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Abstract

MAP perturbation models have emerged as a pow-
erful framework for inference in structured pre-
diction. Such models provide a way to efficiently
sample from the Gibbs distribution and facilitate
predictions that are robust to random noise. In
this paper, we propose a provably polynomial time
randomized algorithm for learning the parameters
of perturbed MAP predictors. Our approach is
based on minimizing a novel Rademacher-based
generalization bound on the expected loss of a per-
turbed MAP predictor, which can be computed
in polynomial time. We obtain conditions un-
der which our randomized learning algorithm can
guarantee generalization to unseen examples.

1. Introduction

Structured prediction can be thought of as a generaliza-
tion of binary classification to structured outputs, where
the goal is to jointly predict several dependent variables.
Predicting complex, structured data is of great significance
in various application domains including computer vision
(e.g., image segmentation, multiple object tracking), natural
language processing (e.g., part-of-speech tagging, named
entity recognition) and computational biology (e.g. protein
structure prediction). However, unlike binary classification,
structured prediction presents a set of unique computational
and statistical challenges. The chief being that the num-
ber of structured outputs is exponential in the input size.
For instance, in translation tasks, the number of parse trees
of a sentence is exponential in the length of the sentence.
Second, it is very common in such domains to have very
few training examples as compared to the size of the out-
put space thereby making generalization to unseen inputs
difficult.
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The key computational challenge in structured prediction
stems from the inference problem, where a decoder, param-
eterized by a vector w of weights, predicts (or decodes) the
latent structured output y given an observed input x. With
the exception of a few special cases, the general inference
problem in structured prediction is intractable. For instance
in many cases the inference problem reduces to the maxi-
mum acyclic subgraph problem which is NP-hard and hard
to approximate to within a factor of 1/2 of the optimal so-
Iution (Guruswami et al., 2008), or cardinality-constrained
submodular maximization, which is also NP-hard and hard
to compute a solution better than the (1 — 1/c)-approximate
solution returned by a greedy algorithm (Nemhauser et al.,
1978). The learning problem, where the goal is to learn the
parameter w of the decoder from a set of labeled training
instances, and which involves solving the inference problem
as a subroutine, is therefore intractable for all but a few
special cases. Hardness of max-margin learning (SVM) was
shown by (Sontag et al., 2010).

Hardness results notwithstanding, various methods — which
are worst-case exponential-time — have been developed
over the last decade for predicting structured data including
conditional random fields (Lafferty et al., 2001), and max-
margin approaches (Taskar et al., 2003), to name a few. In
these approaches, learning the parameter w of the decoder
involves minimizing a loss function L(w, S) over a data set
S of m training pairs {(z;,¥;)}7;. One could also take
a Bayesian approach and learn a posterior distribution Q
over decoder parameters w by minimizing the Gibbs loss
Ey~o [L(w,S)]. McAllester (McAllester, 2007) showed,
using the PAC-Bayesian framework, that the commonly
used max-margin loss (Taskar et al., 2003) upper bounds
the expected Gibbs loss over the data distribution, upto
statistical error. Therefore, minimizing the max-margin loss
provides a principled way for learning the parameters of a
structured decoder. More recently, (Honorio & Jaakkola,
2016) showed that minimizing a surrogate randomized loss,
where the max-margin loss is computed over a small number
of randomly sampled structured outputs, also bounds the
Gibbs loss from above upto statistical error.

The above can be thought of as weight based perturbation
models. The perturb-and-MAP framework introduced by
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(Papandreou & Yuille, 2011), and henceforth referred to as
MAP perturbation, provides an efficient way to generate
samples from the Gibbs distribution by injecting random
noise (that do not depend on the weights of the decoder w)
in the potential or score function of the decoder and then
computing the most likely assignment or energy configu-
ration (MAP). MAP perturbation models are an attractive
alternative to expensive Markov Chain Monte Carlo sim-
ulations for drawing samples from the Gibbs distribution,
in that the former facilitates one-shot sampling. Moreover,
learning MAP predictors for structured prediction problems
is particularly attractive because the predictions are robust
to random noise. However, learning the parameters of such
MAP predictors involves solving the MAP problem, which
in general is intractable. In this paper we obtain a provably
polynomial time algorithm for learning the parameters of
perturbed MAP predictors with structure based perturba-
tions. In the following paragraph we summarize the main
technical contributions of our paper.

