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A. Appendix to: “The Generalization Error of Dictionary Learning with Moreau Envelopes”
A.1. Proof of Lemma 1

Proof. For a proof of (9) and (12) see Corollary 1 in (Georgogiannis, 2016). The continuity of eh follows from Theorem
1.25 in (Rockafellar & Wets, 2009). From the calculus rules of the generalized subgradients (Theorem 9.13 and Corollary
10.9 in (Rockafellar & Wets, 2009)):

∂eh(t) ⊆ t− Ph(t),

and since t− Ph(t) ≥ 0 (by assumption) for every t ≥ 0, we conclude that eh is non-decreasing on [0,+∞).

A.2. Proof of Theorem 1

The proof technique outlined in Section 3 is heavily motivated from the proof of Theorem 2 in (Gribonval et al., 2015b).
Since it is quite lengthy, we split it into two parts. In the first part, we prove the Lipschitz continuity of the map F : D 7→ FD

and in the second the UCEM property for FD.

A.2.1. LIPSCHITZ CONTINUITY OF MAP F : D 7→ FD

The key in this approach is the following lemma taken from the theory of general metric spaces.

Lemma 3. Let (M,ρ) and (M1, ρ1) be metric spaces, K ⊂M , and define the map F : K 7→M1. If F satisfies

ρ1(F (x), F (y)) ≤ Lρ(x, y), for any x, y ∈ K,

for some L > 0, i.e., F is a Lipschitz continuous map from K to M1 with constant L, then

N (Lε, F (K), ρ1) ≤ N (ε,K, ρ), (47)

for every ε > 0. Here, N (Lε, F (K), ρ1) and N (ε,K, ρ) denote the covering numbers of the sets F (K) and K, under the
metrics ρ1 and ρ, respectively.

Proof. The proof is quite straightforward; given an ε-cover of K with size N , say {x1, . . . , xN}, and any y ∈ K, there
exists a xi in in the ε-cover of K such that ρ(y, xi) ≤ ε. Thus

ρ1(F (y), F (xi)) ≤ Lρ(y, xi) ≤ Lε.

In words, for any point F (y), there is a point F (xi) such that F (y) and F (xi) are Lε close; the set {F (x1), . . . , F (xN )}
constitutes an ε-cover. Since N (Lε, F (K), ρ1) ≤ |{F (x1), . . . , F (xN )}|, where |{F (x1), . . . , F (xN )}| denotes the
cardinality of this set, the claim follows.

The first step is to define the metrics used on the (metric) spaces spaces D and FD.

Definition 6. Let p, q ≥ 1. Then, a matrix A ∈ Rm×d can be seen as an operator A : (Rd, || · ||p) 7→ (Rm, || · ||q). The
lp,q-induced norm of A is

||A||p,q := sup
x∈Rd

||x||p=1

||Ax||q.

�

In the sequel, || · ||p,q is fixed to || · ||1,2 which is equivalent to

||A||1,2 = max
1≤j≤d

||A·,j ||2; (48)

A·,j is the j-th column of A ∈ Rm×d (see also Lemma 17 in (Vainsencher et al., 2011)). The metric on FD is the supremum
norm on the ball BRm(T ):

||f ||∞ := sup
x∈BRm (T )

|f(x)|. (49)
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If fD ∈ FD and g(0) = 0, then ||fD||∞ ≤ eh(||x − D0||2) + g(0) = eh(T ) for all fD in FD. Next, define the map
F : D 7→ FD between (D, || · ||1,2) and (FD, || · ||∞). Our aim is to show that F is uniformly Lipschitz continuous or else,
there is a constant L > 0 such that

||F (D)− F (D′)||∞ ≤ L||D −D′||1,2 for any D,D′ in D. (50)

For this purpose, the technical Lemmas 4, 5, and 6 below are needed.

Lemma 4 states that the infimum over a ∈ Rd in the definition of fD is achieved. Fix x ∈ BRm(T ) and D ∈ Rm×d, and
consider the function Lx(D, ·) : Rd → R defined as

Lx(D, a) := eh(||x−Da||2) + g(a). (51)

Associate with Lx(D, ·) the set

UD0 (x) :=
{
a ∈ Rd : Lx(D, a) ≤ fD(x)

}
. (52)

Set UD0 (x) contains the values of a that achieve the minimum value of Lx(D, a) for a fixed D (not necessarily in D), i.e.,
UD0 (x) = argmina∈Rd Lx(D, a). Note that fD(x) = infa∈Rd Lx(D, a) is still well defined but not necessarily in FD,
unless D has unit-norms columns. As stated below, UD0 (x) is non-empty and compact for any x ∈ BRm(T ) and D.

Lemma 4. Let D ∈ Rm×d and consider any x ∈ BRm(T ). The value fD(x) := infa∈Rd Lx(D, a) is finite and
argmina∈Rd Lx(D, a) is non-empty and compact.

Proof. Let fD(x) = infa∈Rd Lx(D, a); because Lx(D, ·) is proper (as a sum of proper functions), fD(x) < +∞.4 For
some β ∈ (fD(x),+∞), the level set lev≤βLx(D, ·) := {a ∈ Rd : Lx(D, a) ≤ β} is non-empty; it is closed because
Lx(D, ·) is lsc (in fact it is continuous) as the sum of two continuous functions and bounded because both eh and g
are non-decreasing (and not constant) as ||a||2 → +∞. The sets lev≤βLx(D, ·) for β ∈ (fD(x),+∞) are therefore
compact and nested: lev≤βLx(D, ·) ⊂ lev≤β′Lx(D, ·) when β < β′. The intersection of this family of sets, which is
lev≤fD(x)Lx(D, ·), is therefore non-empty and compact. Since Lx(D, ·) does not take the value −∞ nowhere, we conclude
that fD(x) is finite. Under the previous assumptions, infa∈Rd Lx(D, a) can be written as mina∈Rd Lx(D, a) and the claim
follows.

