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Abstract
This is a theoretical study on the sample com-
plexity of dictionary learning with general type
of reconstruction losses. The goal is to estimate
a m × d matrix D of unit-norm columns when
the only available information is a set of train-
ing samples. Points x in Rm are subsequently
approximated by the linear combination Da after
solving the problem mina∈Rd Φ(x−Da) + g(a)
with function g being either an indicator func-
tion or a sparsity promoting regularizer. Here is
considered the case where

Φ(x) = inf
z∈Rm

||x− z||22 + h(||z||2)

and h is an even and univariate function on the
real line. Connections are drawn between Φ and
the Moreau envelope of h. A new sample com-
plexity result concerning the k-sparse dictionary
problem removes the spurious condition regarding
the coherence of D appearing in previous works.
Finally comments are made on the approximation
error of certain families of losses. The derived
generalization bounds are of order O(

√
log n/n).

1. Introduction
The dictionary learning problem, also known as sparse cod-
ing, was initially studied in the context of Neuroscience (Ol-
shausen & Field, 1997); the relevant literature has grown
enormously since; see (Zhang et al., 2015) and references
therein. The problem is described as follows: given set
{Xi}ni=1 ⊂ Rm with n points sampled from an unknown
fixed probability measure µ, a dictionary matrixD ∈ Rm×d
is to be constructed so that any sample from µ can be ap-
proximated well by linear combinations of columns of D.
The quality of approximation, for a given dictionary D, is
measured by some function fD while D usually belongs
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to some predefined family of matrices. From the statisti-
cal learning theory perspective, the aim is to minimize the
population risk

R(D) :=

∫
fD(X)dµ =

∫
fDdµ, (1)

when the only accessible information is a set of n training
samples, say {Xi}ni=1, usually independent and identically
distributed. Notation X is used for random vectors sampled
from µ and notation x for real vectors in Rm.

The empirical risk minimization principle (ERM) is a natural
approach in search of the best dictionary (Vapnik, 1998). It
suggests that since the only availiable information is the set
of training samples, one should search for the matrix D̂n

that minimizes the empirical risk

Rn(D) :=
1

n

n∑
i=1

fD(Xi). (2)

The empirical estimate D̂n is not of much use unless
|Rn(D̂n) − R(D̂n)| decreases as the number of samples
n increases. Subsuming all computational difficulties on
computing the global minimizing argument of (2), the prob-
lem addressed here is a “generalization problem”. Given
the family D of all m× d matrices with unit-norm columns,
we design a loss function fD that measures the quality of
approximation x ' Da and ask: Does the difference

|R(D̂n)− inf
D∈D

R(D)| =
∣∣∣∣∫ fD̂n

dµ− inf
D∈D

∫
fDdµ

∣∣∣∣
(3)

decrease as the number of samples n increases, and if
so, at what rate? Or even further, if R(D̂n) is close to
infD∈DR(D), is D̂n close to the global minimizing argu-
ment of R(D)? Intuitively, the decrement of the absolute
difference in expression (3) guarantees that by increasing
the amount of data the population risk, with high probability,
is within a very small distance of the optimal achievable
gets arbitrarily close to one. The answers to the previous
questions of course depend on the number of samples, the
predefined family of dictionaries and the loss function.

The proposed loss functions in the literature of dictionary
learning vary according to the application but it would not
be an exaggeration to say that almost all of them may be
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described by a function of the form:

fD(x) := inf
a∈Rd

Φ(x−Da) + g(a), (4)

with Φ : Rm → [0,+∞) and g : Rd → [0,+∞]. This
article focuses on the generalization properties of dictionary
learning when Φ has the form:

Φ(x−Da) := inf
z∈Rm

1

2
||x−Da− z||22 + h(||z||2). (5)

Function h takes values on [0,+∞] and is described in fur-
ther detail later on. Definition (5) is not novel and has been
used in many applications of sparse coding, robust linear
regression and dictionary learning (Adler et al., 2015; Amini
et al., 2014; Forero et al., 2015; 2017; Jiang et al., 2015; Liu
et al., 2015; Zhao & Tan, 2017). Although there is no for-
mal robustness analysis yet to justify the superiority of (5)
over the common square Euclidean loss ||x−Da||22, experi-
mental evaluations in the previous applications suggest that
this modification is a computationally “cheap” alternative,
achieving better reconstruction error in some cases.

As can be seen from (4), if g is a sparsity promoting penalty
then approximations that are linear combinations of a few
columns of D are favored. The rationale behind the choice
of h in (5) is not so obvious but if h satisfies a set of assump-
tions, then the following simplification holds true:

Φ(x−Da) := eh(||x−Da||2). (6)

Here, eh is a univariate continuous function with special
name and properties, the so called Moreau envelope of
h (Rockafellar & Wets, 2009). Interestingly enough, the
epigraphical form of eh is completely determined by the
generating function h. Roughly speaking, with a suitably
chosen h, we can design loss functions fD able to ignore
the influence of points x, the distance of which from their
approximation Da is above a predefined threshold. The
consistency results of this study should be regarded as com-
plementary extensions−and in some cases refinements−of
the generalization bounds in (Gribonval et al., 2015b) and
(Vainsencher et al., 2011). Contrary to previous works, all
bounds presented here are valid for the whole of space of
dictionaries with unit-norm columns.

