
Supplementary material:
Structured Output Learning with Abstention :
application to Accurate Opinion Prediction

1 Proof of theorem 1
We aim at minimizing the risk of predictor (h, r) based on an estimate ĝ of the
conditional density Ey|xψwa(y):

(h(x), r(x)) = arg min
(yh,yr)∈YH,R

〈Cψa(yh, yr), ĝ(x)〉,

and the corresponding risk is given by :

R(h, r) = Ex〈Cψa(h(x), r(x)),Ey|xψwa(y)〉.

The optimal predictor (h?, r?) is the one which is based on the estimate
ĝ = Ey|xψwa(y) which minimized the surrogate risk L :

h?(x), r?(x) = arg min
(yh,yr)∈YH,R

〈Cψa(yh, yr),Ey|xψwa(y)〉,

and the corresponding risk of the optimal predictor is :

R(h∗, r∗) = Ex〈Cψa(h∗(x), r∗(x)),Ey|xψwa(y)〉.

Suppose that we have first solved the learning step and we have computed
an estimate ĝ(x), we have :

R(h, r)−R(h?, r?) = Ex〈C[ψa(h(x), r(x))− ψa(h?(x), r?(x))],Ey|xψwa(y)〉
= Ex〈Cψa(h(x), r(x))(Ey|x[ψwa(y)]− ĝ(x))〉
+Ex〈Cψa(h(x), r(x)), ĝ(x)〉
−Ex〈Cψa(h?(x), r?(x)),Ey|xψwa(y)〉.

The first term can be bounded by taking the supremum over YH,R of the
possible predictions :

Ex〈Cψa(h(x), r(x)), (Ey|x[ψwa(y)]− ĝ(x))〉

≤ Ex

(
sup

(yh,yr)∈YH,R

|〈Cψa(yh, yr), (ĝ(x)− Ey|x[ψwa(y)]〉|
)
.

1



The second and third term can be rewritten using the definition of the
predictors :

〈Cψa(h(x), r(x)), ĝ(x)〉 = inf
(yh,yr)∈YH,R

〈Cψa(yh, yr), ĝ(x)〉

〈Cψa(h?(x), r?(x)),Ey|xψwa(y)〉 = inf
(yh,yr)∈YH,R

〈Cψa(yh, yr), Ey|xψwa(y)〉.

The two terms can then be combined :

inf
(yh,yr)∈YH,R

〈Cψa(yh, yr), ĝ(x)〉 − inf
(yh,yr)∈YH,R

〈Cψa(yh, yr), Ey|xψwa(y)〉

≤ sup
(yh,yr)∈YH,R

|〈Cψa(yh, yr), (ĝ(x)− Ey|xψwa(y))〉|.

Which gives the same term as above. By combining the results :

R(h, r)−R(h?, r?) ≤ 2Ex

(
sup

(yh,yr)∈YH,R

|〈Cψa(yh, yr), (ĝ(x)− Ey|xψwa(y))〉|
)

≤ 2Ex

(
sup

(yh,yr)∈YH,R

‖Cψa(yh, yr)‖Rq‖(ĝ(x)− Ey|xψwa(y))‖Rq

)
≤ 2 sup

(yh,yr)∈YH,R

‖ψa(yh, yr)‖Rp · ‖C‖ · Ex

(
‖(ĝ(x)− Ey|xψwa(y))‖Rq

)

≤ 2 sup
(yh,yr)∈YH,R

‖ψa(yh, yr)‖Rp · ‖C‖ ·

√
Ex

(
‖(ĝ(x)− Ey|xψwa(y))‖2Rq

)
.

Where ‖C‖ = supx∈Rp|‖x‖≤1 ‖Cx‖Rq is the operator norm and the last line
is obtained using Jensen inequality.

