
Synthesizing Programs for Images using Reinforced Adversarial Learning

A. Optimal D for Conditional Generation
It turns out that in the case of conditional generation (i.e.,
pd is a Dirac δ-function), we can derive an explicit form of
the optimal (non-parametric) discriminator D. Indeed, (1)
corresponds to the dual representation of the Wasserstein-1
metric (Villani, 2008). The primal form of that metric is
defined as

W1(pg, pd) = inf
γ∈Γ(pg,pd)

∫
‖x− y‖2 dγ(x,y) , (8)

where Γ(pg, pd) is a set of all couplings between pg and pd.
Taking into account that the data distribution is a point mass,
we can simplify (8):

W1(pg, pd) = Ex∼pg ‖x− xtarget‖2 . (9)

The expression above gives the optimal value for LD in (1).
Therefore D(x) = ‖x− xtarget‖2 is a solution of (1):

LD(‖x− xtarget‖2) =− ‖xtarget − xtarget‖2
+ Ex∼pg ‖x− xtarget‖2
+ 0 ,

(10)

where the last term (R) is zero since the Euclidean distance
belongs to the set of 1-Lipschitz functions.

This result suggests that for inverse graphics, in (4), one may
use a fixed image distance (like the Euclidean distance `2)
instead of a parametric function optimized via the WGAN
objective. Note, however, that `2 is not a unique solution to
(1). Consider, for example, the case where the model distri-
bution is also a Dirac delta centered at xg. The Wasserstein
distance is equal to d = ‖xg − xtarget‖2. In order to achieve
that value in (1), we could take any D such that ∀α ∈ [0, 1]

D (αxg + (1− α)xtarget) = α · d , (11)

and Lip(D) ≤ 1. One example of such function would be
a hyperplane H containing the segment (11). Let us now
consider a set of points

V =
{
x | ‖x− xg‖2 < ε, ‖x− xtarget‖2 = d

}
(12)

in an ε-vicinity of xg. By definition, ‖x− xtarget‖2 is con-
stant for any x ∈ V . That means that `2 expresses no
preference over points that are equidistant from xtarget even
though some of them may be semantically closer to xtarget.
This property may significantly slow down learning if we
are relying on `2 (or similar distance) as our training signal.
Functions like H , on the other hand, have non-zero slope
in V and therefore can potentially shift the search towards
more promising subspaces.

One other reason why discriminator training is different
from using a fixed image distance is that in practice, we do

not optimize the exact dual formulation of the Wasserstein
distance and, on top of that, use stochastic gradient descent
methods which we do not run until convergence. A toy
example illustrating that difference is presented in Figure 11.

B. Network Architectures
The policy network (shown in Figure 12) takes the observa-
tion (i.e., the current state of the canvas Ct) and conditions
it on a tuple corresponding to the last performed action at.
The resulting features are then downsampled to a lower-
dimensional spatial resolution by means of strided convo-
lutions and passed through a stack of ResNet blocks (He
et al., 2016) followed by a fully-connected layer. This yields
an embedding which we feed into an LSTM (Hochreiter &
Schmidhuber, 1997). The LSTM produces a hidden vec-
tor z0 serving as a seed for the action sampling procedure
described below.

In order to obtain at+1, we employ an autoregressive de-
coder depicted in Figure 13. Each component ait+1 is sam-
pled from a categorical distribution whose parameters are
computed as a function of zi. We use two kinds of functions
depending on whether ait+1 corresponds to a scalar (e.g.,
brush size) or to a spatial location (e.g., a control point of
a Bézier curve). In the scalar case, zi is transformed by a
fully-connected layer, otherwise we process it using several
ResNet blocks followed by a series of transpose convolu-
tions and a final convolution. After ait+1 is sampled, we
obtain an updated hidden vector zi+1 by embedding ait+1

into a 16-dimensional code and combining it with zi. The
procedure is repeated until the entire action tuple has been
generated.

For the discriminator network, we use a conventional archi-
tecture similar to DCGAN (Radford et al., 2015).

C. Training Details
Following standard practice in the GAN literature, we op-
timize the discriminator objective using Adam (Kingma &
Ba, 2014) with a learning rate of 10−4 and β1 set to 0.5.
For generator training, we employ population-based explo-
ration of hyperparameters (PBT) (Jaderberg et al., 2017)
to find values for the entropy loss coefficient and learning
rate of the policy learner. A population contains 12 training
instances with each instance running 64 CPU actor jobs
and 2 GPU jobs (1 for the policy learner and 1 for the dis-
criminator learner). We assume that discriminator scores
are compatible across different instances and use them as a
measure of fitness in the exploitation phase of PBT.

The batch size is set to 64 on both the policy learner and dis-
criminator learner. The generated data is sampled uniformly
from a replay buffer with a capacity of 20 batches.
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Figure 11. A toy experiment illustrating the difference between `2 and discriminator training in practice. (a) We collect a dataset of
images with a single solid circle in all possible locations (top) and pick one of them as a target image (bottom). (b) The `2-distance (in the
pixel space) from the input images to the target as a function of the circle location; the surface is flat around the borders since the circles
do not overlap. (c) We train a discriminative model D that takes a pair of images and tells whether they match or not; just like `2, the
resulting function has a pit centered at the target location, but unlike (b), the surface now has better behaved gradients.
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Figure 12. The architecture of the policy network for a single
step. FC refers to a fully-connected layer, MLP is a multilayer
perceptron, Conv is a convolutional layer and ResBlock is a
residual block. We give the dimensions of the output tensors in the
square brackets. ReLU activations between the layers have been
omitted for brevity.
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Figure 13. The architecture of the autoregressive decoder for
sampling an element ai

t+1 of the action tuple. The initial hid-
den vector z0 is provided by an upstream LSTM. Depending on
the type of the subaction to be sampled, we use either the scalar
or the location branch of the diagram.