In Section 3 is considered the case where g is a separable
function, that is, g is of the form g(a) =

∑d
i=1 ĝ(ai), and ĝ :

R→ [0,+∞) is univariate, continuous, even, and strictly in-
creasing with minimum value ĝ(0) = 0. These assumptions
are valid for many coordinate-separable regularizers, e.g.,
the lp-norms and variants of the logarithmic function. Let us
point out here that if h = 0, using the results of Section 3 we
revert to previously known bounds for the penalized squared
Euclidean loss fD(x) = infa∈Rd (1/2)‖x−Da‖22 + g(a).

Section 4 is an attempt to cover, beyond the class of strictly
increasing penalties ĝ of Section 3, continuous and bounded

penalties from robust statistics, such as the MCP or SCAD.
This type of penalty functions have achieved widespread
use, and to the best of our knowledge, the bounds presented
here are among the first that consider them.

However, the extended bounds of Section 4 turn out to be
of limited applicability and do not work when g is the in-
dicator function of all k-sparse vectors. To overcome this
difficulty, in Section 5, we remove the continuity assump-
tion from g and rely on combinatorial tools from Vapnik-
Chervonenkis (VC) theory in order to present bounds valid
for any bounded, lower semicontinuous function g. When-
ever possible, the sample complexity bounds presented here
are compared to similar ones in literature. Next follows a
brief overview of the relevant literature.

1.1. Related Work and Contribution

The authors in (Gribonval et al., 2015b; Vainsencher et al.,
2011) derive sample complexity bounds for the rate of con-
vergence towards 0 of the absolute difference in (3) when
Φ(x) = ||x||22, D is a general constraint set, and g(a) ranges
from the lp-norms and characteristic functions of compact
sets to the indicator function of non-negative vectors or
k-sparse vectors. The results in (Maurer & Pontil, 2010)
are independent of dimension m, as well as some results
in (Vainsencher et al., 2011).

A closer look on results of (Gribonval et al., 2015b) and
(Vainsencher et al., 2011) concerning the finite case for
dimension d, reveals that those are valid under joint as-
sumptions on g and D. For instance, if g is the indicator
function of k-sparse vectors in Rd, then the generalization
bounds in (Vainsencher et al., 2011) are valid under an
incoherence assumption on D while in (Gribonval et al.,
2015b) under a “restricted isometry”-like property. General
non-asymptotic results can be extracted from the previous
analyses, as the case Φ(x) = ω(||x||), for any convex func-
tion ω : R→ [0,+∞) and any norm || · || on Rm. In (Liu
& Tao, 2016) authors focus on the l1-non-negative matrix
factorization problem where Φ(x) = ||x||1 and g is the
indicator function of the non-negative orthant in Rd.

The main contribution of our work is the addition of gen-
eralization bounds concerning loss functions that are com-
binations of Moreau envelopes with bounded and lower
semicontinuous regularizers. Some results are refinements
of previously known ones, meaning that a spurious assump-
tion on dictionary D has been removed.

2. Preliminaries and some Technical Remarks
This is mainly a technical section where we take a closer
look at the loss function fD and describe the statistical
framework for the analysis. The value of fD at point x ∈
Rm, in light of equations (4) and (5), is expressed through
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the solution of the minimization problem:

inf
a∈Rd


:= Φ(x−Da)︷ ︸︸ ︷

inf
z∈Rm

{
1

2
||x−Da− z||22 + h(||z||2)

}
+g(a)

︸ ︷︷ ︸
fD(x)

.

(7)
The close connection between Φ and h is captured in
Lemma 1 that, among others, gives a description of the
set of points z ∈ Rm that achieve the minimum in (5).

Lemma 1. Let h : R → [0,+∞] be a lower semicontinu-
ous (lsc) and even function with its restriction on [0,+∞)
non-decreasing and h(0) = 0. Assume that the multivalued
map Ph : R→→ R, defined as

Ph(t) := argminu∈R
1

2
(t− u)2 + h(u), (8)

(H1) is odd, i.e., Ph(−t) = −Ph(t), (H2) compact-valued,
(H3) non-decreasing, (H4) has a closed graph and (H5)
satisfies Ph(t) ≤ t for all t ∈ R. Then function Φ in (5)
becomes

Φ(x−Da) = eh(||x−Da||2), (9)

where eh : R→ [0,+∞) is defined as

eh(t) := inf
u∈R

1

2
(t− u)2 + h(u), t ∈ R (10)

and is continuous with its restriction on [0,+∞) being non-
decreasing. Furthermore, map Ph : Rm →→ Rm,