Finally we expand the form under the square root :

Ex[‖(ĝ(x)− Ey|xψwa(y))‖2Rq ] = Ex‖ĝ(x)‖2Rq + ‖Ey|xψwa(y))‖2Rq − 2〈ĝ(x), Ey|xψwa(y)〉
= Ex‖ĝ(x)‖2Rq − ‖Ey|xψwa(y)‖2Rq + 2〈Ey|xψwa(y), Ey|xψwa(y)〉
− 2〈ĝ(x), Ey|xψwa(y)〉+ Ex,y‖ψwa(y)‖2Rq − Ex,y‖ψwa(y)‖2Rq

= Ex‖ĝ(x)‖2Rq + Ex,y‖ψwa(y)‖2Rq − 2Ex,y〈ĝ(x), ψwa(y)〉
−
(
‖Ey|xψwa(y)‖2Rq + ‖ψwa(y)‖2Rq − 2Ex,y〈‖Ey|xψwa(y), ψwa(y)〉

)
= Ex,y‖ĝ(x)− ψwa(y)‖2Rq − Ex,y‖Ey|xψwa(y)− ψwa(y)‖2Rq .

Which is equal to L(ĝ)− L(Ey|xψwa).

2



2 Canonical form for some examples of the ab-
stention aware loss

2.1 Canonical form for the ∆bin loss
Let us consider the binary classification with a reject option loss :

∆bin
a (h(x), r(x), y) =


1 if y 6= h(x) and r(x) = 1

0 if y = h(x) and r(x) = 1

c if r(x) = 0

,

It can also be rewritten as a function of the binary variables :

∆bin
a (h(x), r(x), y) = r(x)[1− (h(x)− y)2] + (1− r(x))c

= r(x)[1− h(x)− y + 2h(x)y] + (1− r(x))c

= y(h(x)r(x)) + (1− y)(1− h(x))r(x) + (y + (1− y))c(1− r(x)).

Which corresponds to the parameterization proposed in the article.

2.2 Canonical form for the ∆H loss
Let us consider the hierarchical loss :

∆H(h(x), r(x), y) =

d∑
i=1

ci1h(x)i 6=yi
1h(x)p(i)=yp(i)

.

It is defined on objects that respect the hierarchical condition :

∀i ∈ {1, . . . , d},∀y ∈ {0, 1}d yi ≤ yp(i),

under the hypothesis of a binary vector, the loss can be rewritten :

∆H(h(x), r(x), y) =

d∑
i=1

ci(h(x)i − yi)2(1− (h(x)p(i) − yp(i))2

=

d∑
i=1

ci(h(x)i + yi − 2h(x)iyi)(1− h(x)p(i) − yp(i) + 2h(x)p(i)yp(i)).

Where the second line has been obtained using the fact that for binary
variables, e = e2. Due to the hierarchical constraint, we also have yiyp(i) = yi
and h(x)ih(x)p(i) = h(x)i :

∆H(h(x), r(x), y) =

d∑
i=1

ci(h(x)i(yp(i) − 2yi) + h(x)p(i)yi).

Which corresponds to the parameterization proposed in the article.

3



2.3 Canonical form for the ∆Ha loss
See section 4 of the supplementary material.

3 Proof of theorem 2
Let us recall the problem to solve :

arg min
(yh,yr)∈YH,R

〈ψa(yh, yr, ψx〉,

Using the additional hypothesis over ψa we obtain the problem :

ĥ(x), r̂(x) = arg min
(yh,yr)∈YH,R

(yTh , y
T
r , (yh ⊗ yr)T )MTψx.

Where ⊗ is the Kronecker product between 2 vectors. This problem can be
transformed into the constrained optimization problem :

ĥ(x), r̂(x) = arg min
(yh,yr)∈YH,R

(yTh , y
T
r , c

T )MTψx.

s.t.
(
c = yh ⊗ yr

)
Let us show that the constraint c = yh⊗ yr can be replaced by a set of linear

constraints when h(x) and r(x) are two binary vectors:

3.1 Constraints on the c vector
The linearisation of the constraint relies on the following result :

Proposition 1. Let x and y be 2 binary variables and e the binary variables
defined by the formula e = x · y where · denotes the logical AND : e = 1 if x = 1
and y = 1 and 0 else. Then the following holds :

e = x · y ⇐⇒


e ≤ x
e ≤ y
e ≥ x+ y − 1

e ≥ 0

. (1)

This representation can be used to rewrite the constraints on the c vector.