Remark 3. In most cases of interest, the functions eh and g are bounded from above, i.e., supx∈BRm (T ) eh(x) and
supx∈BRm (T ) g(x) are finite. So, the value of β in Lemma 4 could be the minimum of the latter two supremas. Also, it is
easily gleaned from the proof of Lemma 4 that its conclusions still hold for any non-decreasing lsc function g. �

Next, a bound for the absolute value of the difference between |eh(x)−eh(x′)| when h satisfies the assumptions in Lemma 1
is given; these assumptions on h remain valid throughout the article.

Lemma 5. Let eh(x) := infz∈Rm
1
2 ||x− z||

2
2 + h(z), where h : Rm → R is lsc and proper. Then

|eh(x)− eh(x′)| ≤ 1

2
||x− x′||22, (53)

for any x, x′ in Rm.

4We call f proper if f(x) <∞ for at least one x ∈ Rn, and f(x) > −∞ for all x ∈ Rn; in words, if the domain of f is a nonempty
set on which f is finite, see page 5 in (Rockafellar & Wets, 2009).
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Proof. Let x and x′ in Rm. Then:

eh(x)− eh(x′) = inf
z∈Rd

{
1

2
||x− z||22 + g(z)

}
− inf
o∈Rd

{
1

2
||x′ − o||22 + g(o)

}
≤ inf
z∈Rd

{
1

2
||x− z||22 + g(z)

}
+ sup
o∈Rd

{
−1

2
||x′ − o||22 − g(o)

}
= sup
o∈Rd

{
inf
z∈Rd

{
1

2
||x− z||22 + g(z)

}
− 1

2
||x′ − o||22 − g(o)

}
≤ sup
o∈Rd

{
1

2
||x− o||22 + g(o)− 1

2
||x′ − o||22 − g(o)

}
≤ sup
o∈Rd

{
1

2
||x− o||22 −

1

2
||x′ − o||22

}
≤ 1

2
||x− x′||22.

(54)

Interchanging the roles of x and x′, we conclude the result.

Lemma 6. Fix x ∈ BRm(T ) and let D,D′ ∈ Rm×d. If there exist non-negative constants CD,x and CD′,x, such that
supa∈UD

0 (x) ||a||1 ≤ CD,x and supa∈UD′
0 (x) ||a||1 ≤ CD′,x, then

|F (D)− F (D′)|
||D′ −D||1,2

≤ 1

2
||D′ −D||1,2 max{CD,x, CD′,x}2, (55)

Proof. Fix x in BRm(T ) and let D,D′ ∈ Rm×d. The function fD′(x) is upper bounded as

F (D′) = fD′(x) := inf
a∈Rd

{eh(||x−D′a||2) + g(a)}

= inf
a∈Rd

{eh(||x−D′a||2) + g(a)− eh(||x−Da||2) + eh(||x−Da||2)}

≤ inf
a∈Rd

{eh(||x−Da||2) + g(a) +
1

2
||D′a−Da||22} (from Lemma 5)

≤ sup
a∈UD

0 (x)

{eh(||x−Da||2) + g(a) +
1

2
||D′a−Da||22} (since UD0 (x) is non-empty)

≤ sup
a∈UD

0 (x)

{eh(||x−Da||2) + g(a)}+ sup
a∈UD

0 (x)

1

2
||D′a−Da||22

= fD(x) + sup
a∈UD

0 (x)

1

2
||D′a−Da||22 (by definition of UD0 (x))

≤ fD(x) +
1

2
||D′ −D||21,2 sup

a∈UD
0 (x)

||a||21 (by definition of the || · ||1,2-norm)

= F (D) +
1

2
||D′ −D||21,2 sup

a∈UD
0 (x)

||a||21,

(56)

or else
F (D′)− F (D)

||D′ −D||1,2
≤ 1

2
||D′ −D||1,2 sup

a∈UD
0 (x)

||a||21. (57)

Interchanging the roles of D and D′ in (56),

F (D)− F (D′)

||D′ −D||1,2
≤ 1

2
||D′ −D||1,2 sup

a∈UD′
0 (x)

||a||21, (58)

and thus the inequalities

− 1

2
||D′ −D||1,2 sup

a∈UD
0 (x)

||a||21 ≤
F (D)− F (D′)

||D′ −D||1,2
≤ 1

2
||D′ −D||1,2 sup

a∈UD′
0 (x)

||a||21, (59)
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hold true.

From (59),

− 1

2
||D′ −D||1,2 max{CD,x, CD′,x}2 ≤

F (D)− F (D′)

||D′ −D||1,2
≤ 1

2
||D′ −D||1,2 max{CD,x, CD′,x}2 (60)

and the result follows.

Without loss of generality assume that CD′,x ≤ CD,x.

Proposition 6. Fix x ∈ BRm(T ) and let CD,x > 0 be a finite upper bound for supa∈UD
0 (x) ||a||1. Then, for any D,D′ ∈

Rm×d, we have

|F (D)− F (D′)| ≤ 1

2
CD,x||D −D′||1,2. (61)

Proof. The following proof is an adaption of the proof of Theorem 2 in (Gribonval et al., 2015b). Fix ε > 0. From
inequality (55),

|F (D)− F (D′)| ≤ (1 + ε)

2
CD,x||D −D′||1,2,

whenever δ := ||D −D′||1,2 ≤ 1+ε
CD,x

. If δ > 1+ε
CD,x

, then choose an integer k > 0 such that δk ≤
1+ε
CD,x

and construct the
sequence

Di = D +
i

k
(D −D′), with i = 0, · · · , k − 1. (62)

For this sequence of Di’s,

||Di+1 −Di||1,2 =
||D −D′||1,2

k
≤ 1 + ε

CD,x
, (63)

and

|F (Di+1)− F (Di)| ≤
1

2
C2
D,x||Di+1 −Di||21,2

≤ 1 + ε

2
CD,x||Di+1 −Di||1,2 (from (63)).

Also,

|F (D)− F (D′)| ≤
k−1∑
i=0

|F (Di+1)− F (Di)|

≤ (1 + ε)

2
CD,x

k−1∑
i=0

||Di+1 −Di||1,2

=
(1 + ε)

2
CD,x

k−1∑
i=0

||D −D′||1,2
k

=
(1 + ε)

2
CD,x||D −D′||1,2.

Since ε was arbitrary we conclude the result.

