The Generalization Error of Dictionary Learning with Moreau Envelopes

A. Appendix to: ‘“The Generalization Error of Dictionary Learning with Moreau Envelopes”
A.1. Proof of Lemma 1

Proof. For a proof of (9) and (12) see Corollary 1 in (Georgogiannis, 2016). The continuity of e, follows from Theorem
1.25 in (Rockafellar & Wets, 2009). From the calculus rules of the generalized subgradients (Theorem 9.13 and Corollary
10.9 in (Rockafellar & Wets, 2009)):

8eh(t) Q t— Ph(t),

and since t — P, (t) > 0 (by assumption) for every ¢ > 0, we conclude that e, is non-decreasing on [0, +00). O

A.2. Proof of Theorem 1

The proof technique outlined in Section 3 is heavily motivated from the proof of Theorem 2 in (Gribonval et al., 2015b).
Since it is quite lengthy, we split it into two parts. In the first part, we prove the Lipschitz continuity of the map F' : © — Fo
and in the second the UCEM property for Z5.

A.2.1. LIPSCHITZ CONTINUITY OF MAP F : © — Jp
The key in this approach is the following lemma taken from the theory of general metric spaces.

Lemma 3. Let (M, p) and (M1, p1) be metric spaces, K C M, and define the map F : K — M;. If F satisfies

for some L > 0, i.e., F is a Lipschitz continuous map from K to M, with constant L, then
N(Le, F(K), p1) < N(e, K, p), A7)

for every e > 0. Here, N'(Le, F(K), p1) and N (¢, K, p) denote the covering numbers of the sets F(K) and K, under the
metrics p1 and p, respectively.

Proof. The proof is quite straightforward; given an e-cover of K with size N, say {z1,...,2n}, and any y € K, there
exists a x; in in the e-cover of K such that p(y, z;) < €. Thus

p1(F(y), F(zi)) < Lp(y, i) < Le.

In words, for any point F'(y), there is a point F'(z;) such that F'(y) and F(x;) are Le close; the set { F/(x1),..., F(xn)}
constitutes an e-cover. Since N(Le, F(K),p1) < |[{F(z1),...,F(zn)}|, where [{F(z1),...,F(xn)}| denotes the
cardinality of this set, the claim follows. O

The first step is to define the metrics used on the (metric) spaces spaces ® and 5.
Definition 6. Let p,q > 1. Then, a matrix A € R™*4 can be seen as an operator A : (R%,|| - ||,) — (R™,|| - ||4). The
lp q-induced norm of A is

[|Allp,q == sup |[[Az]]q.

zER?
lll[p=1
|
In the sequel, || - ||, ¢ is fixed to || - ||1,2 which is equivalent to
1Allz = max, [14.51l2 @9)

A. j is the j-th column of A € R™*? (see also Lemma 17 in (Vainsencher et al., 2011)). The metric on .% is the supremum
norm on the ball Bgm (T):

flloo = sup [f(z)]. (49)

TEBRrm (T)
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If fp € Fo and g(0) = 0, then || fp|leo < en(||x — DO||2) + g(0) = ep(T) for all fp in F5. Next, define the map
F :® — Fg between (D, ]| - ||1,2) and (Fo, || - ||c). Our aim is to show that F" is uniformly Lipschitz continuous or else,
there is a constant L > 0 such that

[|F(D)— F(D")||oo < L||D— D'||1,2 forany D,D" in®D. (50)

For this purpose, the technical Lemmas 4, 5, and 6 below are needed.

Lemma 4 states that the infimum over @ € R? in the definition of fp is achieved. Fix € Bg (T) and D € R™*9, and
consider the function £, (D, -) : R¢ — R defined as

L:(D,a) :=ep(||x — Dall2) + g(a). (51)

Associate with L, (D, -) the set

Ub(x) = {a € RY: £,(D,a) < fo(x)}. (52)

Set {4 () contains the values of a that achieve the minimum value of £, (D, a) for a fixed D (not necessarily in D), i.e.,
UP(z) = argmingcga £,(D,a). Note that fp(x) = inf,cra L,(D,a) is still well defined but not necessarily in Zs,
unless D has unit-norms columns. As stated below, {4’ (z) is non-empty and compact for any x € Bgm (T') and D.

Lemma 4. Let D € R™*? and consider any x* € Bgm(T). The value fp(z) := inf,cpe Lo(D,a) is finite and
argming,cga Lo (D, a) is non-empty and compact.