Our contributions. To the best of our knowledge, we
are the first to obtain generalization bounds for MAP-
perturbation models with structure-based (Gumbel) pertur-
bations — for detailed comparison with existing literature
see Section 6. While it is well known that Gumbel perturba-
tions induce a conditional random field (CRF) distribution
over the structured outputs, we show that the generalization
error is upper bounded by a CRF loss up to statistical error.
We obtain Rademacher based uniform convergence guaran-
tees for the latter. However, the main contribution of our
paper is to obtain a provably polynomial time algorithm for
learning MAP-perturbation models for general structured
prediction problems. We propose a novel randomized sur-
rogate loss that lower bounds the CRF loss and still upper
bounds the expected loss over data distribution, upto approx-
imation and statistical error terms that decay as O (1//m)
with m being the number of samples. While it is NP-Hard
to compute and approximate the CRF loss in general (Bara-
hona, 1982; Chandrasekaran et al., 2008), our surrogate loss
can be computed in polynomial time. Our results also imply
that one can learn parameters of CRF models for structured
prediction in polynomial time under certain conditions. Our
work is inspired by the work of (Honorio & Jaakkola, 2016)
who also propose a polynomial time algorithm for learning
the parameters of a structured decoder in the max-margin
framework. In contrast to prior work which consider weight
based perturbations, our work is concerned with structure
based perturbations. Previous algorithms for learning MAP
perturbation models, for instance, the hard-EM algorithm
by (Gane et al., 2014) and the moment-matching algorithm
by (Papandreou & Yuille, 2011), are in general intractable
and have no generalization guarantees. Lastly, the main con-
ceptual contribution of our work is to demonstrate that it is
possible to efficiently learn the parameters of a structured

decoder with generalization guarantees without solving the
inference problem exactly.

2. Preliminaries

We begin this section by introducing our notations and for-
malizing the problem of learning MAP-perturbation models.
In structured prediction, we have an input x € X and a
set of feasible decodings of the input )(z). Without loss
of generality, we assume that |9 (z)| < r for all z € X.
Input-output pairs (x, y) are represented by a joint feature
vector ¢(z,y) € RY. For instance, when z is a sentence
and y is a parse tree, the joint feature map ¢(x, y) can be a
vector of 0/1-indicator variables representing if a particular
word is present in x and a particular edge is present in y.
We will assume that min{¢;(z,y) # 0 | j € [d]} > 1
which commonly holds for structured prediction problems,
for instance, when using binary features, or features that
“count” number of components, edges, parts, etc.

A decoder f,, : X — ), parameterized by a vector w € R?,
returns an output y € 2)(x) given an input z. We consider
linear decoders of the form:

fuw(x) = argmax (¢(z, y), w), ¢))
yeY(z)

which return the highest scoring structured output for a
particular input , where the score is linear in the weights
w. As is traditionally the case in high-dimensional statistics,
we will assume that the weight vectors are s-sparse, i.e.,
have at most s non-zero coordinates. We will denote the set
of s-sparse d-dimensional vectors by R%*.

In the perturb and MAP framework, a stochastic decoder
first perturbs the linear score by injecting some independent
noise for each structured output y, and then returns the struc-
tured output that maximizes the perturbed score. Gumbel
perturbations are commonly used owing to the max-stability
property of the Gumbel distribution. Denoting G(/3) as the
Gumbel distribution with location and scale parameters 0
and S respectively, we have the following stochastic de-
coder, where v ~ G" denotes a collection of 7 i.i.d. Gumbel-
distributed random variables and ~y, denotes the Gumbel
random variable associated with structured output y:

fwn () = argmax(g(x, y), w) + 7. (2)
yeY(z)

For any weight vector w, and data set S = {(x;,v;)} i

D™, we consider the following expected and empirical zero-
one loss:

L(w,D) = E(zy)~np [Byngr [Ly # fuq ()], (3)

L(wv S) = % ZE’YNQT [1 [yi 7’é f’w,’y(xi)]] s “4)
1=1
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where 1 [-] denotes the indicator function and D is the un-
known data distribution. We will let the scale parameter
depend on the number of samples m and the weight vector
w, and write 3(m, w) > 0. The reason for this will become
clear later, but intuitively one would expect that as the num-
ber of samples increases, the magnitude of perturbations
should decrease in order to control the generalization error.
Under Gumbel perturbations, f,, ,(;) is distributed accord-
ing to following conditional random field (CRF) distribution
Q(z;,w) with pmf ¢(-; z;,w) (Gumbel, 1954; Papandreou
& Yuille, 2011):
(yi; iy w) = Pryngr(s) {fuwy (i) = yi}
exp((¢(zi.yi)w)/g)

=T Zwo) ©)

where Z(w, ;) = 3, cy) () €xp((?(@i:v)w)/p) is the parti-
tion function. The empirical loss in (4) can then be com-
puted as:

(CRF loss) L(w,S) = %ZPr {fuory () #yi} -
i=1

The ultimate objective of a learning algorithm is to learn a
weight vector w that generalizes to unseen data. Therefore,
minimizing the expected loss given by (3) is the best strategy
towards that end. However, since the data distribution is
unknown, one instead minimizes the empirical loss (4) on a
finite number of labeled examples S.

3. Generalization Bound

As a first step we will show that the empirical loss (6) in-
deed bounds the expected perturbed loss (3) from above,
upto statistical error that decays as O (1/,/m). We have the
following generalization bound.

Theorem 1 (Rademacher based generalization bound).

With probability at least 1 — § over the choice of m samples
S:

(Yw € R®*) L(w, D) < L(w,S) + &(d, s, m,r,6),

where
Ind+ 21 In2
s(d,s,m,r,é):2\/s(n + n(mr))_'_g\/n/é.
m 2m
Proof. Let

def
Guw(T,y) = PI'VNQ"‘(B) {y # fw,"/(x)} )
d;f {gw | w e Rd’s}.

Then by Rademacher based uniform convergence, with prob-
ability at least 1 — § over the choice of m samples, we have

that:
d,s = log 2/s
(VYw € R*®) L(w, D) < L(w,S) 4+ 2Rs (&) + 3 o
(7

where DA‘{S(@) denotes the empirical Rademacher complex-
ity of . Let 0 = (O’Z) = be independent Rademacher

variables. Also define YW & {w/ﬂ(w,m) | w € R%*}. Then,

Rs(B)

m
= o’ [ sup Zazgw Tiy Yi ]

weRd:s T

1
= —Eo_
m

sup ZUZPI“»YNQ r() i # fw,w(xz)}]

weR®s ;T

a) 1
(:) 7]]4: lsup ZayPr'ng"(l) {y’b 7& fw 'Y(IT)}‘|

wWEW °;
1 m
< EEVNQT(U lEa L?IGJII/DVZ:UJ ly; # fw,w(fﬂi)]H

sup Zgz yz?'éfw’y(xZ)]‘Ha

d
ERgzl

where step (a) follows from Pr. grg) {¥i # fuw(2i)}
=Pr,gra) {yl # fu/sy (mi)} and step (b) follows from
W C R%*. We will enumerate the structured outputs
D(x;) as yi1,--.,Yir Forany fixed v, the weight vec-
tor w induces a linear ordering 7;(-;7y) over the struc-
tured outputs Y (x;), i.e., (A(Ti, Y x,(157)), W) + 11 >
<¢)(.231, yi,m(Q;'y))’ w> T2 > > <¢5($1, yi,m(r;v))v ’LU> +
vr. Let w(y) = {m;} be the orderings over all m data
points induced by a fixed weight vector w and fixed ~,
and let II(~y) be the collection of all orderings 7 () over
all w € R%* for a fixed v. Since w is s-sparse we have,
from results by (Bennett, 1956; Bennett & Hays, 1960;
Cover, 1967), that the number of possible linear orderings
is [TI(y)| < ( ) (mr)?* < d*(mr)? . Therefore we have:

Rs(B)

E., l ( sup Zgz Yi # Vi i (157y) ]]]

1
< —E, ¢
m e

(a)
< —\/s (log d + 2log(mr))v/m

_ \/5(1og d + 2log(mr))

m

)

where the inequality (a) follows from the Massart’s finite
class lemma. O

As a direct consequence of the uniform convergence bound
given by Theorem 1, we have that minimizing the CRF loss
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(6) is a consistent procedure for learning MAP-perturbation
models.