Ph(x−Da) := argminz∈Rm

1

2
||x−Da−z||22 +h(||z||2),

(11)
is equivalently represented as

Ph(x−Da) =
x−Da
||x−Da||2

Ph(||x−Da||2). (12)

According to Lemma 1, if h satisfies a certain set of assump-
tions, then Φ is equal to the composition of the Moreau
envelope of h with the Euclidean norm. Although the re-
strictions surrounding h and its proximal map seem to be
strict, the lemma is valid for a large number of h and Ph
pairs; see Section 3.1 in (Antoniadis, 2007) for various ex-
amples. Hereafter, any univariate function h in this article
satisfies assumptions (H1) through (H5).

Example 1. The case of the l0-norm on R is an example
that clearly describes the influence of h on the bounded-
ness properties of Φ. Let h be the l0-(pseudo)norm on the
real line defined as l0(t;λ) = λ2

2 1{t 6=0} for some λ > 0.
The values of 1{t 6=0} alternate between zero and one ac-
cording to whether t 6= 0 or not. The l0-norm satisfies all

assumptions of Lemma 1: it is even, non-decreasing and
lower semicontinuous while its proximal map Pl0 equals
Pl0(t) = argminu∈R

1
2 (t−u)2 + l0(u;λ) and is defined as

Pl0(t) =


0, |t| < λ,

{0, t}, |t| = λ,

t, |t| > λ.

(13)

Now function fD : Rm → [0,+∞) reads as

fD(x) = inf
a∈Rd

 1
2 min{||x−Da||22, λ2}︸ ︷︷ ︸

:= el0 (||x−Da||2)

+g(a)

 . (14)

Boundedness of el0 implies that whenever the distance
||x−Da∗D(x)||2 between a point x and its best linear ap-
proximation Da∗D(x) is greater than the predefined value
λ, then el0(||x − Da∗D(x)||2) = λ2/2; here a∗D(x) is the
(possibly multivalued) map

a∗D(x) := argmin
a∈Rd

{
el0(||x−Da||22) + g(a)

}
. (15)

As long as g is globally upper bounded by some M > 0, if
||x−Da∗D(x)||2 > λ and a∗D(x) is sufficiently large, then
fD(x) = λ2/2+M . Since the empirical optimal dictionary
D̂n is defined through the minimization of the empirical risk
Rn(D) in (2), and Rn is solely a function of D, points
x for which f(x) = λ2/2 + M have no influence on the
estimation of D̂n, and in that sense are “outliers”.

The previous example is merely used to build some intuition
behind the popularity of fidelity term (9) in the presence of
“outliers”. As “outliers” are considered points, the distance
of which from their approximation Da∗D(x) is larger than
a predefined threshold, say γ > 0. Note that any function
h with proximal map satisfying Ph(t) = t when |t| > γ
behaves like the l0-norm in Example 1.

Remark 1. The simple example described above may serve
to anchor intuition, but it should be kept in mind that al-
though we use the term “outlier”, this is rather a study that
focuses on the generalization error of dictionary learning.
We do not provide robustness analysis of dictionary learning,
since this would require a detailed mathematical definition
of the notion “outlier”. Robustness analysis results for
Moreau envelope losses using notions from robust statistics,
as the breakdown value, are provided in (Georgogiannis,
2016) for the generalized k-means problem; k-means is an
unstructured dictionary learning problem−as Dm×d does
not have unit-norm columns−with m � d, h(t) = 0, and
g(·) the indicator of the basis vectors in Rd.

A robustness analysis different from the previous one has
already been developed in (Gribonval et al., 2015a); the au-
thors show that under coherence-based assumptions on D,
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it is highly probable that the empirical risk 1
n

∑n
i=1 fD(Xi),

when fD(x) = infa∈Rd
1
2 ||x − Da||

2
2 + g(a), has a guar-

anteed empirical local minimum around the neighborhood
of a population global minimum dictionary. A study moti-
vated by the above references is of great interest and would
fill the gap between theoretical and actual performance of
dictionary learning algorithms using Moreau envelopes.

Next is introduced the statistical learning framework. De-
note as X , X1, X2, . . . , independent and identically dis-
tributed random vectors with values in a closed ball in Rm,
say BRm(T ) with radius T centered at the origin, and denote
as P̄ the set of all probability distributions µ on the Borel
σ-algebra B(BRm(T )) generated by this ball.1 The aim is
to show that the family of functions

FD =
{
fD(x) : Rd → R; D ∈ D

}
(16)

has the uniform convergence of empirical means property on
the measure space (BRm(T ),B(BRm(T )), µ), µ ∈ P̄ . Here
D is the set of all m× d real matrices with unit Euclidean-
norm columns and fD is of the form (4). The collection
of functions FD has the uniform convergence of empirical
means (UCEM) property if the following convergence

P

 sup
fD∈FD︸ ︷︷ ︸
supD∈D

∣∣∣∣∣∣∣∣∣∣
1

n

n∑
i=1

fD(Xi)︸ ︷︷ ︸
Rn(D)

−
∫
fDdµ︸ ︷︷ ︸
R(D)

∣∣∣∣∣∣∣∣∣∣
> ε


n→∞−→ 0

(17)
is valid for every positive number ε and probability measure
µ ∈ P̄ on BRm(T ) (Vidyasagar, 2002).2 This asymptotic
result immediately answers the question raised in the intro-
duction: if (17) holds true, then an application of inequality

R(D̂n)− inf
D∈D

R(D) . sup
D∈D

|Rn(D)−R(D)|

assures that R(D̂n) tends to the optimal value
infD∈DR(D) as the number of samples increases.

In most of our proofs, standard arguments from empiri-
cal processes theory are followed. In Sections 3 and 4 an
appropriate form for h and g is chosen and then are used
techniques based on either deterministic (Kolmogorov &
Širjaev, 1993) or random ε-covers of the function class FD

(Györfi et al., 2006); let us recall their definitions.

Definition 1 (ε-cover). Let ε > 0 and let F be a class
of functions from A ⊆ Rm to R. Every finite collection

1 The Borel σ-algebra B(Y ) of a subset Y of a metric space S
is the one generated by B(Y ) = {Y ∩ E : E ∈ B(S)}. Thus the
Borel σ-algebra B(BRm(T )) is precisely the class of all subsets
of BRm(T ) which are Borel sets in Rm (Folland, 2013).

2Symbol P in (17) denotes the product measure µ×∞1 on the
product σ-algebra

⊗∞
1 B(BRm(T )) (Folland, 2013).

of functions f̃1, . . . , f̃N : Rm → R , for which for each
f ∈ F there is a j(f) ∈ {1, . . . , N} such that

||f − f̃j ||∞ := sup
x∈A
|f(x)− f̃j(x)| < ε, (18)

is called ε-cover of F under the supremum norm.

Let FD,ε = {f1, . . . , fN} be a ε-cover of FD with respect
to || · ||∞. As intuitively expected, the fewer the balls needed
to cover FD, the smaller the FD.
Definition 2 (ε-covering number). Let ε > 0 and let F
be a class of functions from a set A ⊆ Rm to R. Let
N (ε,F , || · ||∞) be the size of the smallest ε-cover of F
under the supremum norm in (18). If no finite ε-cover exists,
takeN (ε,F , ||·||∞) =∞. ThenN (ε,F , ||·||∞) is named
the ε-covering number of F , abbreviated to N∞(ε,F ).

The method of proof used in Sections 3 and 4 to establish
the UCEM property for FD when g is continuous is based
on deterministic ε-covers, basic exponential inequalities and
the Borel-Cantelli lemma. Unfortunately, this approach does
not work when g is the indicator function of all k-sparse
vectors; see Section 5. To overcome this difficulty, we rely
on tools from VC theory, such as the shatter coefficient of
the family of subgraphs of a function class.
Definition 3 (subgraphs of a function class). Consider a
function class F with functions f : Rm → R+. The set

F+ :=
{
{(x, t) ∈ Rm+1 : f(x) ≥ t}; f ∈ F

}
(19)

is the collection of all subgraphs of functions f in F .

A family of subgraphs is a family of sets for which the
shatter coefficient and VC dimension are defined as follows.
Definition 4 (shatter coefficient). Let A be a family of sets.
For {x1, . . . , xn} ⊂ Rm, let NA(x1, . . . , xn) be the num-
ber of different sets in {{x1, . . . , xn} ∩ A; A ∈ A} . The
n-th shatter coefficient s(A, n) of A is

s(A, n) := max
x1,...,xn

NA(x1, . . . , xn).

The shatter coefficient is the maximal number of different
subsets of n points that can be picked out by sets of A.
Definition 5 (VC dimension). Let A be a collection of
sets with |A| ≥ 2. The largest integer k ≥ 1 for which
s(A, k) = 2k is denoted by VA and is called the VC dimen-
sion of the class A.

If for some hypothetical function class F the corresponding
shatter coefficient s(F+, n) is a polynomial of degree b
with respect to n, i.e., s(F+, n) = O(nb), then the popular
Vapnik-Chervonenkis’s inequality (Theorem 12.5 in (De-
vroye et al., 1997)) implies UCEM for F . Later on, in
Section 5, we show that this is the case for s(F+

D , n) as
well, where F+

D denotes the collection of all subgraphs of
functions in FD with g the indicator of k-sparse vectors in
Rd−recall the definitions of fD and FD in (4) and (16).
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3. The case of a separable, continuous, even,
and strictly increasing g : Rd → [0,+∞)

In this section we prove the UCEM property for the function
class FD in (16) when fD is defined as

fD(x) := inf
a∈Rd

{eh(||x−Da||2) + g(a)} (20)

and g has the following form:

g(a) =

d∑
i=1

ĝ(ai). (21)