Proof. Let fp(z) = inf,cpe £,(D, a); because L, (D, -) is proper (as a sum of proper functions), fp(x) < +oc0.* For
some B € (fp(x),+00), the level set levegL,(D,-) := {a € R? : L,(D,a) < B} is non-empty; it is closed because
L.(D,-) is Isc (in fact it is continuous) as the sum of two continuous functions and bounded because both ¢;, and g
are non-decreasing (and not constant) as ||a||s — +o00. The sets lev<gL,(D,-) for 8 € (fp(z),+00) are therefore
compact and nested: lev<gL,(D,-) C lev<p L, (D,-) when g < ’. The intersection of this family of sets, which is
lev< s, (o)L (D, -), is therefore non-empty and compact. Since £, (D, -) does not take the value —oo nowhere, we conclude
that fp () is finite. Under the previous assumptions, inf,cga £, (D, a) can be written as min,cra L (D, a) and the claim
follows. O

Remark 3. In most cases of interest, the functions ey, and g are bounded from above, i.e., SUp,cp,,. (1) €n(x) and
SUD By (7)) g(z) are finite. So, the value of 8 in Lemma 4 could be the minimum of the latter two supremas. Also, it is
easily gleaned from the proof of Lemma 4 that its conclusions still hold for any non-decreasing lsc function g. (|

Next, a bound for the absolute value of the difference between |e;, (x) — ep, (2")| when h satisfies the assumptions in Lemma 1
is given; these assumptions on h remain valid throughout the article.

Lemma 5. Let ej(z) := inf.cpm ||z — 2|3 + h(2), where h : R™ — R is Isc and proper. Then
! 1 12
len(x) —en(2)] < Sllz — 2]z, (53)

for any x,x’' in R™.

*We call f proper if f(z) < oo for at least one z € R™, and f(x) > —oo for all z € R™; in words, if the domain of f is a nonempty
set on which f is finite, see page 5 in (Rockafellar & Wets, 2009).
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Proof. Letx and ' in R™. Then:

1 . 1
ente) — enta) = nt, {Slle =8+ 20} — i {511’ ol +.00)}
1 1 / 2
< inf §5lle = 2lB+ () |+ sup { —olla’ ol ~ g(o)
2 OERd 2
_ f 1 _ 2 _1 I 2
= sup { inf 4 Sllo = 2l + ()| — 5lle’ ol B (o)
o€R (54)
1
< sup {|x—o|2+g< ) 5l = o3 - gto)}
o€R4
< sup { 2z — ol 2 — <la’ — ol 2
_OE]Rd 2 2
< glle— 1
Interchanging the roles of z and z’, we conclude the result. O

Lemma 6. Fix x € Bgm(T) and let D, D’ € Rmxd, If there exist non-negative constants Cp , and Cp: 4, such that
SUPgeup () |all1 < Cp oz and SUD, (D (o) llally < Cpr 4, then

[F(D) - F(D')| _

1
1D —Dlh,s = 2P~ Plhamax{Cpa, Cor}, (55)

Proof. Fix z in Bgw (T) and let D, D’ € R™*<, The function fp/(z) is upper bounded as
F(D") = fpr(z) := f {en(llz — D'all2) + g(a)}
inf {en(llz — D'allz) + 9(a) — enlle — Dallz) + en(llz — Dall2)}

1

< inf {en(|lz — Dall2) + g(a) + §||D’a — Dal|3} (from Lemma 5)

acR4

1

< sup {en(|lx — Dall2) + g(a) + §\|D’a — Dal|3}  (since UY () is non-empty)

aeddP (z)

1

< sup {en(||lr — Dall2) +g(a)} + sup §||D’a — Dall3 (56)

acud (z) acuUp (x)

1
= fp(z)+ sup §||D'a — Dal|3  (by definition of 45 (z))
acUP (z)

1 .
< fp(x)+ §||D' - DI}, Sl})p( : |la||?  (by definition of the || - ||1 2-norm)
acily’ (z

1
= F(D)+5|ID" = DIl sup lalft,

acudP (z)
or else F(D') - F(D) )
= < 5l =Dl sup |lallf. (57)
|[D" = Dl[12 ~ 2 weuPl@)
Interchanging the roles of D and D’ in (56),
F(D)—- F(D' 1
D= Lo Dlls sup lal 58)
HD - 2 acuP’ (x)
and thus the inequalities
1 F(D) - F(D' 1
21D = Dla sup [l < T ZEED oy, sup i 59
acuP (z) || D" — \|1,2 acud’ (z)
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hold true.
From (59),
1 F(D)—- F(D' 1
= 511D’ = Dlhamax(Co.r, O} < T E0) < 1D’ - Dlhamax{Con,Cora) (60)
and the result follows. O

Without loss of generality assume that Cpr , < Cp ;.