4. Towards an efficient learning algorithm

While Theorem 1 provides theoretical justification for learn-
ing MAP-perturbation models by minimizing the CRF loss
(6), with the exception of a few special cases, computing
the loss function is in general intractable. This is due to the
need for computing the partition function Z(w, z) which
is an NP-hard problem (Barahona, 1982). Further, even
approximating Z(w, ) with high probability and arbitrary
precision is also known to be NP-hard (Chandrasekaran
et al., 2008).

To counter this computational bottleneck, we propose an
efficient stochastic decoder that decodes over a randomly
sampled set of structured outputs. To elaborate further, given
some z € X, let R(x, w) be some proposal distribution, pa-
rameterized by x and w, over the structured outputs ) (z).
We generate a set T’ of n structured outputs sampled inde-
pendently from the distribution R and define the following
efficient stochastic decoder:

Juwq,m(2) = argmax(e(z, y), w) + vy 3
yeT’

Therefore f,, 7/ (z) is distributed according to the CRF
distribution Q(x, w, T') with pmf ¢(-; z, w, T") and support
on T’ as follows:

q(y;xawa T/) = Pr’YNg" {f’ux,’y,T’ (JC) = y}
C1[yeT]

Tt exp((d(z:y),w)/g),

whe.rt? T = > yer exp((9@@y).w)/p). Note thgt the
partition function Z,, , 7/ can be computed in time linear
in n, since [T’| = n. Now, let T = {T; | ; € S} be

the collection of n structured outputs sampled for each z;

in the data set, from the product distribution R(S, w) Lt

X (R(x;)™). Note that the distribution R(S, w) does not
depend on the {y;}’s in S. We denote the distribution over
the collection of sets {T;} by R(S,w) to keep the nota-
tion light. Additionally, we consider proposal distributions
R(x,w) that are equivalent upto linearly inducible order-
ings of the structured output.

Definition 1 (Equivalence of proposal distributions (Hon-
orio & Jaakkola, 2016)). For any x € X, two proposal
distributions R(z,w) and R(x,w’), with probability mass
Sunctions p(-; x,w) and p(-; x,w'), are equivalent if:

Vy,y' € D(x) = (p(z,y), w) < (d(z,y), w)
and (p(z,y),w') < (d(z,y"), w’)
= Yy e Y(z) ply; z,w) = p(y; z,w').

We then write R(z,w) = R(z,w’) = R(x,n(x)), where
m(x) is the linear ordering over )(x) induced by w (and
w’).

Intuitively speaking, the above definition requires proposal
distributions to depend only on the orderings of the values
(p(z,y1),w), ..., {¢(x,y,), w) and not on the actual value
of <¢(:C’ yj)? w>'

To obtain an efficient learning algorithm with generaliza-
tion guarantees, we will use augmented sets T = {T;}7,,
where T; = T, U{y;}. Then, given a random collection of
structured outputs T, we consider the following augmented
randomized empirical loss for learning the parameters of
the MAP-perturbation model:

_ 1 &
L(w,S,T) = — > Prywge {fun1. () Fvi}. 9
i=1

As opposed to the loss function given by (6), the loss in (9)
can be computed efficiently for small n. Our next result
shows that the randomized augmented loss lower bounds
the full CRF loss L(w, S) as long as T, is a set, i.e., contains
only unique elements.

Lemma 1. For all data sets S, T; C (x;), and weight
vectors w:

L(w,S,T) — L(w,S) =

m

- %ZPI"Y {fw,’y,fi(xi) = yz} X
Pr, {fw,'y(xi) € (D(z:) \Tz)} <0 (10

Proof. Foranyx € X, T C Q(z), y € T and weight vector
w:

Pr, {fuw~(2) =y} — Pry {fu~1(x) =y}

oty [ 2002 T) — Z(w,2)
Z(w7 :E)Z('LU, x, T)

by w) 1

_ — 3 el
Z(we,T) Z(w,2) |, o

= —Pry {fu,7(@) =y} Pry {fuy(z) € D() \ T}.
Since by construction y; € T;, the final claim follows. [

Remark 1. If T; = 9(x;) then L(w,S) = L(w,S, T;).

Next, we will show that an algorithm that learns the pa-
rameter w of the MAP-perturbation model, by sampling a
small number of structured outputs for each z; and mini-
mizing the empirical loss given by (9), generalizes under
various choices of the proposal distribution R. Our first step
in that direction would be to obtain uniform convergence
guarantees for the stochastic loss (9).