By definition of the Kronecker product : yh ⊗ yr =


yh,1yr
yh,2yr
·

yh,dyr

 where yh,i is the

ith component of yh.
We write each inequality of (1) as a linear matrix inequality :
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c ≤ Ah,1yh

c ≤ Ar,1yr

c ≥ Ah,2yh +Ar,2yr + b1

c ≥ 0.

All these inequality can be merged in a single one :

Aconstraints c

yhyr
c

 ≤ bconstraints c,

where Aconstraints c =



−Id 0d Id 0d 0d · · · 0d
−Id 0d 0d Id 0d · · · 0d
...

...
. . . . . . . . . . . .

...
−Id 0d · · · 0d · · · · · · Id
0d −V1 Id 0d 0d · · · 0d
0d −V2 0d Id 0d · · · 0d
...

...
. . . . . . . . . . . .

...
0d −Vd · · · 0d · · · · · · Id
Id V1 −Id 0d 0d · · · 0d
Id V2 0d −Id 0d · · · 0d
...

...
. . . . . . . . . . . .

...
Id Vd · · · 0d · · · · · · −Id
0d 0d Id 0d · · · · · · · · ·
0d 0d 0d Id 0d · · · · · ·
...

. . . . . . . . . . . . . . .
...

0d
. . . . . . . . . . . . 0d Id



and bconstraints c =


0d2,1

0d2,1

1d2,1

0d2,1

. Id is the d×d identity matrix, 0d the d×dmatrix

full of 0, 0d2,1 the d2 dimensional vector full of 0 and 1d2,1 the d2 dimensional
vector full of 1.

Vi is the d× d matrix such that all its entries are 0 except the ith which is 1.
The 4 distinct blocks correspond to the 4 different constraints given in 1.

4 Construction of the linear program for the Hi-
erarchical loss with abstention

Let us suppose that our prediction are the assignments of a d nodes binary tree
with an abstention label a.

We recall the parameterization of our loss :
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∆Ha(h(x), r(x), y) =

d∑
i=1

cAi1{fh,r
i =a,fh,r

p(i)
=yp(i)}

+ cAci1{fh,r
i 6=yi,f

h,r
p(i)

=a}

+ ci1{fh,r
i 6=yi,f

h,r
p(i)

=yp(i),f
h,r
i 6=a}.

With fh,r a prediction function built from the pair (h, r) : X → YH,R :

fh,r(x)T = [fh,r1 (x), . . . , fh,rd (x)],

fh,ri (x) = 1h(x)i=11r(x)i=1 + a1r(x)i=0,

In what follows, we denote by p(i) the index of the parent of the i according
to the underlying tree and suppose that our trees are rooted at the node of index
0 for which the label is 1 and there is no abstention.

We recall the set of constraints we used to define YH,R for the Ha loss :

• Abstention at 2 consecutive nodes is forbidden : ∀i ∈ {1, . . . , d} r(x)i +
r(x)p(i) ≤ 1.

• A node can be set to one only if its parent is set to 1 or if the predictor
abstained itself from predicting it : h(x)ir(x)p(i) ≤ h(x)p(i)r(x)p(i).

Since h(x) and r(x) are both binary vectors, one can rewrite the loss as a
function of these predictions :

∆Ha(h(x), r(x), y) =

n∑
i=1

ci(h(x)i − yi)2[1− (h(x)p(i) − yp(i))2]r(x)ir(x)p(i)

+ cAi(1− r(x)i)[1− (h(x)p(i) − yp(i))2]

+ cAci(h(x)i − yi)2(1− r(x)p(i)).