And now the final step in the proof for the Lipschitz continuity of F : D 7→ FD; what remains is to find an upper bound for
CD,x when D ∈ D, x ∈ BRm(T ), and a ∈ UD0 (x). Note that

Lx(D, a) = eh(||x−Da||2) + g(a)

≤ fD(x) = inf
a∈Rd
{eh(||x−Da||2) + g(a)} (since a ∈ UD0 (x))

≤ eh(||x||2) (for a = 0)

(64)
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and consequently
g(a) ≤ eh(||x||2). (65)

In the sequel, an upper bound for the l1-norm of a ∈ UD0 (x) is inferred from (65); this bound depends on the l2-norm of x.
For example, when g(a) = ||a||p, for 1 ≤ p <∞, Hölder’s inequality yields

||a||1 =

d∑
i=1

|ai| ≤

(
d∑
i=1

|ai|p
)1/p( d∑

i=1

11/(1−1/p)

)1−1/p

= d1−1/p||a||p.

(66)

From (65) and (66) the following implications hold true

a ∈ UD0 (x) ⇒ ||a||p ≤ eh(||x||2) ⇒ ||a||1 ≤ d1−1/peh(||x||2). (67)

For the non-convex case of the lp-norm, 0 < p < 1, for any D and x (see Section III in (Gribonval et al., 2015b))

a ∈ UD0 (x) ⇒ ||a||p ≤ eh(||x||2) ⇒ ||a||1 ≤ dmax{0,1−1/p}eh(||x||2). (68)

In the general case where g(a) =
∑d
i=1 ĝ(ai) and ĝ is continuous, even, and strictly increasing on [0,+∞), such as the

log-penalty function glog(·) : Rd → R+ below,

glog(a; γ) =

d∑
i=1

1

γ + 1
log(γ|ai|+ 1)︸ ︷︷ ︸

ĝlog(·;γ):R→R+

, γ > 0,

then Lemma 7 gives a rough upper bound for supa∈UD
0 (x) ||a||1 that depends on x as follows.

Lemma 7. Let D ∈ Rm×d and assume that ĝ : Rd → R+ is an i) even, ii) continuous, and iii) strictly increasing function
on [0,+∞). Also, let g(a) :=

∑d
i=1 ĝ(ai). Then

a ∈ UD0 (x) ⇒ g(a) ≤ eh(||x||2) ⇒ ||a||1 ≤ CD,x, (69)

where CD,x := dĝ−1(eh(||x||2)) and ĝ−1 : R+ → R+ is the inverse function of ĝ on [0,∞).

Proof. It holds true that

g(a) =

d∑
i=1

ĝ(ai) ≤ eh(||x||2) (from inequality (65))

⇒ max
1≤i≤d

ĝ(ai) ≤ eh(||x||2)

⇒ |ai| ≤ ĝ−1(eh(||x||2)) (since ĝ is continuous and increasing)

⇒ ||a||1 ≤ dĝ−1(eh(||x||2)).

(70)

As a corollary of eh(||x||2) ≤ eh(T ), x ∈ BRm(T ) it holds true that

a ∈ UD0 (x) ⇒ ||a||1 ≤ dĝ−1(eh(||x||2)) ≤ dĝ−1(eh(T )) (71)

for any D ∈ Rm×d; thus dĝ−1(eh(T )) is an upper bound for CD,x. Next proposition states that F : D 7→ FD is Lipschitz
continuous. Its proof is a combination of Proposition 6, expression (71), and the monotonicity of ĝ−1 on [0,+∞).



The Generalization Error of Dictionary Learning with Moreau Envelopes

Proposition 7. For any x ∈ BRm(T ) and any D ∈ D it holds

sup
a∈UD

0 (x)

||a||1 ≤ dĝ−1(eh(T )). (72)

Thus, the map F : (D, || · ||1,2) 7→ (FD, || · ||∞) is Lipschitz continuous, i.e.,

||F (D)− F (D′)||∞ ≤ CD||D −D′||1,2, (73)

where

CD :=
dĝ−1(eh(T ))

2
(74)

is the Lipschitz constant.

A.2.2. PROOF OF THEOREM 1: THE UCEM PROPERTY FOR FD

The deeper meaning of Proposition 7 is that it allows us to invoke Lemma 3 and upper bound N∞(ε,FD) in terms of the
covering number N (ε,D, || · ||1,2).

Lemma 8. The following inequality between the covering numbers of the spaces FD and D is valid,

N∞ (ε,FD) ≤ N
(

ε

CD
,D, || · ||1,2

)
. (75)

Proof. The proof is a direct application of Lemma 3, Proposition 6, and Proposition 7.

A well known result for the covering number of the dictionary space D is the following.

Lemma 9 ( Lemma 15 in (Gribonval et al., 2015b)). The covering number of the space D ⊂ Rm×d is upper bounded as

N (ε,D, || · ||1,2) ≤
(

3

ε

)md
. (76)

The next result is a combination of Lemma 8 and Lemma 9. It states that the size of every minimal ε-cover of FD, say
FD,ε, is upper bounded by

(
3CD

ε

)md
.

Corollary 1. The covering number of the function class FD is upper bounded as

N∞(ε,FD) ≤
(

3CD

ε

)md
. (77)

We are ready to state the proof of Theorem 1 about the UCEM property for FD.

Proof. Let FD, ε3
be an ε

3 proper cover of FD w.r.t || · ||∞ := supx∈BRm (T ) |fD(x)| of minimal cardinality. Fix fD ∈ FD.
Then, there exists f ∈ FD, ε3

such that, ||fD − f ||∞ < ε
3 , thus∣∣∣∣∣ 1n

n∑
i=1

fD(xi)−
∫
fDdµ

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

fD(xi)−
1

n

n∑
i=1

f(xi)

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

f(xi)−
∫
fdµ

∣∣∣∣∣
+
∣∣∣ ∫ fdµ−

∫
fDdµ

∣∣∣
≤ ||f − fD||∞ +

∣∣∣∣∣ 1n
n∑
i=1

f(xi)−
∫
fdµ

∣∣∣∣∣+ ||f − fD||∞

<
2

3
ε+

∣∣∣∣∣ 1n
n∑
i=1

f(xi)−
∫
fdµ

∣∣∣∣∣ .