Learning Maximum-A-Posteriori Perturbation Models for Structured Prediction in Polynomial Time

4.1. Generalization bound

To obtain our generalization bound, we decompose the dif-
ference L(w,S) — L(w, S, T) as follows:

L(w,S) — L(w,S,T) = A(w,S) + B(w,S,T), (11
A(wa S) = L(wa S) - ETNR(S) [L(wa Sa T)} ; (12)
B(U},S,T) = IETN72(S) I:L(’LU,S,T)] _L(waS7T)7 (13)

where A(w, S) can be thought of as the approximation er-
ror due to using a small number of structured outputs T;’s
instead of the full sets 2)(w;), while B(w, S, T) be is the
statistical error. In what follows, we will bound each of
these errors from above.

From Lemma 1 it is clear that the proposal distribution
plays a crucial role in determining how far the surrogate
loss L(w,S, T) is from the CRF loss L(w,S). To bound
the approximation error, we make the following assumption
about the proposal distributions R (z, w).

Assumption 1. For all (z;,y;) € S and weight vectors
w € RS, the proposal distribution satisfies the follow-
ing condition with probability at least 1 — lwll1//m, for a
constant ¢ € [0, 1]:

(i) Ti =Ly} iV y # yio(xi, vi),
(i) & 3, ct. (O(zi,y),

erwise,

w) > (P(zi,y), w),
U}> 2 <¢($iayi)’w>+c”w”1 oth-

where the probability is taken over the set T ;.

Intuitively, Assumption 1 states that, if y; is not the highest
scoring structure under w, then the proposal distribution
should return structures T = {y} whose average score is an
additive constant factor away from the score of the observed
structure y; with high probability. Otherwise, the proposal
distribution should return the singleton set T = {y;} with
high probability. Note that Assumption 1 is in comparison
much weaker than the low-norm assumption of (Honorio
& Jaakkola, 2016), which requires that, in expectation, the
norm of the difference between ¢(x, y) and ¢(x, y;) (Where
y is sampled from the proposal distribution) should decay
as 1//m. The following lemma bounds the approximation
error from above.

Lemma 2 (Approximation Error). If the scale param-
eter of the Gumbel perturbations satisfies: [ <
min(llwlls/log m, Wmin/log((r—1)(vm—1))) for all w # 0, and
n > mP57¢ then under Assumption 1 A(w,S) <
e1(m, n,w), where

paet llully 1
vm o 1+ ym’

and Wp,in, = min{|w;| | |w;| # 0,4 € [d]}.

e1(m,n,w

def
Proof. Let Ai(w,S) = Pr“/NQ(ﬁ) {fw,'y(wi) 7 yi} -
Et, [Pryg(s) { fu .7, (xi) # yi}] be the i-th term of
A(w,S). We will consider two cases.

Case I: y; is strictly the highest scoring structure for x;

under w, i'e'v \V/y 7& Yi <¢(.13,“ yl)7 w> > <¢($ia y)7 w> First
note that:

Ai(w, S) < Prv~g(5) {fw,"/(xi) #* yi} . (14)

We will prove that Pr.. g(g) {fuw~(2:) # ¥} < Yvm.
Assume instead that Pr.g(s) { fuw~(z:) # vi} > Yvm.
Then

Z (Vm — 1)e<¢(wuy),UJ)/B S l¢(@iyi),w)/B

Y#Yi

Lety' € Y(z;) \ {yi} be such that (¢(z;,y’), w) is maxi-
mized. Then, (r —1)(y/m — 1)e{®@:¥):w)/8 ypper bounds
the left-hand side of the above equation. Taking log on both
sides we get:

(P(wi,yi) — d(zi,y"), w)
log((r — 1)(vm — 1))

Since y; is the unique maximizer of the score (¢(x;, y;), w),
o(x;,y') and ¢(x;,y;) must differ on at least one element
in the support set of w. This implies, from above and the
assumption that the minimum non-zero element of ¢(x, y)
is at least 1:

B>

P> G =D =)

which violates Assumption 1. Therefore from (14) we have
that 4;(w, S) < 1/y/m.