Here is assumed that ĝ : R→ [0,+∞) is a univariate, con-
tinuous, even, and strictly increasing function on [0,+∞)
with minimum value ĝ(0) = 0. The aforementioned as-
sumptions on g are valid for many coordinate-separable
regularizers, e.g., the lp norms on Rd, g(a) = λ||a||p, 0 <
p < +∞ for some λ > 0, and the log penalty function
g(a) =

∑d
i=1

λ
log(γ+1) log(γ|ai| + 1), γ > 0. From now

on, a separable function of the previous form is called
(strictly) increasing if for all i, ĝ(ai) is (strictly) increasing
as |ai| → +∞. The main result is the following theorem.

Theorem 1. Let ε > 0 and consider the function class FD

in (16) with fD : BRm(T ) → [0, eh(T )] and g : Rd →
[0,+∞) defined as in (20) and (21) respectively. Then

P

{
sup

fD∈FD

∣∣∣∣∣ 1n
n∑
i=1

fD(Xi)−
∫
fDdµ

∣∣∣∣∣ > ε

}

≤ 2

(
9dĝ−1(eh(T ))

2ε

)md
e
− 2nε2

9eh(T )2 .

(22)
Furthermore,

sup
fD∈FD

∣∣∣∣∣ 1n
n∑
i=1

fD(Xi)−
∫
fDdµ

∣∣∣∣∣→ 0 (n→∞)

(23)
almost surely, for any µ ∈ P̄ . Hence, the function class FD

has the UCEM property with respect to P̄ .

An outline of Theorem’s 1 proof is the following:

1. We define map F that maps any m× p matrix to some
function of the form (20). Using appropriate metrics,
F is shown to be globally Lipschitz.

2. The Lipschitz continuity of F and the covering number
of D generate an upper bound for N∞(ε,FD).

3. Standard theorems from the empirical process theory
imply the concentration result in (22) and finally prove
the UCEM property for the function class FD.

The above outline makes clear that the main difficulty in
proving Theorem 1 is the verification of the Lipschitz con-
tinuity of map F . Let us mention that factor dĝ−1(eh(T ))

2
appearing on the right hand side (rhs) of (22) is an upper
bound for the Lipschitz constant of the aforementioned map.

There exist other approaches that do not require any form
of continuity on F to prove the UCEM property for FD.
However, theoretical questions regarding the existence of
the optimal dictionary are answered quite easily if we man-
age to construct such a map. For example, as well known, a
continuous map maps compact sets to compact sets. If F is
continuous, the compactness of D implies the compactness
of FD. This in turn implies the existence of the optimal
solution f∗D of minimization problem inffD∈FD

∫
fDdµ;

indeed, the integral is a linear operator and FD is compact.
Remark 2. Another theoretical question, of great impor-
tance for the measure theory enthusiasts, concerns the mea-
surability of the supremum appearing on the left hand side
(lhs) of (22). This is a random variable of which the mea-
surability stems from total boundedness of FD with respect
to the supremum norm ||f ||∞ := sup{x:||x||2≤T} |f(x)|.
Proposition 1. Assume a set up as the one in Theorem 1.
Then for any δ > 0,

sup
fD∈FD

∣∣∣∣∣ 1n
n∑
i=1

fD(Xi)−
∫
fDdµ

∣∣∣∣∣ ≤ O
(√

log(nd)
n

)
(24)

with probability at least 1− δ.

The term log(d) in (24), responsible for the sub-optimality
of the bound in case of convex Moreau envelopes, re-
sults from our proof method; similar bounds in the liter-
ature are of order O(

√
log n/n) (Gribonval et al., 2015b;

Vainsencher et al., 2011). This term is eliminated in
Lemma 2 below to end up with a same order upper bound.
The latter is in alignment with the sample complexity results
presented in (Gribonval et al., 2015b) and (Liu & Tao, 2016)
for the cases where fD(x) equals infa∈Rd

1
2 ||x −Da||

2
2 +

g(a) and infa∈Rd
1
2 ||x−Da||1 + g(a) respectively.

Lemma 2. Let L > dĝ−1(eh(T ))
2 and define β > 0 as β :=

mdmax{log(6L
√

8), 1}. Assume that n satisfies condition

n

log(n)
≥ max

{
8,

(
1

2
√

8L

)2

β

}
(25)

and consider the same set up as in Theorem 1. Then,

sup
fD∈FD

∣∣∣∣∣ 1n
n∑
i=1

fD(Xi)−
∫
fDdµ

∣∣∣∣∣ ≤ 2√
8

√
β log n

n

+
1√
8

√
β + t

n
,

(26)
with probability at least 1− 2e−t.
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The rationale behind this lemma is to find conditions, under
which for large values of the sample size n, an exponential
tail for the error kicks in but without the term log(d) of
inequality (24). Although the analysis seems finer, the result
is valid only if the sample size satisfies the quite strict and
complex inequality (25).

