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Abstract
Learning weights in a spiking neural network with
hidden neurons, using local, stable and online
rules, to control non-linear body dynamics is an
open problem. Here, we employ a supervised
scheme, Feedback-based Online Local Learning
Of Weights (FOLLOW), to train a heterogeneous
network of spiking neurons with hidden layers,
to control a two-link arm so as to reproduce a
desired state trajectory. We show that the network
learns an inverse model of the non-linear dynam-
ics, i.e. it infers from state trajectory as input to
the network, the continuous-time command that
produced the trajectory. Connection weights are
adjusted via a local plasticity rule that involves
pre-synaptic firing and post-synaptic feedback of
the error in the inferred command. We propose
a network architecture, termed differential feed-
forward, and show that it gives a lower test error
than other feedforward and recurrent architectures.
We demonstrate the performance of the inverse
model to control a two-link arm along a desired
trajectory.

1. Introduction
Motor control requires building internal models of the

muscles-body system (Conant & Ashby, 1970; Pouget &
Snyder, 2000; Wolpert & Ghahramani, 2000; Lalazar & Vaa-
dia, 2008). The brain possibly uses random movements dur-
ing pre-natal (Khazipov et al., 2004) and post-natal develop-
ment (Petersson et al., 2003) termed motor babbling (Melt-
zoff & Moore, 1997; Petersson et al., 2003) to learn internal
models of the muscles-body dynamical system (Lalazar &
Vaadia, 2008; Wong et al., 2012; Sarlegna & Sainburg, 2009;
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Dadarlat et al., 2015). Forward models use neural motor
commands to predict body movement, while inverse mod-
els take a desired trajectory and generate the neural motor
commands that would produce it. Here we focus on the
inverse model for motor control: given a desired state trajec-
tory ~xD(t) for the dynamical system formed by the muscles
and body, networks of spiking neurons in the brain must
learn to produce the time-dependent neural control input
that activates the muscles to produce the desired movement.
Abstracting the muscles-body dynamics as

d~x/dt = ~f(~x, ~u), (1)

we require the network to generate control input ~u(t), given
desired state trajectory ~xD(t), that makes the state evolve as
~x(t) ≈ ~xD(t). Our aim is to train a network of spiking neu-
rons with hidden layers, via a local synaptic plasticity rule,
to learn the inverse model of the muscle-body dynamics.

In networks of continous-valued or spiking neurons, train-
ing the weights of hidden neurons with a local learning rule
is considered difficult due to the credit assignment prob-
lem (Bengio et al., 1994; Hochreiter et al., 2001; Abbott
et al., 2016). Supervised learning in neural networks, includ-
ing for motor control, has typically been accomplished by
backpropagation of error (Rumelhart et al., 1986; Williams
& Zipser, 1989) which is non-local, reservoir computing
(Jaeger, 2001; Maass et al., 2002) which trains only output
weights, FORCE learning (Sussillo & Abbott, 2009) which
requires weight changes faster than the requisite dynam-
ics, and adaptive control theory based schemes (Narendra
& Parthasarathy, 1990; Sanner & Slotine, 1992; MacNeil
& Eliasmith, 2011; Bourdoukan & Denève, 2015; DeWolf
et al., 2016) which use non-local rules or if local learn
only linear systems. Recently, local learning schemes have
emerged for learning forward models of non-linear dynami-
cal systems (Gilra & Gerstner, 2017; Alemi et al., 2017).

We employ the scheme called Feedback-based Online
Local Learning Of Weights (FOLLOW) (Gilra & Gerstner,
2017), which draws upon adaptive control theory (Morse,
1980; Narendra et al., 1980; Narendra & Annaswamy, 1989;
Ioannou & Sun, 2012) and function and dynamics approxi-
mation theory (Funahashi, 1989; Hornik et al., 1989; Girosi
& Poggio, 1990; Eliasmith & Anderson, 2004). FOLLOW
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is a synaptically local and provably stable and convergent al-
ternative for training the feedforward and recurrent weights
of hidden spiking neurons in a network, that was employed
to predict non-linear dynamics (Gilra & Gerstner, 2017).
Gilra & Gerstner (2017) employed the FOLLOW scheme to
enable a recurrent network to learn a forward model of arm
dynamics, i.e. to predict arm state given neural control input.
Here, we aim at solving the full motor control problem, and
also learn the inverse model to infer control input given an
arm trajectory. Learning either the forward or the inverse
model requires solving an ‘inverse problem’ i.e. we must
infer the model, summarized in the weights of the network,
given the data namely the input ~u(t) and output ~x(t) of the
dynamical system. However, the roles of input and output
are reversed, and those of delays are unique, compared to
the forward model. We therefore propose a novel differen-
tial feedforward architecture for learning the inverse model,
rather than the recurrent architecture used for the forward
model. Finally, we embed the inverse model in a closed
loop to make the arm replicate a desired trajectory.

2. Network Architecture and FOLLOW
Scheme to Learn Inverse Model
We use a network of leaky-integrate-and-fire (LIF) neu-

rons with different biases to learn the inverse model of an
arm (Fig. 1). The arm, adapted from (Li, 2006), is mod-
elled as a two-link pendulum moving in a vertical plane
under gravity, with friction at the joints, 0◦ as the equilib-
rium downwards position, and soft bounds on motion be-
yond ±90◦. As shown in Figure 1A, random 2-dimensional
torque input uγ(t), γ = 1, 2 is provided to the arm to gener-
ate random state trajectories ~x(t) analogous to motor bab-
bling. The 4-dimensional state of the arm (2 joint angles
and 2 joint velocities), denoted xβ , β = 1, ..., 4, is fed as
input to the network via fixed, random weights. The net-
work must learn to infer ~u(t) that generated the arm state
trajectory ~x(t).

We chose the network in Figure 1B, termed the differ-
ential feedforward network, from a variety of network ar-
chitectures (see section 4), to learn the inverse model. We
have K = L = 3000 neurons each, in the two sets in the
first hidden layer, indexed by k = 1 . . .K, and l = 1 . . . L,
followed by N = 5000 neurons in the next hidden layer
indexed by i = 1 . . . N . The state vector ~x is fed to the two
differential feedforward sets, undelayed to one and delayed
to the other by an interval ∆, via fixed random weights e(ff1)

kβ

and e(ff2)
lβ respectively. The current into a neuron k in the

undelayed set is given by

Jk =
∑
β

eff1
kβxβ(t) + bk, (2)

A

B

Figure 1. Network configuration for learning the inverse
model. A. During learning, random motor commands uγ cause
arbitrary movements of the arm (motor babbling). The observed
4-dimensional state xβ of the arm (from visual and proprioceptive
feedback) is given as input to the network via fixed random weights
e(ff)
iβ . The inferred 2-dimensional motor command ûγ is linearly

decoded from the filtered output spike trains of the network via
fixed weights dγi. A copy of the actual motor command (input to
the arm) is used, after a delay of ∆u, to compute the error in the
inferred motor command, i.e. error εγ(t) = uγ(t− ∆u) − ûγ(t).
This error is fed back into the network with fixed random encod-
ing weights keiγ . B. Learning inverse model with a differential
feedforward network. The learning paradigm and configuration
are as in panel A. The input is sent undelayed to a set of neurons
ff1 via encoding weights e(ff1)

kβ and delayed by ