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Appendices

A. Example of Comparison with the Influence

Maximization Problem

Suppose k = 1. Figure 3 depicts a graph for which the
optimal solution to the influence maximization problem is
different from the optimal solution to the budgeted experi-
ment design problems. Clearly, influencing vertex v1 leads
to influencing all the vertices in the graph, and hence, this
vertex is the solution to the influence maximization problem.
But, intervening on v1 leads to discovering the orientation
of only 3 edges, while intervening on, say v2, leads to dis-
covering the orientation of 5 edges.

B. Proof of Lemma 1

First we show that for a given directed graph Gi 2 G the
function D(I, Gi) is a monotonically increasing function
of I. In the proposed method, intervening on elements of
I, we first discover the orientation of the edges in A(I)

Gi
,

and then applying the Meek rules, we possibly learn the
orientation of some extra edges. Having I1 ✓ I2 implies
that A(I1)

Gi
✓ A(I2)

Gi
. Therefore using I2, we have more in-

formation about the direction of edges. Hence, in the step of
applying Meek rules, by soundness and order-independence
of Meek algorithm, we recover the direction of more extra
edges, i.e., R(A(I1)

Gi
, Gi) ✓ R(A(I2)

Gi
, Gi), which in turn

implies that D(I1, Gi)  D(I2, Gi). Finally, from the re-
lation D(I) = 1

|G|
P

Gi2G D(I, Gi), the desired result is
immediate.

C. Proof of Lemma 2

The direction R(A(I1)
G⇤ , G⇤) [ R(A(I2)

G⇤ , G⇤) ✓
R(A(I1[I2)

G⇤ , G⇤) is proved in the proof of Lemma 1.
Also, as observed in the proof of Lemma 1, we have
R(A(I1[I2)

G⇤ , G⇤) ✓ R(R(A(I1)
G⇤ , G⇤)[R(A(I2)

G⇤ , G⇤), G⇤).
Therefore, in order to prove that R(A(I1[I2)

G⇤ , G⇤) ✓
R(A(I1)

G⇤ , G⇤) [ R(A(I2)
G⇤ , G⇤), it suffices to show

that R(R(A(I1)
G⇤ , G⇤) [ R(A(I2)

G⇤ , G⇤), G⇤) ✓
R(A(I1)

G⇤ , G⇤) [ R(A(I2)
G⇤ , G⇤), for which it suffices

to show that if e 62 R(A(I1)
G⇤ , G⇤) and e 62 R(A(I2)

G⇤ , G⇤),
then e 62 R(R(A(I1)

G⇤ , G⇤) [R(A(I2)
G⇤ , G⇤), G⇤).

Proof by contradiction. Let e 62 R(A(I1)
G⇤ , G⇤) and

e 62 R(A(I2)
G⇤ , G⇤), but its orientation is learned in the

first iteration of applying Meek rules to R(A(I1)
G⇤ , G⇤) [

R(A(I2)
G⇤ , G⇤) [ A(Ess(G⇤)). Then, we have learned the

orientation of e due to one of Meek rules (Verma & Pearl,

𝑣1 𝑣2

𝑣4 𝑣3
Figure 3. Example of comparison with the influence maximization
problem.

1992):

• Rule 1. e = {a, b} is oriented as (a, b) if 9c s.t. e1 =

(c, a) 2 R(A(I1)
G⇤ , G⇤) [R(A(I2)

G⇤ , G⇤) [A(Ess(G⇤)),
and {c, b} 62 skeleton of G⇤.

• Rule 2. e = {a, b} is oriented as (a, b) if 9c s.t. e1 =

(a, c) 2 R(A(I1)
G⇤ , G⇤) [R(A(I2)

G⇤ , G⇤) [A(Ess(G⇤)),
and e2 = (c, b) 2 R(A(I1)

G⇤ , G⇤) [ R(A(I2)
G⇤ , G⇤) [

A(Ess(G⇤)).

• Rule 3. e = {a, b} is oriented as (a, b) if 9c, d s.t. e1 =

(c, b) 2 R(A(I1)
G⇤ , G⇤) [R(A(I2)

G⇤ , G⇤) [A(Ess(G⇤)),
e2 = (d, b) 2 R(A(I1)

G⇤ , G⇤) [ R(A(I2)
G⇤ , G⇤) [

A(Ess(G⇤)), {a, c} 2 skeleton of G⇤, {a, d} 2 skele-
ton of G⇤, and {c, d} 62 skeleton of G⇤.

• Rule 4. e = {a, b} is oriented as (a, b) and e =
{b, c} is oriented as (c, b) if 9d s.t. e1 = (d, c) 2
R(A(I1)

G⇤ , G⇤)[R(A(I2)
G⇤ , G⇤)[A(Ess(G⇤)), {a, c} 2

skeleton of G⇤, {a, d} 2 skeleton of G⇤, and {b, d} 62
skeleton of G⇤.

In what follows, we show that the orientation of e cannot be
learned due to any of the Meek rules unless it belongs to
R(A(I1)

G⇤ , G⇤) or R(A(I2)
G⇤ , G⇤).

Rule 1.

Without loss of generality, assume e1 2 R(A(I1)
G⇤ , G⇤) [

A(Ess(G⇤)). Therefore, we should have the condition of
rule 1 satisfied when only intervening on I1 as well, which
implies that e 2 R(A(I1)

G⇤ , G⇤), which is a contradiction.

Rule 2.

If both e1 and e2 belong to R(A(I1)
G⇤ , G⇤) [ A(Ess(G⇤))

(or R(A(I2)
G⇤ , G⇤) [A(Ess(G⇤))), then we should have the

condition of rule 2 satisfied when only intervening on I1 (or
I2) as well, which implies that e 2 R(A(I1)

G⇤ , G⇤) (or e 2
R(A(I2)

G⇤ , G⇤)), which is a contradiction. Therefore, it suf-
fices to show that the case that e1 belongs to exactly one of
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R(A(I1)
G⇤ , G⇤)[A(Ess(G⇤)) or R(A(I2)

G⇤ , G⇤)[A(Ess(G⇤))
and e2 belongs only to the other one, does not happen. To
this end, it suffices to show that there does not exist interven-
tion target set I such that e1 2 R(A(I)

G⇤ , G⇤)[A(Ess(G⇤)),
and e, e2 62 R(A(I)

G⇤ , G⇤)[A(Ess(G⇤)), i.e., there does not
exist intervention target set I that has structure S0, depicted
in Figure 4, as a subgraph of Ess(G⇤) after applying the
orientations learned from R(A(I)

G⇤ , G⇤).

𝑐

𝑏𝑎

𝑒1

𝑆0

Figure 4. Structure S0

If e1 2 A(I)
G⇤ , then a 2 I or c 2 I, which implies e 2 A(I)

G⇤

or e2 2 A(I)
G⇤ , respectively, and hence, e 2 R(A(I)

G⇤ , G⇤) or
e2 2 R(A(I)

G⇤ , G⇤), respectively. Therefore, in either case,
e 2 R(A(I)

G⇤ , G⇤), and S0 will not be a subgraph. Therefore,
e1 62 A(I)

G⇤ , and hence, e1 was learned by applying one of the
Meek rules. We consider each or the rules in the following:

• If we have learned the orientation of e1 from rule 1,
then we should have had one of the structures in Figure
5 as a subgraph of Ess(G⇤) after applying the orien-
tations learned from R(A(I)

G⇤ , G⇤). In case of struc-
ture S1, using rule 1 on subgraph induced on vertices
{v1, a, b}, we will also learn (a, b). In case of structure
S2, using rule 4, we will also learn (b, c). Therefore,
we cannot learn only the direction of e1 and hence, S0

will not be a subgraph.