(78)
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Thus

P
{

sup
fD∈FD

∣∣∣∣ 1n
n∑
i=1

fD(Xi)−
∫
fDdµ

∣∣∣∣ > ε

}

≤ P
{

sup
f∈FD, ε

3

∣∣∣∣ 1n
n∑
i=1

f(Xi)−
∫
fdµ

∣∣∣∣ > ε

3

}

≤
⋃

f∈FD, ε
3

P
{∣∣∣∣ 1n

n∑
i=1

f(Xi)−
∫
fdµ

∣∣∣∣ > ε

3

}
.

(79)

From Hoeffding’s inequality and supx∈BRm (T ) |f(x)| ≤ eh(T ), for all f ∈ FD,ε

P

{∣∣∣∣∣ 1n
n∑
i=1

f(Xi)−
∫
fdµ

∣∣∣∣∣ > ε

3

}
≤ 2e

− 2nε2

9eh(T )2 . (80)

Applying the union bound in (79) together with the fact that FD, ε3
has finite size

(
9CD

ε

)md
,

⋃
f∈FD, ε

3

P
{∣∣∣∣ 1n

n∑
i=1

f(Xi)−
∫
fdµ

∣∣∣ > ε

3

}

≤
∑

f∈FD, ε
3

P
{∣∣∣∣ 1n

n∑
i=1

f(Xi)−
∫
fdµ

∣∣∣∣ > ε

3

}
(80)

≤ 2

(
9CD

ε

)md
e
− 2nε2

9eh(T )2 .

(81)

The proof of (22) is finished. To prove

sup
fD∈FD

∣∣∣∣∣ 1n
n∑
i=1

fD(Xi)−
∫
fDdµ

∣∣∣∣∣→ 0 almost surely (as n→∞), (82)

note that the inequality
∞∑
n=1

(
9CD

ε

)md
e
− 2nε2

9eh(T )2 <∞ (83)

clearly holds for any (fixed) ε > 0. This implies

∞∑
n=1

P

{
sup

fD∈FD

∣∣∣∣∣ 1n
n∑
i=1

fD(Xi)−
∫
fDdµ

∣∣∣∣∣ > 1

k

}
<∞,

for each k ∈ N+. The Borel-Cantelli Lemma states that, if the sum of the probabilities of the events

En =

{
ω : sup

fD∈FD

∣∣∣∣∣ 1n
n∑
i=1

fD(Xi(ω))−
∫
fDdµ

∣∣∣∣∣ > 1

k

}

is finite, i.e.,
∞∑
n=1

P
{
En

}
=

∞∑
n=1

P

{
sup

fD∈FD

∣∣∣∣∣ 1n
n∑
i=1

fD(Xi(ω))−
∫
fDdµ

∣∣∣∣∣ > 1

k

}
<∞,

then the probability that infinitely many of them occur is 0, i.e., P{lim supn→∞En

}
= 0, or else,

lim sup
n→∞

sup
fD∈FD

∣∣∣∣∣ 1n
n∑
i=1

fD(Xi)−
∫
fDdµ

∣∣∣∣∣ ≤ 1

k
almost surely, (84)
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for each k ∈ N+. Hence with probability one

lim sup
n→∞

sup
fD∈FD

∣∣∣∣∣ 1n
n∑
i=1

fD(Xi)−
∫
fDdµ

∣∣∣∣∣ ≤ 1

k
for all k ∈ N+,

which implies (82). Since the above hold for any µ ∈ P̄ , the class FD has the UCEM property with respect to P̄ .

A.3. Proof of Proposition 1

Proof. Let FD,ε = {f1, . . . , fN} be an ε-covering of FD with minimal cardinality N = N∞(ε,FD). We have

sup
fD∈FD

∣∣∣∣∣ 1n
n∑
i=1

fD(Xi)−
∫
fDdµ

∣∣∣∣∣ ≤ sup
fD∈FD

∣∣∣∣∣ 1n
n∑
i=1

fD(Xi)−
1

n

n∑
i=1

f(Xi) +
1

n

n∑
i=1

f(Xi)

−
∫
fdµ+

∫
fdµ−

∫
fDdµ

∣∣∣∣
≤ ||fD − f ||∞ + sup

f∈FD,ε

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)−
∫
fdµ

∣∣∣∣∣
+ ||fD − f ||∞

= 2||fD − f ||∞ + sup
f∈FD,ε

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)−
∫
fdµ

∣∣∣∣∣
< 2ε+ sup

f∈FD,ε

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)−
∫
fdµ

∣∣∣∣∣ .

(85)

Using Hoeffding’s inequality and the union bound

P

{
sup

f∈FD,ε

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)−
∫
fdµ

∣∣∣∣∣ ≥ ξ
}
≤ 2N exp

(
− 2nξ2

eh(T )2

)
. (86)

Set

δ := 2N exp

(
− 2nξ2

eh(T )2

)
= 2

(
3CD

ε

)
exp

(
− 2nξ2

eh(T )2

)
, (87)

and note, that after some calculations,

ξ = eh(T )

√
log( 2

δ ) +md log( 3CD

ε )

2n
. (88)

Thus, with probability at least 1− δ,

sup
f∈FD,ε

∣∣∣ 1
n

n∑
i=1

f(Xi)−
∫
fdµ

∣∣∣ < eh(T )

√
log( 2

δ ) +md log( 3CD

ε )

2n
. (89)

From (85) and (89)

sup
fD∈FD

∣∣∣∣∣ 1n
n∑
i=1

fD(Xi)−
∫
fDdµ

∣∣∣∣∣ ≤ 2ε+ sup
f∈FD,ε

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)−
∫
fdµ

∣∣∣∣∣
≤ 2

n
+ eh(T )