Proposition 6. Fix x € Br (T') and let Cp » > 0 be a finite upper bound for sup,cyp (1) ||al|1. Then, for any D, D" €

R™*4 e have

|F(D) - F(D)| < 5

(61)

Proof. The following proof is an adaption of the proof of Theorem 2 in (Gribonval et al., 2015b). Fix ¢ > 0. From
inequality (55),

p 1+4+¢ /
7) - F0) < S0y 0 - D)

whenever § := ||[D — D'[[12 < &2 1f § > AE=, then choose an integer k > 0 such that & < o= and construct the
sequence ’ ’

D; D—|—k(D D), withi=0,--- k—1. (62)

For this sequence of D;’s,
|ID=Dhz _L1+e

D; D; = 63
[Dis1 = Dill12 = - S Coa (63)
and
1
|F'(Dig1) — F(D;)| < *C% 2lIDiy1 — Di|[7 5
1+ €
< Cp,z||Diy1 — Dil|1,2 (from (63)).
Also,
k-1
|F(D) = F(D")| < ) [F(Dis1) = F(Dy)
i=0
k—1
1+e¢
S( )CDwZHDerl Dill1,2
=0
_(+e), kz_‘j |ID — D[],
- 2 D,x pars L
1 + €
- o0 - Dl
Since € was arbitrary we conclude the result. O

And now the final step in the proof for the Lipschitz continuity of F' : © — %5 ; what remains is to find an upper bound for
Cp.e when D € D, z € Bgm (T'), and a € 2 (). Note that

Ly(D;a) = en(|lz — Dall2) + g(a)
< fp(z) = inf {en(||z — Dall2) +g(a)} (since a € 45’ () (64)
<en(||z[l2) (fora=0)
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and consequently
g(a) < en(||z[]2)- (65)

In the sequel, an upper bound for the /;-norm of a € () is inferred from (65); this bound depends on the l3-norm of .
For example, when g(a) = ||a||p, for 1 < p < oo, Holder’s inequality yields

d d Ur /g 1-1/p
llally = Z:; la;| < (Z_; Iaz'”> <Z_; 11/(11/”)> 66)
= d""V?la]l,.
From (65) and (66) the following implications hold true
a € 47 (x) = llall, < enlllzll2) = llally < d'~Pen(||z]l2). (67)
For the non-convex case of the /,-norm, 0 < p < 1, for any D and x (see Section III in (Gribonval et al., 2015b))

a € U (z) = llallp < enlllall2) = llally < d™O1VPhey (||al]s). (68)

In the general case where g(a) = Z?Zl g(a;) and g is continuous, even, and strictly increasing on [0, +00), such as the
log-penalty function gjog(+) : RY — R below,

d

1
Gog(@:7) = P log(v|as| +1), v >0,
i=1

§1og(';7)iRﬂR+

then Lemma 7 gives a rough upper bound for sup, (o () [|a||; that depends on z as follows.

Lemma 7. Let D € R™*? and assume that § : RY — R, is an i) even, ii) continuous, and iii) strictly increasing function
on [0, +00). Also, let g(a) := Z?Zl g(a;). Then

a €U (z) = gla) < en(llzll2) = [lall < Cp.a, (69)

where Cp . == dg~(en(||z|]2)) and g~ : Ry — R is the inverse function of § on [0, 00).

Proof. It holds true that

M=

9(a) = 3" g(a;) < en(llells)  (from inequality (65))
=1

= max, g(a;) < e(]l2]2) (70)

1<4

= |a;| < g (en(||z]|2)) (since § is continuous and increasing)
= llally < dg~" (en(||z]]2))-

As a corollary of ey, (||x]]2) < en(T), x € Brm (T) it holds true that
a € g (z) = llall < dg~"(en(llz|l2)) < dg~" (en(T)) (71

for any D € R™*%; thus dg~!(ex(T)) is an upper bound for Cp .. Next proposition states that F' : ® + Fg is Lipschitz
continuous. Its proof is a combination of Proposition 6, expression (71), and the monotonicity of ¢~ on [0, +-00).
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Proposition 7. For any x € Bgm (T') and any D € D it holds

sup |lal[ < dg™" (en(T)). (72)
a€lg (x)
Thus, the map F : (D, || - |l1,2) = (Z2,|| - llco) is Lipschitz continuous, i.e.,
|F(D) = F(D')||so < Col|D = D'l|12, (73)

where
(74)

is the Lipschitz constant.

A.2.2. PROOF OF THEOREM 1: THE UCEM PROPERTY FOR %5

The deeper meaning of Proposition 7 is that it allows us to invoke Lemma 3 and upper bound N (¢, #p ) in terms of the
covering number NV (e,D, || - ||1,2)-

Lemma 8. The following inequality between the covering numbers of the spaces %z and D is valid,
€
N (6.59) <N (@l la). 3
D

Proof. The proof is a direct application of Lemma 3, Proposition 6, and Proposition 7. O

A well known result for the covering number of the dictionary space ® is the following.