Case II: dy # vy;
Ai(y) € d(xi,y) —

(i, y),w) > (b2, y:), w). Let

o(x;,y;). In this case,

Ai(w,s) L Er, [Pry { fuy 7, () = 0i}]
B exp({¢ (331792) w) /)
-5, [l 1)

Z(w, z;,

1
[ S emi(y),w/ﬁ]

(c) 1
< Eg |—=— 15
> g, {1-1—116571/4’ ( )

where we have defined S; < 1 & 2 yeT, (Ai(y), w). In the
above, in step (a) we dropped the term Pry {fuw~(zi) =y}
to get an upper bound. Step (b) follows from dividing the
numerator and denominator by exp({¢(z;,y;), w)) and that
yi € T;. Step (c) follows from Jensen’s inequality. Now,

1
Es, [1+neSi/ﬁ}
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1
= Es, [1+ns/5|

”le ”le
> - = > - 2
12 PrqS; > >

1 l|wll; NJwlly
Eg | ———— 1| S; P p
+ S7'|:1—|-TL6577/5|S< 3 riS; < 5

@ 1 wlly IIwII
<Eg, | ———— | S; > 1
= s [1—&—71651:/6 | 2 | T

(b) 1 |w||1

= Bs, [1 + nei l%’"/nwul Si 2

Hle

’L

2
_ 1 ||wH1
- Esi |:]_ —+ nms’i/llwl\l
1 l[wlly
=7 +nym - m’
where inequality (a) follows from Assumption 1 and (b)

follows from the fact that 5 < llwll/logm. Thus from (15)
and (16) we have that A;(w,S) < Y/(1+nym) + I/ /m.

(16)

The final claim follows from Case I and II. O

Note that for ¢ > 0.5 the number of structured outputs
needed is n = 1, while in the worst case (¢ = 0) n = /m.
Furthermore, n needs to grow polynomially with respect to
m in order to achieve O (1/,/m) generalization error.

Lemma 3 (Statistical Error). For any fixed data set S, the
statistical error B(w, S, T) is bounded, simultaneously for
all proposal distributions R(x;, w) over {T;}, as follows:

Prr {(Vw e R B(w,S,T) < es(d, s,n,m,m,9) | S}

>1-4, (7
where
1
eo(d, 5,1, 7,m, 0) def 2\/s(lnd+ 21In(nr)) N \/ln /5+
m 2m
\/s(lnd +2In(mr)) +1In1/s
2m )

The proof of the above lemma is adapted from the proof of
Rademacher based uniform convergence, and can be found
in Appendix A in the supplementary material.

Now, we are ready to present our main result proving uni-
form convergence of the randomized loss L(w, S, T). More
specifically, we provide O (1//m) generalization error.
Theorem 2. With probability at least 1 — 26 over the choice
of the data set S and the set of random structured outputs T,
and simultaneously for all w € R®* and proposal distribu-
tions R(x,w):

L(w,D) < L(w,S, T) + &1 + &2, (18)

where €1 and €2 are defined in Lemma 2 and 3 respectively.

Proof. The claim follows directly from Lemma 2 and
Lemma 3 by taking an expectation with respect to S. O

4.2. Examples of proposal distributions

Having proved uniform convergence of our randomized pro-
cedure for learning the parameters of a MAP decoder, we
turn our attention to the proposal distribution. We want to
construct proposal distributions of the form given by Def-
inition 1 that satisfy Assumption 1 with a large enough
constant c. Additionally, for our randomized procedure to
run in polynomial time we want the proposal distribution
to sample a structured output in constant time. The fol-
lowing algorithm is directly motivated by Assumption 1
where the set neighbors, (y) for an input z is defined as:

. def .
neighborsy (y) = {y" € V() \{y} | H(y,y') <k}, with
H(-, ) being the Hamming distance.

Algorithm 1 An example algorithm implementing a pro-
posal distribution that depends on y; € S.

1: Input: Weight vector w € R®*, (z;,y;) € S, parame-
ter € [0,1] and k& > 1.

2: Output: A structured output y € 9 (z).

3: With probability « pick ¢’ uniformly at random from

) (z;), and with probability 1 — « set ¢’ to y;.

Yy

for y' € neighbors, (y) do
if (6(2,9/), w) > (6(x, y),

y <y

end if

end for

10: Return y.

w) then

R A

Remark 2. Setting o = lwlli//m, Algorithm 1 satisfies
the condition given in Definition I as well as Assumption
1. Since, for any w,w' € R%* that induce the same linear
ordering over ) (x), conditioned on the y' sampled in Step
3, the algorithm returns the same y for both w and w' with
probability 1.