We develop and simplify according to the fact that for any binary variable b,
we have b2 = b :

∆Ha(h(x), r(x), y) =

n∑
i=1

ci(h(x)i + yi − 2h(x)iyi)

[1− (h(x)p(i) + yp(i) − 2h(x)p(i)yp(i))]r(x)ir(x)p(i)

+ cAi(1− r(x)i)[1− (h(x)p(i) + yp(i) − 2h(x)p(i)yp(i))]

+ cAci(h(x)i + yi − 2h(x)iyi)(1− r(x)p(i)).

We take into account the known constraints :

• The hierarchical constraint can be written : (1− h(x)p(i))r(x)p(i) = 1 =⇒
h(x)i = 0 which leads to the equality : (1−h(x)p(i))r(x)p(i)h(x)i = 0 ⇐⇒
h(x)p(i)h(x)ir(x)p(i) = h(x)ir(x)p(i).
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• The non consecutive abstention constraint implies r(x)ir(x)p(i) = r(x)i +
r(x)p(i) − 1.

We treat the 3 terms of the lHA loss separately as follows :

∆Ha(h(x), r(x), y) =

n∑
i=1

ciAi(x) + cAiBi(x) + cAciCi(x).

And rewrite each of this term as a linear combination of the unknown variables

(corresponding to some elements of the vector

 h(x)
r(x)

h(x)⊗ r(x)

 ):

First term :

Ai(x) = (h(x)i + yi − 2h(x)iyi)(1− h(x)p(i) − yp(i) + 2h(x)p(i)yp(i))r(x)ir(x)p(i)

= (h(x)i(1− 2yi) + yi)(h(x)p(i)(2yp(i) − 1) + 1− yp(i))r(x)ir(x)p(i)

=

(
h(x)ih(x)p(i)(1− 2yi)(2yp(i) − 1)+

h(x)i(1− yp(i))(1− 2yi) + h(x)p(i)yi(2yp(i) − 1) + yi(1− yp(i))
)
r(x)ir(x)p(i)

= h(x)ih(x)p(i)r(x)p(i)r(x)i(1− 2yi)(2yp(i) − 1)+

h(x)ir(x)ir(x)p(i)(1− yp(i))(1− 2yi)+

h(x)p(i)r(x)ir(x)p(i)yi(2yp(i) − 1)+

r(x)ir(x)p(i)yi(1− yp(i)).

Using the first constraint, we have : h(x)ih(x)p(i)r(x)p(i)r(x)i = h(x)ir(x)p(i)r(x)i.
Using this reduction and the second constraint we obtain the equation :
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Ai(x) = h(x)ir(x)i

(
(1− 2yi)(2yp(i) − 1) + (1− yp(i))(1− 2yi)

)
+

h(x)ir(x)p(i)

(
(1− 2yi)(2yp(i) − 1) + (1− yp(i))(1− 2yi)

)
+

h(x)p(i)r(x)i

(
yi(2yp(i) − 1)

)
+

h(x)p(i)r(x)p(i)

(
yi(2yp(i) − 1)

)
+

h(x)i

(
− (1− 2yi)(2yp(i) − 1)− (1− yp(i))(1− 2yi)

)
+

h(x)p(i)

(
yi(1− 2yp(i))

)
+

r(x)i

(
yi(1− yp(i))

)
+

r(x)p(i)

(
yi(1− yp(i))

)
+(

yi(yp(i) − 1)

)
.

Second term :

Bi(x) = (1− r(x)i)(1− h(x)p(i) − yp(i) + 2h(x)p(i)yp(i))

= h(x)p(i)r(x)i

(
1− 2yp(i)

)
+

h(x)p(i)

(
2yp(i) − 1

)
+

r(x)i

(
yp(i) − 1

)
+(

1− yp(i)
)
.