√
log( 2

δ ) +md log( 3CD

ε )

2n
(for ε = 1/n)

≤ 2

n
+ eh(T )

√
log( 2

δ )

2n
+

√
md log(3nCD)

2n
,

(90)

with probability at least 1− δ. The proof is now finished.
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A.4. Proof of Lemma 2

Proof. We follow the same arguments as in the proof of Lemma 10 in (Gribonval et al., 2015b). Without loss of generality
assume that the support of the probability measure µ is within the unit ball, i.e., for any X ∼ µ it holds ||X|| ≤ 1. First, we
show that for c = 1√

8
,

Γn(cτ) := sup
fD∈FD

P

{∣∣∣∣∣ 1n
n∑
i=1

fD(Xi)−
∫
fDdµ

∣∣∣∣∣ ≥ cτ
}
≤ 2e−nτ

2

. (91)

For fixed D ∈ D the random variables fD(Xi), i ∈ {1, . . . , n} are independent. When samples are drawn according to µ,

fD(Xi) ≤ eh(||Xi||2) ≤ 1

2
||Xi|| ≤

1

2
.

Using Hoeffding’s inequality

P

{∣∣∣∣∣ 1n
n∑
i=1

fD(Xi)−
∫
fDdµ

∣∣∣∣∣ ≥ cτ
}
≤ 2e−8c2nτ2

,

which implies that
Γn(cτ) ≤ 2e−nτ

2

, (92)

for c = 1√
8

. Now assume that (91) is true. LetN (ε,D, || · ||1,2) be an ε-cover of D and L > dĝ−1(1)
2 ; recall that dĝ

−1(eh(T ))
2

is the Lipschitz constant of the map F : (D, || · ||1,2) 7→ (FD, || · ||∞). For a fixed dictionary D ∈ D there exists an index
j(D) such that ||D −Dj ||1,2 ≤ ε. Then∣∣∣∣∣ 1n

n∑
i=1

fD(Xi)−
∫
fDdµ

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

fD(Xi)−
1

n

n∑
i=1

fDj
(Xi) +

1

n

n∑
i=1

fDj
(Xi)

−
∫
fDj

dµ+

∫
fDj

dµ−
∫
fDdµ

∣∣∣∣
≤ ||fD − fDj ||∞ + sup

j∈{1,...,N (ε,D,||·||1,2)}

∣∣∣∣∣ 1n
n∑
i=1

fDj (Xi)−
∫
fDjdµ

∣∣∣∣∣
+ ||fD − fDj

||∞

= 2||fD − fDj ||∞ + sup
j∈{1,...,N (ε,D,||·||1,2)}

∣∣∣∣∣ 1n
n∑
i=1

fDj (Xi)−
∫
fDjdµ

∣∣∣∣∣
≤ 2Lε+ sup

j∈{1,...,N (ε,D,||·||1,2)}

∣∣∣∣∣ 1n
n∑
i=1

fDj
(Xi)−

∫
fDj

dµ

∣∣∣∣∣
≤ 2Lε+ cτ

(93)

which holds with probability at least 1−N (ε,D, || · ||1,2) · Γn(cτ). Since this is true for any ε, τ > 0, set

ε =
c
√
β

2L

√
log(n)

n
and τ =

√
md log

(
3
ε

)
+ t

n
=

√
md log

(
6L

c
√
β

)
+
md

2
log

(
n

log(n)

)
+ t · 1√

n
. (94)

The assumption n
logn ≥ max

{
8,
(
c

2L

)2
β
}

, c = 1√
8

, implies that

c
√
β

2L

√
log(n)

n
≤ c
√
β

2L

1√
max

{
8, c2

4L2 β
}

=

√√√√ c2β
4L2

max
{

8, c
2β

4L2

}
≤ 1.

(95)
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This shows that 0 < ε ≤ 1. Since β ≥ 1 and log(n) ≥ 1, we have

2Lε+ cτ = 2Lc
√
β

1

2L

√
log(n)

n
+ c

√
md log

(
6L

c
√
β

)
+
md

2
log

(
n

log(n)

)
+ t · 1√

n

≤ c
√
β log(n)

n
+ c

√
md log

(
6L

c
√
β

)
+
md

2
log(n) + t · 1√

n
(since log(n) ≥ 1)

≤ c
√
β log(n)

n
+ c

√
md log

(
6L

c

)
+
md

2
log(n) + t · 1√

n
(since β ≥ 1)

≤ c
√
β log(n)

n
+ c

√
β +

β

2
log(n) + t · 1√

n

(
since β := mdmax

{
log

(
6L

c

)
, 1

})
≤ c
√
β log(n)

n
+ c

√
β log(n)

2n
+ c

√
β + t

n

≤ 2c

√
β log(n)

n
+ c

√
β + t

n
.

(96)

Hence for c =
√

1
8 ,

sup
fD∈FD

∣∣∣∣∣ 1n
n∑
i=1

fD(Xi)−
∫
fDdµ

∣∣∣∣∣ ≤ 2√
8

√
β log(n)

n
+

1√
8

√
β + t

n
(97)

with probability at least 1− 2e−t. The proof is now finished.

A.5. Discussion: The case of a separable, continuous, even, and bounded g

As already mentioned, Theorem 1 covers a wide range of separable functions g : Rd → R+ but it does not cover popular
(separable) penalty functions, like the SCAD or MCP,

ĝscad(t;λ, γ) =


λt, t ≤ λ
λγt− 1

2 (t2+λ2)

γ−1 , λ < t ≤ γλ
λ2(γ2−1)
2(γ−1) , t > λγ.

and ĝmcp(t;λ, γ) =

{
λt− t2

2γ , t ≤ λ
1
2γλ

2, t > γλ.
(98)

The functions ĝscad and ĝmcp are bounded from above and so they fail to satisfy the “strictly increasing” assumption of
Section 3. A closer look at the proof of Lemma 7 reveals that if

eh(T ) < sup
t∈R

ĝmcp(t;λ, γ), (99)

then the following set of implications are true:

a ∈ UD0 (x) ⇒ gmcp(a;λ, γ) ≤ eh(||x||2) (from inequalities (64) and (65))

⇒
d∑
i=1

ĝmcp(ai;λ, γ) ≤ eh(||x||2)

⇒ max
1≤i≤d

ĝmcp(ai;λ, γ) ≤ eh(||x||2)

⇒ |ai| ≤ ĝ−1
mcp(eh(||x||2);λ, γ) (since ĝmcp is invertible in [0, eh(T )] due to (99))

⇒ ||a||1 ≤ dĝ−1
mcp(eh(||x||2);λ, γ).