Also note that using a larger k ensures that the above al-
gorithm satisfies Assumption 1 with a larger constant c,
thereby reducing the number of structured outputs that need
to be sampled (n), at the cost of increased computation for
sampling a single structured output.

The parameter « in Algorithm 1 controls exploration vs
exploitation. As o becomes smaller Algorithm 1 returns
a proposal from within the neighborhood of y; while for
larger « it explores high scoring structures in the entire set
of candidate structures.

Lastly, note that our results do not violate the hardness
results of (Sontag et al., 2010), who essentially show that it
is NP-hard to decide if the training data is linearly separable.
Depending on whether or not the data is linearly separable,
the loss L(w, S) (6) can be large or small (for all or some
weight vector). While computing L(w, S) is intractable in
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general, we merely provide an efficiently computable lower
bound L(w, S, T) ((9)) that still upper bounds the expected
loss L(w, D).

4.3. Minimizing the CRF loss

In this section we discuss strategies for minimizing
the (randomized) CRF loss L(w,S,T). Minimizing
the randomized CRF loss L(w,S,T) is equivalent to
maximizing the randomized CRF gain U(w,S,T) =
Ly Pry {fu~ 7, (xi) = yi }. which in turn is equiv-
alent to maximizing log U(w, S, T). The latter can be ac-
complished by gradient based methods with the gradient of
log U(w, S, T) given by:

Yoiey 4i(P(xis yi) — E [p(xi,y)])
Z?;l qi ’

19)
where ¢; ef Pry {fu~ 7. (x:) = yi }. and the expectation is
taken with respect to y ~ Q(z;, w, T;). The exact CRF loss
(L(w,S)) can similarly be minimized by using T; = 9)(z;),
for all z; € S, in the above. Note that by Jensen’s inequal-
ity IOg U(’UJ, Sa T) Z % 221 log Pr’y {fu);yj'i (xz) - yi},
where the latter can be identified as the log likelihood of
the data set S under the CRF distributions {Q(z;, w, T;)}.
Therefore, L(w, S, T) can be equivalently minimized by
minimizing the negative log-likelihood of the data, which
in turn gives rise to the well known moment-matching rule
known in the literature (Papandreou & Yuille, 2011). Thus,
Algorithm 1 can be used with standard moment matching
where the expectation is approximated by averaging over y’s
drawn from the distribution Q(z;,w, T;). While standard
moment matching is in general intractable, moment match-
ing in conjunction with Algorithm 1 is always efficient.
Indeed, (19) can be thought of as a “weighted” moment
matching rule with weights g;.

VwlogU(w,S, 'T') =

S. Experiments

In this section, we evaluate our proposed method
(CRF_RAND) on synthetic data against three other meth-
ods: CRF_ALL, SVM_RAND, and SVM. The CRF_RAND
method minimizes the randomized loss L(w, S, T) (9) sub-
ject to ¢ penalty (as prescribed by Lemma 2) by sampling
structured outputs from the proposal distribution given by
Algorithm 1. The CRF_ALL method minimizes the ex-
act (exponential-time) loss L(w, S) (6). Lastly, SVM is the
widely used max-margin method of (Taskar et al., 2003),
while SVM_RAND is the randomized SVM method proposed
by (Honorio & Jaakkola, 2016).

We generate a ground truth parameter w* € R? with ran-
dom entries sampled independently from a zero mean Gaus-
sian distribution with variance 100. We then randomly
set all but s = +/d entries to be zero. We then generate

a training set of S of 100 samples. We used the follow-
ing joint feature map ¢(x, y) for an input output pair. For
every pair of possible edges or elements ¢ and j, we set
&(x,y)i; =1[x;; =1ANi€yAj €y Forinstance, for
directed spanning trees of v nodes, we have x € {0, 1}(5)

and ¢(z,y) € R(2). We considered directed spanning trees
of 6 nodes, directed acyclic graphs of 5 nodes and 2 parents
per node, and sets of 4 elements chosen from 15 possi-
ble elements. In order to generate each training sample
(z,y) € S, we generated a random vector  with indepen-
dent Bernoulli entries with parameter 1/2. After generating
x,wesety = fu+(x), i.e., we solved (1) in order to produce
the latent structured output y from the observed input = and
the parameter w*.