Third term :

Ci(x) = h(x)i + yi − 2h(x)iyi)(1− r(x)p(i))

= h(x)ir(x)p(i)

(
2yi − 1

)
+

h(x)i

(
1− 2yi

)
+

r(x)p(i)

(
− yi

)
+(

yi

)
.
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Sum of the three terms
Based on the previous results we express the loss as a linear combination of

the different variables previously expressed :

∆Ha(h(x), r(x), y) =

( n∑
i=1

a
(1)
(i)h(x)i + a

(2)
(i)h(x)ir(x)p(i) + a

(3)
(i)h(x)p(i)r(x)i + a

(4)
(i)h(x)ir(x)i + a

(5)
(i) r(x)i+

a
(6)
(i)h(x)p(i) + a

(7)
(i) r(x)p(i) + a

(8)
(i)h(x)p(i)r(x)p(i) + a

(9)
(i)

)
.

With the following table of correspondency ∀k ∈ {1, . . . , d}:

a
(1)
(i) = −ci((1− 2yi)(2yp(i) − 1) + (1− yp(i))(1− 2yi)) + cAci(1− 2yi)

a
(2)
(i) = ci((1− 2yi)(2yp(i) − 1) + (1− yp(i))(1− 2yi)) + cAci(2yi − 1)

a
(3)
(i) = ci(yi(2yp(i) − 1)) + cAi(1− 2yp(i))

a
(4)
(i) = ci((1− 2yi)(2yp(i) − 1) + (1− yp(i))(1− 2yi))

a
(5)
(i) = ciyi(1− yp(i)) + cAi(yp(i) − 1)

a
(6)
(i) = ciyi(1− 2yp(i)) + cAi(2yp(i) − 1)

a
(7)
(i) = ciyi(1− yp(i))− cAciyi

a
(8)
(i) = ciyi(2yp(i) − 1)

a
(9)
(i) = ciyi(yp(i) − 1) + cAi(1− yp(i)) + cAciyi.

We introduce a new vector of variables g =


g(1)

g(2)

...
g(8)

 where each of the n

dimensional vectors g(k) is defined as follows : ∀i ∈ {1, . . . , n}

g
(1)
i =hi

g
(2)
i =hirpi

g
(3)
i =hpi

ri

g
(4)
i =hiri

g
(5)
i =ri

g
(6)
i =hpi

g
(7)
i =rpi

g
(8)
i =hpirpi .

The last variables are redundant since gpi and gi are the same except at the
root and leaves. Let us denote by Ah the adjacency matrix of the underlying
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hierarchy and ∀p ∈ {1, . . . , 8} y(p) =

y(p)1

·
y
(p)
d

 and ¯a(p) =

 ¯a(p)1
·
¯a(p)d

. Then we

have

y(6) = Ahy
(1)

y(7) = Ahy
(5)

y(8) = Ahy
(4).

Let us denote by a(p) =


a
(p)
1

a
(p)
2
...

a
(p)
n

, on can rewrite the loss l(y(A), y) using the

reduced set of variables :

∆Ha(h(x), r(x), y) =

5∑
p=1

(
(a(p))T g(p)

)
+(a(6))TAhg

(1)+(a(7))TAhy
(5)+(a(8))TAhy

(4).

This is a linear program by choosing the cost vector c and the variable g′ :

c =


a(1) +AT

h a
(6)

a(2)

a(3)

a(4) +AT
h a

(8)

a(5) +AT
h a

(7)

 g′ =


g(1)

g(2)

g(3)

g(4)

g(5).


Leading to the reduced form :

l(y(A), y) = cT g′.

In our applications, the abstention aware predictor we built relied on solving
problems of the form :

arg min
y(A)

N∑
k=1

αk(x)∆Ha(h(x), r(x), yk).

Where (xk, yk) k ∈ {1, . . . , N} are labelled example of a N sample training
set and (x, fh,r) correspond to the new input x for which we look for the best
prediction fh,r.

According to the previous results, we denote by ck the cost vector computed
from the term l(y(A), yk) and c̄(x) =

∑n
k=1 αk(x)ck the full cost vector of the

previous minimization problem. The minimization problem can be rewritten
explicit in terms of the vector of variables g′ by making the constraints between
its different parts explicit :
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arg min
y(A)

N∑
k=1

αk(x)∆Ha(h(x), r(x), yk) = arg min
g′∈{0,1}8n

cT g′

subject to g(2) = g(1) �Ahg
(5),

g(3) = Ahg
(1) � g(5),

g(4) = g(1) � g(5),
g(2) ≤ Ahg

(4),

g(5) ∈ Yr.