Lemma 9 ( Lemma 15 in (Gribonval et al., 2015b)). The covering number of the space ® C R™*% is upper bounded as

md
12) < (3> . (76)
1

The next result is a combination of Lemma 8 and Lemma 9. It states that the size of every minimal e-cover of .%o, say
( 3Co ) md

N(é‘,@,” |

F25 e, is upper bounded by

Corollary 1. The covering number of the function class F« is upper bounded as

md
Noole, Fo) < (309) | an

€
We are ready to state the proof of Theorem 1 about the UCEM property for F5.

Proof. Let 75 < be an § proper cover of Fp W.r.t || - ||oo 1= SUP,eR,.,. (1) | /D ()| of minimal cardinality. Fix fp € F».
Then, there exists fe /97 such that, [|fp — f|lcc < 5, thus
/ fdp

o> fol) = [ fodu| < ZfDxl %Z f o)
i=1

+‘/fdu /fDdu

T S
i=1

o> fa) [ s

i=1

(78)
+11f = fpll

<2+
—€
3
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Thus
E d
{f;gg@ P 1fD /fD “‘ >€}
1 & c
<P — X;) — d -
< {f:;gg n;:lf( ) /f u’ > 3} (79)

< U P{’iéf()@)—/fdu‘%}-

fe‘g’r@,g

From Hoeffding’s inequality and sup,¢g,,. (7 |f(z)| < en(T), forall f € Fp .

P { X~ [ fau| >
Applying the union bound in (79) together with the fact that F5 < has finite size (
1 — €
U P{’anw - [ sdu > 3}
fe?z R % =1
1 n
g fml-)
n 3

80 md ne?
(<) 2 <90®> ¢ Teni?

- €

} < 2¢ D7 (80)

90@) md

s

The proof of (22) is finished. To prove

sup Z fp(X /fde — 0 almost surely (as n — 00), (82)
fD 693 i=1
note that the inequality
00 md one?
(1) o
n=1 €
clearly holds for any (fixed) € > 0. This implies
I 1
ZP sup |~ fp(Xi) = [ fodu| > b < oo,
n=1 fpE€EFD i:l

for each £ € N.. The Borel-Cantelli Lemma states that, if the sum of the probabilities of the events

1
E":{ :fsggg ;fD ))_/fDdM >k}

o> o) - [ fodu| > ,i} <o

i=1
then the probability that infinitely many of them occur is 0, i.e., P{lim sup,,_, ., En} =0, or else,

is finite, i.e.,

n=

Se(n} -3

1
limsup sup T almost surely, (84)

n—oo fpeEFsp

iiz_;fD( /fDd,U
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for each k£ € N . Hence with probability one

1 n
limsup sup ﬁZfD(Xi) f/fDdu forall k € N, |
i=1

n—oo fpeFop

1
z

which implies (82). Since the above hold for any u € P, the class .%o has the UCEM property with respect to P.

A.3. Proof of Proposition 1

Proof. Let #5 . = {f1,..., fn} be an e-covering of .#5 with minimal cardinality N = N (¢, #5). We have

%ZfD(Xi) - /fDdM

i=1

n

%ZfD(Xi)—%Zf(Xi)‘i‘%Zf(Xi)

i=1 i=1 i=1

—/fdu+/fdu—/fDdu’
1

<|Ifp = flleo + sup

fegi),s

+11fp = fllee

sup
fpEFD

< sup
fDEF D

=2[[fp — fllc + sup

f€Fo e

o> sex - [ sa

1
<24 sup lZf(Xi)—/fd,u

feyﬁ,a n i=1
Using Hoeffding’s inequality and the union bound
1
~ > (X)) = [ fdp

2n&?
P<{ sup > & <2Nexp (— ) .
{fegz),e =1 } en(T)?

— g \ _, (309 2né”
0 := 2N exp <_eh(T)2> =2 (5> eXp <_ 6h(T)2> ’

and note, that after some calculations,

n

Set

2 3C»
= eh<T)wog<5) +mdlog(C )

Thus, with probability at least 1 — 4,

n

2 ma lo 3Co
sup ‘iZf(Xi)—/fdu‘<eh(T)\/log(5)+ dlog (2 )-

feﬂgys i=1 2n
From (85) and (89)
1 n 1 n
sup |23 Fo(X0) - [ fodu <254 sw 230X - [ g
fpEFn n; fEFD n;
log(2) + mdlog(2<=
S‘f’eh(T)\/Og((S) mlos() (fore =1/n)
2n
2 log(2 1
<24 og(3) N md og(SnC’;g)7
n 2n 2n

with probability at least 1 — J. The proof is now finished.