𝑐

𝑏𝑎

𝑒1

𝑆1
𝑣1

𝑐
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𝑒1

𝑆2
𝑣1

Figure 5. Rule 1

• If we have learned the orientation of e1 from rule 3,
then we have had one of the structures in Figure 6 as
a subgraph of Ess(G⇤) after applying the orientations
learned from R(A(I)

G⇤ , G⇤). In case of structures S3

and S4, using rule 1 on subgraph induced on vertices
{v2, c, b}, we will also learn (c, b). In case of struc-
ture S5, using rule 3 on subgraph induced on vertices
{b, v2, c, v1}, we will also learn (b, c). Therefore, we
cannot learn only the direction of e1 and hence, S0 will
not be a subgraph.

𝑐

𝑏

𝑎

𝑒1

𝑆3
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𝑣2

𝑐

𝑏

𝑎
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𝑆4

𝑐

𝑏
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Figure 6. Rule 3

• If we have learned the orientation of e1 from rule 4,
then we have had one of the structures in Figure 7 as
a subgraph of Ess(G⇤) after applying the orientations
learned from R(A(I)

G⇤ , G⇤). In case of structures S6,
using rule 1 on subgraph induced on vertices {v1, c, b},
we will also learn (c, b). In case of structure S7, using
rule 1 on subgraph induced on vertices {v2, v1, b}, we
will also learn (v1, b), and then using rule 4 on sub-
graph induced on vertices {b, a, v2, v1}, we will also
learn (a, b). In case of structures S8, using rule 4 on
subgraph induced on vertices {b, v2, v1, c}, we will
also learn (b, c). Therefore, we cannot learn only the
direction of e1 and hence, S0 will not be a subgraph.

𝑐

𝑏𝑎
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Figure 7. Rule 4

• If we have learned the orientation of e1 from rule 2,
then we should have had one of the structures in Figure
8 as a subgraph of Ess(G⇤) after applying the orien-
tations learned from R(A(I)

G⇤ , G⇤). In case of struc-
ture S9, using rule 1 on subgraph induced on vertices
{v1, c, b}, we will also learn (c, b) and hence, S0 will
not be a subgraph. In case of structure S10, if v1 2 I,
then the direction of the edge {v1, b} will be also
known. If the direction of this edge is (v1, b), then
using rule 2 on subgraph induced on vertices {a, v1, b},
we will also learn (a, b); otherwise, using rule 2 on sub-
graph induced on vertices {b, v1, c}, we will also learn
(c, b). Therefore, v1 62 I. Also, as mentioned earlier,
a 62 I. Therefore, we have learned the orientation of
(a, v1) from applying Meek rules.

In the triangle induced on vertices {v1, b, a}, we have
learned only the orientation of one edge, which is
(a, v1). But as seen in structures S1 to S9, all of them
lead to learning the orientation of at least 2 edges of a
triangle. In the following, we will show that a structure
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of form S10, does not lead to learning the orientation
of only (a, v1) and making S10 a subgraph either.

𝑐

𝑏𝑎
𝑒1

𝑆9

𝑣1

𝑆10

𝑐

𝑏𝑎
𝑒1

𝑣1

Figure 8. Rule 2

Suppose we had learned (a, v1) via a structure of form
S10, as depicted in Figure 9(a). Using rule 4 on sub-
graph induced on vertices {v2, v1, c, b}, we will also
learn (b, c). Therefore, we should have the edge {v2, c}
too. Also, using rule 2 on triangle induced on ver-
tices {v2, v1, c}, the orientation of this edges should be
(v2, c). Therefore, in order to have S10 as a subgraph,
we need to have the structure depicted in Figure 9(b)
as a subgraph. As seen in Figure 9(b), we again have
a structure similar to S10: a complete skeleton K5,
which contains (vj , c), (a, vj), {vj , b}, for j 2 {1, 2}
and (v2, v1), with a triangle on vertices {v2, b, a}, in
which we have learned only the orientation of (a, v2).

𝑐

𝑏𝑎

𝑒1

(𝑎)

𝑣1

𝑣2𝑐

𝑏𝑎

𝑒1

𝑣1

𝑣2

(𝑏)

Figure 9. Step of the induction.