Where Yr is the space of d dimensional binary vectors such that ∀y ∈ Yr ∀i ∈
{1, . . . , d} yi + yp(i) ≤ 1. The 3 first constraints are given by construction of
the g′ vector from 2 underlying vectors r(x) and h(x). The fourth line is the
generalized hierarchical constraint : ∀i ∈ 1, . . . , n h(x)ir(x)p(i) ≤ h(x)p(i)r(x)p(i).
The fifth line corresponds to the hypothesis of no 2 consecutive abstentions.

We turn this program into a canonical linear program with binary value
constraints :

arg min
g
L(g) = arg min

g′∈{0,1}8n
cT g′

subject to g(2) ≤ g(1),
g(2) ≤ Ahg

(5),

g(2) ≥ g(1) +Ahg
(5) − 1,

g(3) ≤ Ahg
(1),

g(3) ≤ g(5),
g(3) ≥ Ahg

(1) + g(5) − 1,

g(4) ≤ g(1),
g(4) ≤ g(5),
g(4) ≥ g(1) + g(5) − 1,

g(2) ≤ Ahg
(4),

Id +Ahg
(5) ≤ 1.

In our experiments, this integer linear program is solved using the python cylp
binder to the Cbc library and directly implemented using sparse representations.
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4.1 Hierarchical classification of MRI images
The Medical Retrieval Task of the ImageCLEF 2007 challenge provided a set
of medical images aligned with a code corresponding to a class in a predefined
hierarchy. A class is described by 4 values encoded as follows :

• T (Technical) : image modality

• D (Directional) : body orientation

• A (Anatomical) : body region examined

• B (Biological) : biological system examined

In our experiments we focus on the D and A tasks and reuse the representa-
tion proposed in [DKLD08] and freely available at the page : http://ijs.si/
DragiKocev/PhD/resources/doku.php?id=hmc_classification. Each dataset
contains an existing train test split with 10000 labeled objects for training and
1006 for testing. The A task consist in predicting the assignment of a 96 nodes
binary tree of maximal depth 3 ( an example of label at depth 3 is : upper
extremity / arm → hand → finger). The D task consist in predicting the as-
signment of a 46 nodes binary tree of maximal depth 3 ( an example of label at
depth 3 is : sagittal → lateral, right-left → inspiration). The complete hierarchy
is described in [LSK+03]

The table below contains the results in terms of Hamming Loss for the
problem of hierarchical classification.

Method Hamming loss

H Regression 0.0189
Depth weighted Regression 0.0193
Uniform Regression 0.0218
Binary SVC 0.0197

Table 1: Results on the ImageCLEF2007d task

Method Hamming loss

H Regression 0.0065
Depth weighted Regression 0.0068
Uniform Regression 0.0102
Binary SVC 0.0071

Table 2: Results on the ImageCLEF2007a task

We compare our method (H regression) using the sibbling weighted scheme
described in the article against our same method (Uniform regression) with a
uniform weighted scheme (ci = 1 ∀i ∈ {1, . . . , d}), a depth weighted scheme
(ci =

cp(i)
Nd
∀i ∈ {1, . . . , d} where Nd is the number of nodes at depth d i.e.

separated from the root by d+1 nodes) and against the binary relevance Support
Vector Classifier approach (binary SVC) which consist in training one SVM
classifier for each node and applying the Hierarchical condition in a second time
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by switching to 0 all the nodes which for which the parent node has the label
0. We used the gaussian kernel for the input data in all 3 methods and tuned
the hyperparameters by 5 folds cross validation and report the results on the
available test set.

These results illustrate the choice of the sibbling weighted scheme for the H
loss since it retrieve the best results. Moreover, taking the structured representa-
tion into account is shown to improve the results over the Binary SVC approach
on both tasks.
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