(85)

(86)

87)

(88)

(89)

(90)
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A.4. Proof of Lemma 2

Proof. We follow the same arguments as in the proof of Lemma 10 in (Gribonval et al., 2015b). Without loss of generality
assume that the support of the probability measure y is within the unit ball, i.e., for any X ~ p it holds || X || < 1. First, we
show that for ¢ = %,

1 n
Tn(er):= sup Pq|— ZfD(Xi) — /fDd,u >crp < 2e~ ", 91)
fDGyD n i=1
For fixed D € © the random variables fp(X;), ¢ € {1,...,n} are independent. When samples are drawn according to y,

1 1
fo(Xi) <en(||Xi]]2) < §\|X,»|| <3

p{l
nf

> (i) - / Fodu

Using Hoeffding’s inequality

2 CT} S 26780271727
which implies that
To(cr) < 2e 7, (92)

forc = f Now assume that (91) is true. Let N'(¢,D, || - ||1,2) be an e-cover of © and L > ¥ ; recall that M

is the Lipschitz constant of the map F': (D, || - |]1,2) = (Z2,]| - ||e). For a fixed dictionary D € D there exists an index
j(D) such that ||D — Dj||1,2 < e. Then

%ZfD(Xi)_/fDd,u <
i=1

LS (X0 = 3 o, (X0 4 > fo, (X
i=1 i=1 i=1

—/ijdM‘*‘/ijdM—/fDdu‘

<\fo — folle + sup o> f0,(%0) = [ fo,du
=1

JE{1, N (D, l1.2)} | i

93
1lfo — I, .
1 n
“ollfp— follet s > 10,6~ [ fo,du
’ FE{L N (e[ ll1,2)} | T Z ' ’
1
<2Le+ sup /fD dup
JE{L, N (e,D,|I"]]1,2)}
<2Le+cr
which holds with probability at least 1 — N (e, D, || - [|1,2) ). Since this is true for any £, 7 > 0, set
log(n) mdlog th md n 1
mdl 1 — t-—. 94
Og 5 8 ogmy) T Y

{8 (ﬁ) }c— f,lmpllesthat

cv/B [log(n) < /B 1
2L n — 2L

) 4L2 /8}
95)
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This shows that 0 < € < 1. Since 5 > 1 and log(n) > 1, we have

log(n md n 1
9Le 4+ er = 2L¢ \[2L\/7 \/ dlog - 10g<10g(n))+t'\/ﬁ
< C\/@—F c\/mdlog % + m?dlog(n) +t- % (since log(n) > 1)
Blog(n) 6Ly , md LI
< C\/T+ c\/mdlog 7 + 5 log(n) +t - % (since 5 > 1) (96)
\/Blog \/ﬁ+ log(n) +t - \} (sinceﬁ := md max {10g (GCL> 71}>
< o [Blog(m) | [Flos(n) W
n 2n n

Hence for ¢ = \/I s

1 / B log( ) 1 B+t
sup |— fpdu| < — o7
fpEFD i: \/g n
with probability at least 1 — 2e~t. The proof is now finished. O

A.5. Discussion: The case of a separable, continuous, even, and bounded g

As already mentioned, Theorem 1 covers a wide range of separable functions g : R? — R, but it does not cover popular
(separable) penalty functions, like the SCAD or MCP,

At, t< A A\ 2 A\
N A A2 . t—z—, t<
drcaa(t: A7) = VO N <qd and (A7) = { Aﬁ o (98)
A2 (y2-1) £> ) 27 ’ YA
26-1) T

The functions §scqq and gy, are bounded from above and so they fail to satisfy the “strictly increasing” assumption of
Section 3. A closer look at the proof of Lemma 7 reveals that if

en(T) < sup Gmep(t; A7), (99)
eR

then the following set of implications are true:

acUf (@) = gmeplas\,y) <en(||z]]2) (from inequalities (64) and (65))
d
= Gmep(ais \,7) < en|]]2)

i=1
(100)
= max gmep(ai; A7) < en(||2]l2)

= |a;| < gfncp(eh(Hng); ,7Y) (since gpmep is invertible in [0, ep, (T')] due to (99))
= llalli < dgmep(en(llzll2); A ).
The above reasoning also applies to gs.qq. Summarizing, the following lemma is proved.

Lemma 10. Let a separable function g : R® — R of the form g(a) = Z?:l g(a;), where § : R — R is continuous,
even, strictly increasing up to some point on [0, +00) and then constant. If

en(T) <supg(t), (101)
teR
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then the following set of implications hold true
a €4 (z) = gla) < en(llzll2) = [lall < Cp.a, (102)

where Cp . := dg~(en(||z]|2)) and g=' : R — R denotes the inverse function of j restricted on the domain where § is
strictly increasing. (|

The next Proposition is an analog of Proposition 7 and an immediate consequence of expression (102).