4. The case of a separable, continuous, even,
and bounded g : Rd → [0,+∞)

Analysis of Section 3 covers a broad range of regularizers g
but it does not cover popular penalty functions from robust
statistics, like SCAD, gscad(a) =

∑d
i=1 ĝscad(ai) or MCP,

gmcp(a) =
∑d
i=1 ĝmcp(ai) (Mazumder et al., 2012):

ĝscad(t;λ, γ) =


λt, t ≤ λ
λγt− 1

2 (t2+λ2)

γ−1 , λ < t ≤ γλ
λ2(γ2−1)
2(γ−1) , t > λγ,

(27)

and

ĝmcp(t;λ, γ) =

{
λt− t2

2γ , t ≤ λ
1
2γλ

2, t > γλ.
(28)

Although the previous univariate functions are continuous,
even, and satisfy the assumptions of Lemma 1, they fail
to satisfy the assumptions of Theorem 1 because they are
bounded above and thus not strictly increasing.

This section is an attempt to extend the results of Section 3
and handle a very special case of coordinate-separable reg-
ularizers: those g(a) =

∑d
i=1 ĝ(ai), where ĝ : R →

[0,+∞) is not only continuous and symmetric around zero,
but also strictly increasing up to some point in [0,+∞) and
then constant. For this purpose, we require that ĝ satisfies
the additional (strict) inequality

eh(T ) < sup
t∈R

ĝ(t). (29)

Under assumption (29), all results presented in Section 3 re-
main valid; see the relevant discussion in Appendix A.5. Ex-
ample 2 describes the impact of this assumption on penalty
function ĝmcp while the same applies to ĝscad.

Example 2. Let h be the l0-norm on the real line and
ĝ(a) = ĝmcp(a; γ, λ2), λ2 > 0; recall the definition of
the l0-norm on the real line: l0(t;λ1) = λ1

2 1{t 6=0}, λ1 > 0 .
In this case, the Moreau envelope is

el0(t;λ1) =
1

2
min{t2, λ2

1}

and gmcp(a) =
∑d
i=1 ĝmcp(ai; γ, λ2). Now assump-

tion (29) reads as

sup
t∈R

ĝmcp(t;λ2, γ) >
1

2
min{T 2, λ2

1} (30)

or after some simple algebraic calculations,

1

2
λ2

2γ >
1

2
min{T 2, λ2

1} ⇔ λ2 >

√
1

γ
min{T 2, λ2

1}.
(31)

Thus, function class FD in (16) with fD(x) defined as

fD(x) = inf
a∈Rd

{
el0(||x−Da||2) +

d∑
i=1

ĝmcp(ai; γ, λ2)

}

has the UCEM property only for pairs of values (λ1, λ2)

with λ2 >
√

1
γ min{T 2, λ2

1}.

Example 2 reveals that the ease with which we extend the
results of Section 3 has great impact on the diversity of
functions ĝ that we could handle. In order to use the upper
bounds in Proposition 1 or Lemma 2, our focus needs to be
restricted on families FD where the rightmost inequality
in (31) holds. This artificial restriction on the available pair
of values (λ1, λ2) makes this extension quite useless; in
many applications, when setting up λ1 and λ2, we search
on a wider grid of values.

In the next section, we remove the continuity assump-
tion from g and derive generalization bounds valid for any
bounded lsc function, such as SCAD, MCP or the indicator
function of all k-sparse vectors in Rd.

5. The case of the indicator function of all
k-sparse vectors in Rd and its extension

Denote as Σk = {a ∈ Rd : |{i : ai 6= 0}| = k} the set of
all k-sparse vectors in Rd. The approach followed in Sec-
tions 3 and 4 to prove the UCEM property for FD heavily
relies on the assumption that g is continuous. Consequently,
it does not work for the function

g(a) =

{
0, if a ∈ Σk

+∞, otherwise,
(32)

the non-separable and lsc indicator function of all k-sparse
vectors in Rd. Using combinatorial tools from VC the-
ory, we remove the spurious condition on the coherence
of D ∈ D appearing in previous works (Gribonval et al.,
2015b; Vainsencher et al., 2011) and prove the UCEM prop-
erty when g is bounded and lsc. Starting the analysis with
function (32), the results are then extended to cover any
bounded lsc function on Rd with range in [0,+∞).

Next is presented Proposition 2, a modification of Theorem
20 in (Vainsencher et al., 2011): it states that map F from
metric space (D, || · ||1,2) to metric space (FD, || · ||∞),

FD :=

{
min
a∈Σk

eh(||x−Da||2); D ∈ D

}
, (33)
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is not uniformly Lipschitz for any Lipschitz constant.3 This
is the main reason we resign (ourselves) from previous
proof techniques. Without an explicit upper bound for the
Lipschitz constant of map F , we cannot infer a bound for
the covering number of FD in terms of the one of D.