We set the /1 regularization parameter to be 0.01 for all
methods. We used 20 iterations of gradient descent with
step size of 1/ for all algorithms, where ¢ is the iteration,
to learn the parameter w for both the exact method and our
randomized algorithm. In order to simplify gradient cal-
culations, we simply set 5 = 1/log((r — 1))(y/m — 1))
during training. For CRF_RAND, we used Algorithm 1
with a = lwl,/ym and invoke the algorithm /m num-
ber of times to generate the set T, for each ¢ € [m] and
w. This results in n = |T;| < y/m. To evaluate the gen-
eralization performance of our algorithm we generated a
test set S' = {x,y;}72, of 100 samples and calculated
two losses. The first was the full CRF loss (6) on the
test set S’, and the second was the test set hamming loss
LS H(fo(xh),y}), where H(-, ) is the normalized
Hamming distance, and w is the learned parameter. Ham-
ming distance is a popular distortion function used in struc-
tured prediction, and provides a more realistic assessment
of the performance of a decoder, since in most cases it suf-
fices to recover most of the structure rather than predicting
the structure exactly. For DAGs and trees the Hamming
distance counts the number of different edges between the
structured outputs, while for sets it counts the number of
different elements. We normalize the Hamming distance
to be between 0 and 1. We computed the mean and 95%
confidence intervals of each of these metrics by repeating
the above procedure 30 times.

Figure 1 shows the training and test set errors and the train-
ing time of the four different algorithms. CRF_RAND sig-
nificantly outperformed other algorithms in both the test set
loss and test set hamming loss, while being ~ 6 times faster
than the exact method (CRF_ALL) for DAGs, ~ 20 times
faster for trees, and ~ 3 times faster for sets. The exact CRF
method (CRF_ALL) was also significantly faster than the
exact SVM (SVM) method while achieving similar test set
loss and test set hamming loss.
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Figure 1. (Left) Training and test set loss (6), and test set hamming loss of the exact method (CRF_ALL) and our randomized algorithm
(CRF_RAND), the randomized SVM method by (Honorio & Jaakkola, 2016) (SVM_RAND), and the exact SVM (SVM_ALL), a.k.a
max-margin, method of (Taskar et al., 2003). For the randomized algorithms, i.e., CRF_RAND and SVM_RAND, the training loss is the
randomized training loss, i.e., L(w, S, T) and L(w, S, T) respectively. (Right) Training time in seconds for the various methods.

6. Related Work

Significant body of work exists in computing a single MAP
estimate by exploiting problem specific structure, for in-
stance, super-modularity, linear programming relaxations to
name a few. However, in this paper we are concerned with
the problem of learning the parameters of MAP perturbation
models. Among generalization bounds for MAP perturba-
tion models, (Hazan et al., 2013b) prove PAC-Bayesian gen-
eralization bounds for weight based perturbations. (Hazan
et al., 2013b) additionally propose learning weight based
MAP-perturbation models by minimizing the PAC-Bayesian
upper bound on the generalization error. However, their
method for learning the parameters involves constructing
restricted families of posterior distributions over the weights
w that lead to smooth, but not necessarily convex, gen-
eralization bounds that can be optimized using gradient
based methods. For learning MAP-perturbation models
with structure based (Gumbel) perturbations, (Gane et al.,
2014) propose a hard-EM algorithm which is both worst-
case exponential time and has no theoretical guarantees.
(Papandreou & Yuille, 2011) on the other hand, propose
learning Gumbel MAP-perturbation models by using the
moment matching method. However, such an approach is
tractable only for energy functions for which the global min-
imum can be computed efficiently. Lastly, (Hazan et al.,
2013a; Orabona et al., 2014) consider the problem of ef-
ficiently sampling from MAP perturbation models using
low dimensional perturbations. (Hazan & Jaakkola, 2012;
Hazan et al., 2013a) additionally propose ways to approxi-
mate and bound the partition function. While such bounds
on the partition function can be used, in principle, to approx-
imately minimize the CRF loss (6), it is unclear if one can
obtain uniform convergence guarantees for the same, given
that computing or even approximating the partition function

is NP-hard (Barahona, 1982; Chandrasekaran et al., 2008).

7. Concluding remarks

We conclude with some directions for future work. While
in this work we showed that one can learn with approximate
inference, it would be interesting to analyze approximate
inference for prediction on an independent test set. Another
avenue for future work would be to develop more power-
ful proposal distributions that allow for more finer-grained
control over the parameter ¢ by exploiting problem specific
structure like submodularity.
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