(100)

The above reasoning also applies to gscad. Summarizing, the following lemma is proved.

Lemma 10. Let a separable function g : Rd → R+ of the form g(a) =
∑d
i=1 ĝ(ai), where ĝ : R → R+ is continuous,

even, strictly increasing up to some point on [0,+∞) and then constant. If

eh(T ) < sup
t∈R

ĝ(t), (101)
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then the following set of implications hold true

a ∈ UD0 (x) ⇒ g(a) ≤ eh(||x||2) ⇒ ||a||1 ≤ CD,x, (102)

where CD,x := dĝ−1(eh(||x||2)) and ĝ−1 : R+ → R+ denotes the inverse function of ĝ restricted on the domain where ĝ is
strictly increasing. �

The next Proposition is an analog of Proposition 7 and an immediate consequence of expression (102).
Proposition 8. For any x ∈ BRm(T ), D ∈ D, and g : Rd → R+ satisfying assumptions of Lemma 10,

sup
a∈UD

0 (x)

||a||1 ≤ dĝ−1(eh(T )). (103)

Thus the map F : (D, || · ||1,2) 7→ (FD, || · ||∞) is Lipschitz continuous,

||F (D)− F (D′)||∞ ≤ CD||D −D′||1,2, (104)

with Lipschitz constant CD := dĝ−1(eh(T ))
2 . �

The rest of results in Section 3 still remain valid for any function g under consideration; even Lemma 4 as mentioned in
Remark 3. So, the family of functions FD retains the UCEM property for P̄ for any bounded separable penalty function g
satisfying assumptions of Section 4.

A.6. Proof of Proposition 2

Proof. The proof follows the lines of the proof of Theorem 20 in (Vainsencher et al., 2011); we only depart in the details.
First note that the set Σk := {a ∈ Rd : |{i : ai 6= 0}| = k} of all k-sparse vectors in Rd is the union of

(
d
k

)
sets Σlk,

Σlk :=
{
a ∈ Rd : ai 6= 0,∀i ∈ Il and ai = 0,∀i /∈ Il

}
, l = 1, . . . ,

(
d

k

)
, (105)

where Il is one of the
(
d
k

)
possible k-tuples in {1, . . . , d}; in other words,

Σk =

(d
k)⋃
l=1

Σlk. (106)

The proof is constructive; first it is shown that for any D ∈ D there exist γ > 0 and q ∈ Sm−1 such that fD(q) > γ. Let µ
be the uniform measure on the unit sphere Sm−1 := {x ∈ Rm : ||x||2 = 1}. Denote as Ac the probability assigned by µ to
the set “within eh(c)” of a k-dimensional subspace, c > 0. For example, when m = 3 and k = 1, the probability Ac can be
defined as

Ac = µ
{
{x ∈ S2 : ∃t ∈ R and z = te1 such that eh(||x− z||2) ≤ eh(c)}

}
,

where e1 = (1, 0, 0)>. As c ↘ 0, Ac also tends to zero. Then there exist c > 0 such that
(
d
k

)
Ac < 1; for that c and any

D ∈ D there exists a set of positive measure, say Ãc, on which fD(x) > eh(c) = γ. Indeed, for every l ∈ {1, . . . ,
(
d
k

)
}, the

following inclusion is valid {
x ∈ Sm−1 : min

a∈Σl
k

eh(||x−Da||2) ≤ eh(c)

}
⊆ Ac

by definition of Ac. Along with assumption
(
d
k

)
Ac < 1, the assertion that for any D ∈ D there exists a q such that

fD(q) > 0 holds true.

Let q be a sample point in Ãc and assume without loss of generality that
∑k−1
j=1 qj > 0. Next construct two dictionaries

D,D′ such that fD(q) > 0 while fD′(q) = 0. First construct dictionary D; its first k − 1 columns are the standard basis
vectors in Rm, {e1, . . . , ek−1}, its k-th column is

D·,k =
1√
k − 1

k−1∑
j=1

√
1− ε2/4ej + εek/2,
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and the remaining columns are arbitrary unit-norm vectors. Now D′ is constructed; it is identical to D with the only
difference being in the k-th column. Specifically,

D′·,k =
1√
k − 1

k−1∑
j=1

√
1− ε2/4ej + lq,

for some l ∈ R such that ||D′·,k||2 = 1, or else,

||D′·,k||2 = 1⇔ ||D′·,k||22 = 1

⇔ ||lq||22 + 2l

√
1− ε2/4

k − 1

k−1∑
j=1

qj − ε2/4 = 0

⇔ l2 + 2l

√
1− ε2/4

k − 1

k−1∑
j=1

qj − ε2/4 = 0 (since ||q||22 = 1).

The roots of the previous quadratic equation (with respect to l) are

l =


− 2

√
1−ε2/4

k−1

∑k−1
j=1 qj

2 −
√(

2

√
1−ε2/4

k−1

∑k−1
j=1 qj

2

)2

+ ε2

4√(
2

√
1−ε2/4

k−1

∑k−1
j=1 qj

2

)2

+ ε2

4 −
2

√
1−ε2/4

k−1

∑k−1
j=1 qj

2 ,

which after some simple algebraic manipulations implies that l ≤ ε/2 (to see this recall that
∑k−1
j=1 qj > 0 and use the

inequality br − ar ≤ (b− a)r for any 0 < r < 1 and 0 < a ≤ b). For this q there exist tj ∈ R, j ∈ {1, . . . , k}, such that
q =

∑k
j=1 tjD

′
·,j and thus fD′(q) = 0, proving the second part of the theorem. On the other hand

||D −D′||2 = ||εek/2− lq||2 ≤ ||εek/2||2 + ||lq||2 = ε/2 + ε/2 = ε,

and the proof is now completed.