We claim that this procedure always repeats, i.e., at
step i, we end up with skeleton Ki, which contains
(vj , c), (a, vj), {vj , b}, for j 2 {1, ..., i} and (vk, vj),
for 1  j < k  i, with a triangle induced on vertices
{vi, b, a}, in which we have learned only the orienta-
tion of (a, vi). We prove this claim by induction. We
have already proved the base of the induction above.
For the step of the induction, suppose the hypothesis
is true for i� 1. Add vertex vi to form a structure of
form S10 for (a, vi�1). vi should be adjacent to vj , for
j 2 {1, ..., i� 2}; otherwise, using rule 4 on subgraph
induced on vertices {vi, vi�1, vj , b}, we will also learn
(b, vj). Moreover, using rule 2 on triangle induced on
vertices {vi, vi�1, vj}, the direction of {vi, vj} should
be (vi, vj). Also, using rule 4 on subgraph induced
on vertices {vi, vi�1, c, b}, we will also learn (b, c).
Therefore, we should have the edge {vi, c} too.

We showed that S0 is a subgraph only if S10 is a
subgraph, and S10 is a subgraph only if the structure
in Figure 9(b) is a subgraph, and this chain of required
subgraphs continue. Therefore, since the order of the

graph is finite, there exist a step where since we cannot
add a new vertex, it is not possible to have one of the
required subgraphs, and hence we conclude that S0 is
not a subgraph.

Rule 3.

Since edges e1 and e2 form a v-structure, they should
appear in A(Ess(G⇤)) as well. Therefore, we should have
the condition of rule 3 satisfied when only intervening on
I1 as well, which implies that e 2 R(A(I1)

G⇤ , G⇤), which is
a contradiction.

Rule 4.

Without loss of generality, assume e1 2 R(A(I1)
G⇤ , G⇤) [

A(Ess(G⇤)). Therefore, we should have the condition of
rule 4 satisfied when only intervening on I1 as well, which
implies that e 2 R(A(I1)

G⇤ , G⇤), which is a contradiction.

The argument above proves that there is no edge e such
that e 62 R(A(I1)

G⇤ , G⇤) and e 62 R(A(I2)
G⇤ , G⇤), but e 2

R(R(A(I1)
G⇤ , G⇤) [R(A(I2)

G⇤ , G⇤), G⇤).

D. Proof of Theorem 3

Let I⇤ = {v⇤1 , ..., v⇤k} 2 argmaxI:I✓V,|I|=k D(I). We
have

D(I⇤)
(a)
 D(I⇤ [ Ii) = D(Ii)

+
kX

j=1

[D(Ii [ {v⇤1 , ..., v⇤j })�D(Ii [ {v⇤1 , ..., v⇤j�1})]

(b)
 D(Ii) +

kX

j=1

[D(Ii [ {v⇤
j
})�D(Ii)],

(3)
where (a) follows from Lemma 1, and (b) follows from
Theorem 1. Define D̂i,v,1 and D̂i,v,2 as the first and second
calls of subroutine in i-th step for variable vv, respectively.
By the assumption of the theorem we have

D(Ii [ {v⇤
j
})� ✏D(Ii [ {v⇤

j
}) < D̂i,v

⇤
j ,1

(Ii [ {v⇤
j
}),

with probability larger than 1� �. Therefore

D(Ii [ {v⇤
j
}) < D̂i,v

⇤
j ,1

(Ii [ {v⇤
j
}) + ✏D(I⇤),

with probability larger than 1� �. Similarly

D̂i,v
⇤
j ,2

(Ii) < D(Ii) + ✏D(Ii) w.p. > 1� �,

) �D(Ii) < �D̂i,v
⇤
j ,2

(Ii) + ✏D(I⇤) w.p. > 1� �,
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Therefore,

D(Ii [ {v⇤
j
})�D(Ii) < D̂i,v

⇤
j ,1

(Ii [ {v⇤
j
})