Proposition 8. For any x € Brm (T), D € D, and g : R* — R satisfying assumptions of Lemma 10,

i llal[y < dg—"(en(T)). (103)

Thus the map F' : (D,]| - ||1,2) = (Fa, || - ||oo) is Lipschitz continuous,
|IF(D) = F(D')|les < Col|D — D'||1,2, (104)
with Lipschitz constant Cgp := w. O

The rest of results in Section 3 still remain valid for any function g under gonsideration; even Lemma 4 as mentioned in
Remark 3. So, the family of functions .%5 retains the UCEM property for P for any bounded separable penalty function g
satisfying assumptions of Section 4.

A.6. Proof of Proposition 2

Proof. The proof follows the lines of the proof of Theorem 20 in (Vainsencher et al., 2011); we only depart in the details.
First note that the set Sy, := {a € R? : |{i : a; # 0}| = k} of all k-sparse vectors in R is the union of ({) sets £},

d
Y ={aeR':q;#£0,Vic, and a; =0,Yi¢ ,},1=1,..., (k> (105)
where I; is one of the (Z) possible k-tuples in {1, ..., d}; in other words,
(%)
Sk = J Sk (106)
=1

The proof is constructive; first it is shown that for any D € D there exist ¥ > 0 and ¢ € S™ ! such that fp(q) > 7. Let u
be the uniform measure on the unit sphere S~ ! := {z € R™ : ||z||2 = 1}. Denote as A, the probability assigned by x to
the set “within ey, (¢)” of a k-dimensional subspace, ¢ > 0. For example, when m = 3 and k = 1, the probability A. can be
defined as

A, = ,u{{x €S2 :3t c Rand z = te; such that ey, (||z — z||) < eh(c)}},

where e; = (1,0, O)T. As ¢\, 0, A, also tends to zero. Then there exist ¢ > 0 such that (Z) A, < 1; for that ¢ and any

D € D there exists a set of positive measure, say A.., on which fp(x) > en(c) = ~. Indeed, forevery l € {1,..., (Z)}, the
following inclusion is valid

{x € S™ ! min ey (||x — Dalls) < eh(c)} C A,
aext

by definition of A.. Along with assumption ({)A. < 1, the assertion that for any D € D there exists a ¢ such that
fp(q) > 0 holds true.

Let ¢ be a sample point in A, and assume without loss of generality that 25;11 gj > 0. Next construct two dictionaries

D, D' such that fp(q) > 0 while fp/(¢) = 0. First construct dictionary D; its first k¥ — 1 columns are the standard basis
vectors in R™, {ey, ..., ex_1}, its k-th column is

k—1
1
D.j = 712\/1—82/4@4—56]@/27
=1

vk
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and the remaining columns are arbitrary unit-norm vectors. Now D’ is constructed; it is identical to D with the only
difference being in the k-th column. Specifically,

1

k-1
D', = Z\/1—52/4ej+lq,
P VR4

for some / € R such that || D!, [|2 = 1, or else,

D!l =14 ||D-/,k||g =1

1—e2/4
o gl + 20 =SS g a0
j=1
T — o2/ k] '
@lerqu/fEl/qufsz/Zl:O (since ||q]|3 = 1).
j=1

The roots of the previous quadratic equation (with respect to [) are

1-e2/4 —k—1 1—e2/4 ~k—1
2 ka—l/ Ej:l q;j 2 ka—l/ Zj:l qj 2 2
o 2 o 2 +7

[ =

1-e2/4 —k—1 2 1-e2/4 k-1
2/ 5= T g L2 2 il
2 4 2 ’

which after some simple algebraic manipulations implies that I < £/2 (to see this recall that Zf;ll g; > 0 and use the
inequality 0" —a” < (b—a)" forany 0 < r < 1 and 0 < a < b). For this ¢ there exist ; € R, j € {1,..., k}, such that

q= Z?Zl t; D! ; and thus fp/(q) = 0, proving the second part of the theorem. On the other hand
1D = D'|ls = lleen/2 — lalla < llew/2llz + liglls = £/2 + /2 = <,

and the proof is now completed. O

A.7. Proof of Proposition 3
Proof. Fix D € © and define the (possibly multivalued) map ap : R™ = R? as
ap(x) := argmin, s, ex(||z — Dall2); (107)

this map maps any vector z € R™ to an optimal solution ap(x) € R?. For that D the corresponding subgraph in the family
of subgraphs
T ={{(@,t) eR™" . fp(x) > t};fp € Fn} (108)

is described by the set of points (x,t), ¢t > 0, for which

en(|lz — Dap(z)ll2) = t. (109)
Due to monotonicity of ey, point (x, t) with ¢ > 0 satisfies (109) if and only if,

||z = Dap(x)l2 = c(t), (110)

where c(t) is the smallest value of ¢ for which ey, (c) > t. In view of (110), if the set {(z;,¢;)}?, is shattered by .Z 2, then
there exist matrix Dy in D and vectors {ap, (z;)}™, in R such that, for those shattered points, it holds true

l|2; — Doap, (x:)|]3 > c(t;)?. (11

We claim that the shatter coefficient of fg is upper bounded by the shatter coefficient of the collection of all subgraphs
generated by functions which belong in