A.7. Proof of Proposition 3

Proof. Fix D ∈ D and define the (possibly multivalued) map âD : Rm →→ Rd as

âD(x) := arg mina∈Σk
eh(||x−Da||2); (107)

this map maps any vector x ∈ Rm to an optimal solution âD(x) ∈ Rd. For that D the corresponding subgraph in the family
of subgraphs

F+
D :=

{{
(x, t) ∈ Rm+1 : fD(x) ≥ t

}
; fD ∈ FD

}
(108)

is described by the set of points (x, t), t ≥ 0, for which

eh(||x−DâD(x)||2) ≥ t. (109)

Due to monotonicity of eh, point (x, t) with t ≥ 0 satisfies (109) if and only if,

||x−DâD(x)||2 ≥ c(t), (110)

where c(t) is the smallest value of c for which eh(c) ≥ t. In view of (110), if the set {(xi, ti)}ni=1 is shattered by F+
D , then

there exist matrix D0 in D and vectors {âD0
(xi)}ni=1 in Rd such that, for those shattered points, it holds true

||xi −D0âD0
(xi)||22 ≥ c(ti)2. (111)

We claim that the shatter coefficient of F+
D is upper bounded by the shatter coefficient of the collection of all subgraphs

generated by functions which belong in

G :=
{
gA(y, s) = ||Ay||22 + βs ; A ∈ Rm×(m+d), β ∈ R

}
(112)
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with (y, s) ∈ Rm+d × [0,+∞). Indeed, if some points in {(xi, ti)}ni=1 are shattered by F+
D , then for those shattered points

it holds true that

||xi −D0âD0
(xi)||22 ≥ c(ti)2, (113)

or equivalently, ∥∥∥∥[I −D0

] [ xi
âD0

(xi)

]∥∥∥∥2

2

≥ c(ti)2. (114)

Equivalence between the last two inequalities implies the existence of matrix A0 = [I −D0] ∈ Rm×(m+d), scalar β0 = 1,
and vectors {(yi, si)}ni=1 ⊂ Rm+d × [0,+∞) with

(yi, si) :=
([ xi

âD0
(xi)

]
, c(ti)

)
∈ Rm+d × [0,+∞), i = 1, . . . , n, (115)

such that the graph of ||A0y||22 − β0s, {
(y, s) : ||A0y||22 − β0s ≥ 0

}
, (116)

picks outs only those (yi, si) satisfying inequality (114); note that (116) is the subgraph of some function, sat gA0 , in G.
Every set in (116) is the sum of an ellipsoid and a linear function of s. By Lemma 18 in (Pollard, 1984), the sets {gA ≥ t},
for gA ∈ G, pick out only a polynomial number of subsets from {(yi, si)}ni=1; those corresponding to functions in G with
A = [I D] pick out even fewer points from {(yi, si)}ni=1. The VC dimension of G is at most ((m+d)2 +3(m+d))/2+1),
see (Akama & Irie, 2011) for an improved bound on the VC dimension of ellipsoids. Consequently, monotonicity of eh and
Theorems 13.5, 13.9 in (Devroye et al., 1997) conclude the result

s(F+
D , n) ≤

 en

((m+ d)2 + 3(m+ d))/2 + 1)︸ ︷︷ ︸
:= α(m,d)


((m+d)2+3(m+d))/2+1)

. (117)

A.8. Proof of Theorem 2

Proof. Proposition 3 and Corollary 29.1 in (Devroye et al., 1997) imply

P

{
sup

fD∈FD

∣∣∣∣∣ 1n
n∑
i=1

fD(Xi)−
∫
fDdµ

∣∣∣∣∣ > ε

}
≤ 8s(F+

D , n)e
− nε2

32eh(T )2 . (118)

Since
∞∑
n=1

s(F+
D , n)e

− 2nε2

32eh(T )2 <∞, (119)

for all ε > 0, by the Borel-Cantelli lemma (and arguments similar to the relevant part in the proof of Theorem 1)

sup
fD∈FD

∣∣∣∣∣ 1n
n∑
i=1

fD(Xi)−
∫
fDdµ

∣∣∣∣∣→ 0 almost surely (as n→∞), (120)

for all probability measures µ ∈ P̄ . Thus FD has the UCEM property for all µ ∈ P̄ .

A.9. Proof of Proposition 4

Proof. Set the right hand side of inequality (35) equal to δ and solve with respect to ε. The result immediately follows.
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A.10. Proof of Theorem 3

Proof. First we bound the shatter coefficient of family

FD :=

{
fD(x) = inf

a∈Rd
{eh(||x−Da||2) + g(a); D ∈ D}

}
(121)

when g : Rd → [0,+∞) is a bounded lsc function, i.e., g(a) ≤M for some M > 0 and all a ∈ Rd. To this end, we follow
the proof of Proposition 3 and only depart in details.

Fix D ∈ D and define
âD(x) := arg mina∈Rd eh(||x−Da||2) + g(a); (122)

this (possibly multivalued) map maps any vector x ∈ Rm to an optimal solution âD(x) ∈ Rd for the minimization problem

inf
a∈Rd

eh(||x−Da||2) + g(a). (123)

For fixed D ∈ D and function fD ∈ FD, the corresponding subgraph in the collection of sets

F+
D :=

{{
(x, t) ∈ Rm+1 : fD(x) ≥ t

}
; fD ∈ FD

}
(124)

contains the points (x, t) ∈ Rm+1, t ≥ 0, for which

fD(x) ≥ t ⇔ eh(||x−DâD(x)||2) + g(âD(x)) ≥ t ⇔ eh(||x−DâD(x)||2) ≥ t− g(âD(x)). (125)