Proposition 2. Consider the family of functions FD in (33).
Then, there exist γ > 0 and q ∈ BRm(T ) such that for every
ε > 0, there exist D,D′ ∈ D such that

max
1≤j≤d

||D·,j −D′·,j ||2 ≤ ε but |fD(q)− fD′(q)| > γ.

In other words, map F from D to FD with D ∈ D 7→
F (D) ∈ FD is not globally Lipschitz.

Proposition 2 suggests that there are two ways to overcome
the limitations when dealing with k-sparse vectors: either
more restrictions shall be imposed on the class of dictionar-
ies D or a different proof method has to be followed. The
former approach was adopted by (Vainsencher et al., 2011)
and (Gribonval et al., 2015b), who both use deterministic
ε-net arguments under an incoherence assumption on D
and a lower RIP-property, respectively. In such a way, the
authors restrict their analysis on a subspace of original space
of all unit-norm column dictionaries.

Here the latter approach is adopted: without additional as-
sumptions on the dictionaries, standard tools from VC the-
ory verify the UCEM property of FD. The main result is
Proposition 3 which delivers an upper bound for s(F+

D , n),
the shatter coefficient of

F+
D :=

{
{(x, t) ∈ Rm+1 : fD(x) ≥ t}; fD ∈ FD

}
;

(34)
the previous set collection is the family of all subgraphs of
functions fD which belong to FD (as defined in (33)).

Proposition 3. The shatter coefficient s(F+
D , n) of the col-

lection of sets F+
D , as defined in (34), is bounded above as

s(F+
D , n) ≤

(
en

α(m,d)

)α(m,d)

with α(m, d) independent of

n and α(m, d) = ((m+ d)2 + 3(m+ d))/2 + 1.

A direct use of Proposition’s 3 bound in the popular Vapnik-
Chervonenkis’s theorem (Theorem 12.5, (Devroye et al.,
1997)) generates Theorem 2 and its byproduct Proposition 4.
The latter characterizes the rate of convergence to zero of
the difference of the sample average from the true mean of
fD(X). All random variables appearing in Theorems 2, 3
and Proposition 4 below are assumed measurable.

Theorem 2. Let fD : BRm(T ) → [0, eh(T )] for each fD
3 Although Proposition 2 has the same formulation as Theorem

20 of (Vainsencher et al., 2011), the latter cannot apply directly in
our case except for k = 2. Proposition 2 clarifies through minor
modifications what happens when k > 2.

in the function class FD in (33) and let ε > 0. Then

P

{
sup

fD∈FD

∣∣∣∣∣ 1n
n∑
i=1

fD(Xi)−
∫
fDdµ

∣∣∣∣∣ > ε

}

≤ 8s(F+
D , n)e

− nε2

32eh(T )2 .
(35)

Furthermore,
∞∑
n=1

(
en

α(m, d)

)α(m,d)

e
− 2nε2

32eh(T )2 <∞ (36)

for all ε > 0, and by the Borel-Cantelli lemma,

sup
fD∈FD

∣∣∣∣∣ 1n
n∑
i=1

fD(Xi)−
∫
fDdµ

∣∣∣∣∣→ 0 (almost surely).

(37)
Hence, function class FD has the UCEM property.
Proposition 4. Assume the same setup as in Theorem 2 and
let δ > 0. With probability at least 1− δ, holds true that

sup
fD∈FD

∣∣∣∣∣ 1n
n∑
i=1

fD(Xi)−
∫
fDdµ

∣∣∣∣∣ ≤ O
(√

log n

n

)
.

(38)

When fD(x) = eh(||x||2) and eh(t) = t2, the bounds
for the absolute difference in the rhs of (38) in (Gribonval
et al., 2015b) and (Vainsencher et al., 2011) are of order

O
(√

logn
n

)
and O

(√
log(
√
n)

n

)
respectively.

Although Proposition 4 is suboptimal compared to the latter,
let us recall that Proposition 4 is valid for all dictionaries
with unit-norm columns, in contrast to the last referenced
bounds that do not cover the whole of space D. With slight
modifications, Theorem 2 extends to Theorem 3 which cov-
ers any bounded lsc function g, including MCP or SCAD.
Theorem 3. Let g : Rd → [0,+∞) bounded and lsc, and
FD the function class with functions

fD(x) := inf
a∈Rd

eh(||x−Da||2) + g(a). (39)

Let ε > 0. Then

P

{
sup

fD∈FD

∣∣∣∣∣ 1n
n∑
i=1

fD(Xi)−
∫
fDdµ

∣∣∣∣∣ > ε

}

≤ 8s(F+
D , n)e

− nε2

32eh(T )2 ,
(40)

where s(F+
D , n) ≤

(
en

α(m,d)

)α(m,d)

and α(m, d) := ((m+

d)2 + 3(m+ d))/2 + 1. Furthermore, with probability at
least 1− δ, holds true that

sup
fD∈FD

∣∣∣∣∣ 1n
n∑
i=1

fD(Xi)−
∫
fDdµ

∣∣∣∣∣ ≤ O
(√

log n

n

)
.