G = {ga,s) = | Ayli3 + Bs 5 A € R™¥", g e RY (112)
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with (y, s) € R™*4 x [0, +00). Indeed, if some points in {(z;,t;)}"_; are shattered by .7, then for those shattered points
it holds true that

||z — Dodp, (:)|3 > c(t:)?, (113)

or equivalently,
2
> c(t;)?. (114)

2

H 7~ {&Df(ixi)}

Equivalence between the last two inequalities implies the existence of matrix Ay = [I — Dy] € R (m+d) scalar By = 1,
and vectors {(y;, s;)}; C R™+4 x [0, +00) with

Wir i) = ([apy(an) ] » c(ti)) € R™TEx[0,400), i=1,...,n, (115)

such that the graph of || Agy||3 — Bos,
{(w,9) + [ Aoyl[ — Bos > 0}, (116)

picks outs only those (y;, s;) satisfying inequality (114); note that (116) is the subgraph of some function, sat g4,, in G.
Every set in (116) is the sum of an ellipsoid and a linear function of s. By Lemma 18 in (Pollard, 1984), the sets {g4 > t},
for g4 € G, pick out only a polynomial number of subsets from {(y;, s;)}~_;; those corresponding to functions in G with
A =[I D) pick out even fewer points from {(y;, s;)}"_;. The VC dimension of G is at most ((m+d)*+3(m+d))/2+1),
see (Akama & Irie, 2011) for an improved bound on the VC dimension of ellipsoids. Consequently, monotonicity of e;, and
Theorems 13.5, 13.9 in (Devroye et al., 1997) conclude the result

((m+d)*+3(m+d))/2+1)
s(Ztn o (117)
TR = G P 8 )2 )
= a(m,d)
O
A.8. Proof of Theorem 2
Proof. Proposition 3 and Corollary 29.1 in (Devroye et al., 1997) imply
1 ¢ Cme?
P< sup |— Z fo(X;) — /fDdu >ep <8s(Fd,ne ™, (118)
fDGQQ n i=1
Since
© _ 2n52
> s(FF n)e = < oo, (119)
n=1
for all € > 0, by the Borel-Cantelli lemma (and arguments similar to the relevant part in the proof of Theorem 1)
1 n
sup |~ Z fo(X;) — /fpdu — 0 almost surely (as n — c0), (120)
fD G‘gD n i=1
for all probability measures p € P. Thus .%o has the UCEM property for all p € P. O

A.9. Proof of Proposition 4

Proof. Set the right hand side of inequality (35) equal to d and solve with respect to €. The result immediately follows. [
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A.10. Proof of Theorem 3

Proof. First we bound the shatter coefficient of family
Fa = {fole) = it {en(le ~ Dalle) + glas D € D) (121)

when g : R? — [0, +00) is a bounded Isc function, i.e., g(a) < M for some M > 0 and all a € R<. To this end, we follow
the proof of Proposition 3 and only depart in details.

Fix D € © and define
ap(z) := argmin,cga ep(||z — Dall2) + g(a); (122)

this (possibly multivalued) map maps any vector z € R™ to an optimal solution ép (x) € R? for the minimization problem

inf en(||z — Dall2) + g(a). (123)
a€Rd

For fixed D € © and function fp € %5, the corresponding subgraph in the collection of sets
Ty = {{(x,t) eR™: fp(x) >t} fp € Fo} (124)
contains the points (z,t) € R™*1 ¢t > 0, for which
fo(x) >t < en(|lz — Dap(2)ll2) + g(ap(x)) =t < en(|lz — Dip(z)|l2) >t — g(ap(z)). (125)
Due to boundedness of g and monotonicity of ey, a point (x,t) with ¢ > 0 satisfies (125) if and only if
|lz = Dap(z)|l2 = e(t — M), (126)

where ¢(t — M) is the smallest value of ¢ for which ey (c) >t — M. In view of (126), if the set {(z;, ¢;) }?_; is shattered by
F4, then there exist some matrix Dy in D and set of points {ap, (2;)}?; in R such that

|lzi — Doap, ()3 > c(t; — M)?, (127

for every shattered point (z;,¢;) in {(x;,¢;)}?_;. The claim that the shatter coefficient of .% is upper bounded by the
shatter coefficient of the family of subgraphs of the function class G below