� D̂i,v
⇤
j ,2

(Ii) + 2✏D(I⇤) w.p. > 1� 2�.
(4)

Also, by the definition of the greedy algorithm,

D̂i,v
⇤
j ,1

(Ii [ {v⇤
j
})� D̂i,v

⇤
j ,2

(Ii)

 D̂i,vi+1,1(Ii [ {vi+1})� D̂i,vi+1,2(Ii)
= D̂i,vi+1,1(Ii+1)� D̂i,vi+1,2(Ii),

(5)

and similar to (4), we have

D̂i,vi+1,1(Ii+1)� D̂i,vi+1,2(Ii) < D(Ii+1)

�D(Ii) + 2✏D(I⇤) w.p. > 1� 2�.
(6)

Therefore, from equations (4), (5), and (6) we have

D(Ii[{v⇤j })�D(Ii) < D(Ii+1)�D(Ii)+4✏D(I⇤), (7)

with probability larger than 1 � 4�. Plugging (7) back in
(3), we get

D(I⇤) < D(Ii) +
kX

j=1

[D(Ii+1)�D(Ii) + 4✏D(I⇤)]

= D(Ii) + k[D(Ii+1)�D(Ii)] + 4k✏D(I⇤),

with probability larger than 1� 4k�. Therefore,

D(I⇤)�D(Ii)
< k[D(I⇤)�D(Ii)]� k[D(I⇤)�D(Ii+1)] + 4k✏D(I⇤),

with probability larger than 1 � 4k�. Defining ai :=
D(I⇤) � D(Ii), and noting that a0 = D(I⇤), by induc-
tion we have

ak = D(I⇤)�D(Ik)

< (1� 1

k
)kD(I⇤) + 4✏D(I⇤)

k�1X

j=0

(1� 1

k
)j

< [
1

e
+ 4✏k]D(I⇤) w.p. > 1� 4k2�.

It concludes that

D(Ik) > (1� 1

e
� 4✏k)D(I⇤) w.p. > 1� 4k2�.

Therefore, for ✏ = ✏
0

4k and � = �
0

4k2 , Algorithms 1 is a
(1� 1

e
�✏0)-approximation algorithm with probability larger

than 1� �0.

E. Proof of Theorem 4

We run the algorithm for k iterations. In each iteration, we
execute the function D̂(.) using Subroutine 1 for at most n
vertices. Furthermore, in this subroutine, we generate N
random DAGs by calling the function RANDEDGE, where
in (Ghassami et al., 2018) it is shown that the complexity of
each call is O(n�). Hence, the computational complexity
of the algorithm is O(knN ⇥ n�).

F. Proof of Lemma 3

We require the following lemma for the proof:

Lemma 4. A chordal graph has a directed cycle only if it

has a directed cycle of size 3.

Proof. If the directed cycle is of size 3 itself, the claim is
trivial. Suppose the cycle Cn is of size n > 3. Relabel
the vertices of Cn to have Cn = (v1, ..., vn, v1). Since
the graph is chordal, Cn has a chord and hence we have
a triangle on vertices {vi, vi+1, vi+2} for some i. If the
direction of {vi, vi+2} is (vi+2, vi), we have the directed
cycle (vi, vi+1, vi+2, vi) which is of size 3. Otherwise, we
have the directed cycle Cn�1 = (v1, ..., vi, vi+2, .., vn, v1)
on n�1 vertices. Relabeling the vertices from 1 to n�1 and
repeating the above reasoning concludes the lemma.

Proof of Lemma 3. All the components in the undirected
subgraph of Ess(G⇤) are chordal (Hauser & Bühlmann,
2012). Therefore, by Lemma 4, to insure that a generated
directed graph is a DAG, it suffices to make sure that it does
not have any directed cycles of length 3, which is one of the
checks that we do in the proposed procedure. For checking
if the generated DAG is in the same Markov equivalence
class as G⇤, it suffices to check if they have the same set
of v-structures (Verma & Pearl, 1991), which is the other
check that we do in the proposed procedure.