(41)
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6. On the approximation error when m� d

As already mentioned, our aim is to analyze the expected
reconstruction error of the learned bases D̂n, R(D̂n) :=∫
fD̂n

dµ, when D̂n is the (ERM)-estimator D̂n :=
argminD∈DRn(D). This reconstruction error decomposes
into the estimation error εest and the approximation error
εapp as follows:

R(D̂n) = R(D̂n)−R(D∗)︸ ︷︷ ︸
:= εest

+R(D∗)︸ ︷︷ ︸
:= εapp

, (42)

where D∗ := argminD∈DR(D) is the optimal dictionary,
the global minimizer of the population risk. The estimation
error exists because D̂n is just an estimate for D∗. The ap-
proximation error measures the risk of restricting ourselves
to D rather than to a larger family of matrices. The opti-
mal choice for D̂n guarantees that both εest and εapp are the
smallest possible. The estimation error is bounded as

εest := R(D̂n)−R(D∗) ≤ 2 sup
D∈D

|Rn(D)−R(D)|.

(43)
In previous sections was proven that the rhs of (43) ap-
proaches zero as n → +∞ and that, in view of (42), the
reconstruction errorR(D̂n) is asymptotically equal to εapp.
The approximation error does not depend on the sample
size n; it is determined by the family of losses under study
and the probability distribution of the data. In the k-sparse
case, εapp is rarely zero, even for well behaved probability
measures µ. The authors in (Vovk, 2016), Section 24, show
that the two objectives, of good data approximation and of
sparsity of the combination vector a, are incompatible if the
data distribution puts its mass far from any low dimensional
subspace and in such cases εapp 6= 0.

In this section, assuming m� d, εapp is considered a func-
tion of d. An upper bound for εapp as d→ m, valid for any
probability measure µ ∈ P̄ , gives insights to the problem
of approximating points in Rm with combinations of points
lying on subspaces of dimension d. Following the approach
in (Liu & Tao, 2016), we relate the optimal population risk
R(D∗) to the quantization error of probability measure µ.

Next proposition is meaningful only in the case where g
is the indicator function of special compact subsets of Rd,
i.e., g(a) = χK(a) withK ⊂ Rd; χK(a) alternates between
zero and infinity according to whether its actual argument
belongs in K or not. Specifically, K is assumed to contain
the basis vectors of the positive orthant. Assumptions (H1)
to (H5) in Lemma 1 regarding h and its proximal map Ph
remain valid, but is also required that

(H6) Ph(t) = 0, when t ∈ [−τ, τ ], (44)

for some predefined value τ > 0. These assumptions sim-
plify the proof of Proposition 5: if they are true, then the

Moreau envelope behaves like the quadratic function t2

in a neighborhood around zero. Although assumptions
(H1) through (H6) may seem strict, they are valid for many
univariate penalty functions and compact sets, such as the
closed unit-norm balls in Rd.

Proposition 5. Assume m � d. Let the family of losses
FD be defined as FD := {fD(x); D ∈ D} with

fD(x) := inf
a∈Rd

eh(||x−Da||2) + χK(a), (45)

where χK is the indicator function of some compact setK ⊂
Rd that contains all basis vectors of the positive orthant, i.e.,
{ej}d1 ∈ K and ej is the j-th column of the identity matrix.

If h satisfies the assumptions of Lemma 1 while its proxi-
mal map Ph satisfies assumptions (H1)-(H6), then for the
approximation error it holds true that

R(D∗) := inf
D∈D

∫
fD(x)dµ ≤ O(d−2/m). (46)

The bound in (46) depends on m and d. Despite being
“weak”, as m−2/m → 1, this upper bound provides an
insight to the problem: when m is fixed, but sufficiently
large, and d → m, the approximation error decreases as
d increases, at rate O(d−2/m). Let us note here that the
UCEM property for the family of risk functions FD as
defined in Proposition 5 can be proved using elements from
the proof of Theorem 1 in Section 3.

7. Conclusions
This article is a theoretical analysis on the sample com-
plexity of dictionary learning when the loss function to be
minimized is the sum of the Moreau envelope of some uni-
variate lsc function h on the real line and a regularization
function g. We derive generalization bounds for a wide
range of g, including the case of the indicator function of all
k-sparse vectors. As a byproduct of this analysis is provided
some intuition behind the popularity of loss functions under
study in the context of “gross outliers”, that is, samples
with arbitrary “large” values. Finally, we comment on the
approximation error of an ideal family of losses when the
dimension m � d, where d is the size of the dictionary.
In the future, it would be interesting to characterize the
differentiability properties of the losses under study. Such
an analysis would have direct practical applications on the
design of numerical optimization algorithms.
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