Due to boundedness of g and monotonicity of eh a point (x, t) with t > 0 satisfies (125) if and only if

||x−DâD(x)||2 ≥ c(t−M), (126)

where c(t−M) is the smallest value of c for which eh(c) ≥ t−M . In view of (126), if the set {(xi, ti)}ni=1 is shattered by
F+

D , then there exist some matrix D0 in D and set of points {âD0
(xi)}ni=1 in Rd such that

||xi −D0âD0
(xi)||22 ≥ c(ti −M)2, (127)

for every shattered point (xi, ti) in {(xi, ti)}ni=1. The claim that the shatter coefficient of F+
D is upper bounded by the

shatter coefficient of the family of subgraphs of the function class G below

G :=
{
gA(y, s) = ||Ay||22 + βs ; A ∈ Rm×(m+d), β ∈ R

}
, (128)

is proven in the same way as the relevant part in the proof of Proposition 3. Hence we have proven that

s(F+
D , n) ≤

 en

((m+ d)2 + 3(m+ d))/2 + 1)︸ ︷︷ ︸
:= α(m,d)


((m+d)2+3(m+d))/2+1)

. (129)

Proof of inequality (40) follows the proof of Theorem 2 and the proof of (41) is the same as the proof of Proposition 1.

A.11. Discussion: A note on the approximation error when m� d

This is a discussion concerning the upper bound for the approximation error of Proposition 5 in the main text. Recall that for
sufficiently large values of n, it holds true thatR(D̂n) = o(1) + εapp, or elseR(D̂n) ' εapp = R(D∗). What follows, is
that we regardR(D∗) as a function of d (� m) and describe its rate of decrease as d→ m. The function class under study
is

FD := {fD; D ∈ D}, (130)
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and each fD : Rm → [0,+∞) has the form

fD(x) := inf
a∈Rd
{eh(||x−Da||2) + 1K(a)}. (131)

Assumptions (H1)-(H6) are the key to the proof of Proposition 5 in the text; they implicitly restrict the shape of the Moreau
envelope eh. It can be shown that

∂eh(t) ⊆ t− Ph(t); (132)

see Theorem 10.13 in (Rockafellar & Wets, 2009) and Proposition 7 in (Yu et al., 2015). The continuity of eh and the
differential inclusion in (132) give a description of the epigraph of eh in [0,+∞). If the proximal map of h satisfies (H1)-
(H6), then in the interval [0, τ ] the Moreau envelope behaves like the quadratic function t2, i.e., eh ∼ t2 as t → 0+.5

Indeed, under assumption (H6), for t ∈ [0, τ ] it holds true that ∂eh(t) ⊆ t − Ph(t) = t which implies the previous
assertion. Since the proximal map Ph is monotone and non-decreasing on [0,+∞) with 0 ≤ Ph(t) ≤ t, it is always true that
∂eh(t) ≤ t− Ph(t) ≤ t and consequently eh(t) ≤ ct2, for some c > 0 and any t ≥ 0 (recall that 0 ≤ eh(0) ≤ h(0) = 0 by
assumption). Assumptions (H1)-(H6) are valid for the proximal maps of the lp-norm, 0 ≤ p <∞, the SCAD, and the MCP
univariate functions and many other pairs of (h, Ph), see also (Antoniadis, 2007).

In order to upper bound the approximation errorR(D∗), we use the quantization error (or else distortion error) for eh which
is defined as

Ed,eh = inf
{c1,...,cd}⊂Rm

∫
min

j=1,...,d
eh(||x− cj ||2)dµ, (133)

and {c1, . . . , cd} is a subset of Rm with d vectors. The rate of convergence of the quantization error Ed,eh as d tends to
+∞ is ruled by the following theorem.

Theorem 4 (Delattre, Sylvain, et al (Delattre et al., 2004)). Assume that V : R+ → [0,+∞) is a non-decreasing function
satisfying V (0) = 0 and V (t) ∼ tr as t → 0+, r > 0. Assume also that there exists a non-decreasing function
W : R+ → [0,+∞), with W (0) ≥ 1, such that V (t) ≤ trW (t) for every t ∈ [0,+∞). If the random variable X satisfies∫
||X||r2dµ <∞ and

∫
W (||X||2)dµ <∞, then

Ed,V = inf
{c1,...,cd}⊂Rm

∫
min

j=1,...,d
V (||x− cj ||2)dµ ≤ O(d−r/m), as d→ +∞; (134)

here, m is the dimension of X and d is the number of vectors in {c1, . . . , cd}.

The assumptions in Theorem 4 are valid for the Moreau envelope of any function h whose proximal map Ph satisfies
(H1)-(H6); as already mentioned, under assumptions (H1)-(H6), we have V (t) = eh(t) ∼ t2 locally around zero and
V (t) = eh(t) ≤ ct2 for some c > 0 and any t ≥ 0. The approximation errorR(D∗) and the quantization error in (133) are
related as follows:

R(D∗) = inf
D∈D

∫
fDdµ = inf

D∈D

∫
inf
a∈K

eh(||x−Da||2)dµ ≤ inf
D∈D

∫
min

c′∈{D·,j}dj=1

eh(||x− c′||2)dµ, (135)

since the basis of the positive orthant belongs to K. Therefore,

inf
D∈D

∫
min

c′∈{D·,j}dj=1

eh(||x− c′||2)dµ ≥ inf
{c1,...,cd}⊂Rm

∫
min

j=1,...,d
eh(||x− cj ||2)dµ = Ed,eh ,

and we can carefully choose {D·,1, . . . , D·,d} such that equality is achieved, i.e.,

inf
D∈D

∫
min

c′∈{D·,j}dj=1

eh(||x− c′||2)dµ = inf
{c1,...,cd}⊂Rm

∫
min

j=1,...,d
eh(||x− cj ||2)dµ = Ed,eh (136)

(equality always is achieved if the data points x are rescaled to lie inside the Euclidean ball BRm(1)). In order to use
Theorem 4, assume that i) m is sufficiently large and ii) d approaches m. Under these assumptions, Proposition 5 is an
immediate corollary of inequality (135) and Theorem 4.

5The notation an ∼ bn means an = bn + o(bn).