G = {ga(y,5) = || Ayl3 + 85 A e R™ 0D, g e R}, (129

is proven in the same way as the relevant part in the proof of Proposition 3. Hence we have proven that
((m+d)?+3(m+d))/2+1)

(m+d)?+3(m+d)/2+1)

= a(m,d)

(129)

Proof of inequality (40) follows the proof of Theorem 2 and the proof of (41) is the same as the proof of Proposition 1. [

A.11. Discussion: A note on the approximation error when m > d

This is a discussion concerning the upper bound for the approximation error of Proposition 5 in the main text. Recall that for
sufficiently large values of n, it holds true that R(D;,) = o(1) + €4pp, or else R(D;,) =~ e4pp = R(D*). What follows, is
that we regard R(D*) as a function of d (< m) and describe its rate of decrease as d — m. The function class under study
is

Fo = {fp; D €D}, (130)
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and each fp : R™ — [0, 4+00) has the form

fp(@) = inf {en(lla — Dall2) + Lc(a)}. (131)

Assumptions (H1)-(H6) are the key to the proof of Proposition 5 in the text; they implicitly restrict the shape of the Moreau
envelope ey,. It can be shown that
Den(t) C t — Py(t); (132)

see Theorem 10.13 in (Rockafellar & Wets, 2009) and Proposition 7 in (Yu et al., 2015). The continuity of e; and the
differential inclusion in (132) give a description of the epigraph of ey, in [0, +00). If the proximal map of h satisfies (H1)-
(H6), then in the interval [0, 7] the Moreau envelope behaves like the quadratic function #2, i.e., e, ~ t2 as t — 0.
Indeed, under assumption (H6), for ¢ € [0, 7] it holds true that de(t) C t — Py (t) = ¢ which implies the previous
assertion. Since the proximal map P, is monotone and non-decreasing on [0, +00) with 0 < Py (t) < ¢, it is always true that
den(t) <t — Py(t) < t and consequently ep,(t) < ct?, for some ¢ > 0 and any ¢ > 0 (recall that 0 < e, (0) < h(0) = 0 by
assumption). Assumptions (H1)-(H6) are valid for the proximal maps of the {,-norm, 0 < p < oo, the SCAD, and the MCP
univariate functions and many other pairs of (h, P,), see also (Antoniadis, 2007).

In order to upper bound the approximation error R(D*), we use the quantization error (or else distortion error) for e;, which
is defined as

E = inf min ep(||lx — ¢;ll2)d 133
o= int [ min en(llo — csll)d (133)
and {c1,...,cq} is a subset of R™ with d vectors. The rate of convergence of the quantization error E; ., as d tends to

+00 is ruled by the following theorem.

Theorem 4 (Delattre, Sylvain, et al (Delattre et al., 2004)). Assume that V : Ry — [0, +00) is a non-decreasing function
satisfying V(0) = 0and V(t) ~ t" ast — 04, r > 0. Assume also that there exists a non-decreasing function
W R4 — [0, 400), with W(0) > 1, such that V(t) < t"W (t) for every t € [0, +00). If the random variable X satisfies
J 1 X|5dp < oo and [ W (|| X|]2)dp < oo, then

Eiv = inf min V(||z — ¢;|2)dp < O@d™™), asd — +oo; (134)
{c1,...,ca}CR™ 7j=1,...,d

here, m is the dimension of X and d is the number of vectors in {cy, ... ,cq}.

The assumptions in Theorem 4 are valid for the Moreau envelope of any function h whose proximal map P, satisfies
(H1)-(H6); as already mentioned, under assumptions (H1)-(H6), we have V (t) = ey (t) ~ t locally around zero and
V(t) = en(t) < ct? for some ¢ > 0 and any ¢ > 0. The approximation error R(D*) and the quantization error in (133) are
related as follows:

o o ) . | o
R = int, [ fodu= int [ it en(llo ~ Dallo)dn < ut [ L, el =l (39

since the basis of the positive orthant belongs to /C. Therefore,

inf min  ep(||lz — ||]2)dpu > inf / min ep(||lx —¢jll2)dp = Eqe, ,

| s, el z it o e ell)dp = B,

and we can carefully choose {D. 1, ..., D. 4} such that equality is achieved, i.e.,
inf i —d]2)du = inf i —cjll2)dp = E 136
51619/0/6{%{? ?:leh(HﬁU c[2)dp e mf min en(lle = ejll2)dp = Ea, (136)

(equality always is achieved if the data points x are rescaled to lie inside the Euclidean ball Bg~ (1)). In order to use
Theorem 4, assume that i) m is sufficiently large and ii) d approaches m. Under these assumptions, Proposition 5 is an
immediate corollary of inequality (135) and Theorem 4.

>The notation a,, ~ b, means a,, = b, + o(b,,).



