

Further, let b ∈ ∂Dn be the intersection of the spoke through
x with the border of Dn. Following the same argument as
in the proof of lemma 2, one proves Eq. 45 which gives:

∠yx′z ≥ ψ(x′) (49)

In addition, the angle at x′ between the geodesics xy and
Oz can be written in two ways:

∠Ox′x = ∠yx′z (50)

Since x′ ∈ ∂Sψ(x)
x , one proves

∠Oxx′ = π − ∠x′xb = π − ψ(x) (51)

We apply hyperbolic law of sines (Eq. 10) in the hyperbolic
triangle Oxx′:

sin(∠Oxx′)
sinh(dD(O, x′))

=
sin(∠Ox′x)

sinh(dD(O, x))
(52)

Putting together Eqs. 48,49,50,51,52, and using the fact
that sin(·) is an increasing function on [0, π2 ], we derive the
conclusion of this helper lemma.

We now return to the proof of our theorem. Consider any
arbitrary r, r′ ∈ (0, 1) ∩ Dom(ψ) with r < r′. Then, we
claim that is enough to prove that

∃x ∈ Dn, x′ ∈ ∂Sψ(x)
x s.t. ‖x‖ = r, ‖x′‖ = r′ (53)

Indeed, if the above is true, then one can use the fact 5, i.e.

sinh(‖x‖D) = sinh

(
ln

(
1 + r

1− r

))
=

2r

1− r2
(54)

and apply lemma 7 to derive

h(r′) ≤ h(r) (55)

which is enough for proving the non-increasing property of
function h.

We are only left to prove the fact 53. Let any arbitrary
x ∈ Dn s.t. ‖x‖ = r. Also, consider any arbitrary geodesic
γx,v : R+ → ∂S

ψ(x)
x that takes values on the cone border,

i.e. ∠(v, x) = ψ(x). We know that

‖γx,v(0)‖ = ‖x‖ = r (56)

and that this geodesic ”ends” on the ball’s border ∂Dn, i.e.

‖ lim
t→∞

γx,v(t)‖ = 1 (57)

Thus, because the function ‖γx,v(·)‖ is continuous, we ob-
tain that for any r′ ∈ (r, 1) there exists an t′ ∈ R+ s.t.
‖γx,v(t′)‖ = r′. By setting x′ := γx,v(t

′) ∈ ∂Sψ(x)
x we

obtain the desired result.
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G. Proof of Theorem 5
Proof. For any y ∈ S

ψ(x)
x , the axial symmetry property

implies that π − ∠Oxy ≤ ψ(x). Applying the hyperbolic
cosine law in the triangle Oxy and writing the above angle
inequality in terms of the cosines of the two angles, one gets

cos∠Oxy =
− cosh(‖y‖D) + cosh(‖x‖D) cosh(dD(x, y))

sinh(‖x‖D) sinh(dD(x, y))
(58)

Eq. 28 is then derived from the above by an algebraic refor-
mulation.

H. Training Details
For all methods except Order embeddings, we observe that
initialization is very important. Being able to properly dis-
entangle embeddings from different subparts of the graph
in the initial learning stage is essential in order to train
qualitative models. We conjecture that initialization is hard
because these models are trained to minimize highly non-
convex loss functions. In practice, we obtain our best re-
sults when initializing the embeddings corresponding to
the hyperbolic cones using the Poincaré embeddings pre-
trained for 100 epochs. The embeddings for the Euclidean
cones are initialized using Simple Euclidean embeddings
pre-trained also for 100 epochs. For the Simple Euclidean
embeddings and Poincaré embeddings, we find the burn-in
strategy of (Nickel & Kiela, 2017) to be essential for a good
initial disentanglement. We also observe that the Poincaré
embeddings are heavily collapsed to the unit ball border (as
also pictured in Fig. 3) and so we rescale them by a factor
of 0.7 before starting the training of the hyperbolic cones.

Each model is trained for 200 epochs after the initialization
stage, except for order embeddings which were trained for
500 epochs. During training, 10 negative edges are gener-
ated per positive edge by randomly corrupting one of its end
points. We use batch size of 10 for all models. For both
cone models we use a margin of γ = 0.01.

All Euclidean models and baselines are trained using
stochastic gradient descent. For the hyperbolic models, we
do not find significant empirical improvements when using
full Riemannian optimization instead of approximating it
with a retraction map as done in (Nickel & Kiela, 2017). We
thus use the retraction approximation since it is faster. For
the cone models, we always project outside of the ε ball cen-
tered on the origin during learning as constrained by Eq. 26
and its Euclidean version. For both we use ε = 0.1. A learn-
ing rate of 1e-4 is used for both Euclidean and hyperbolic
cone models.


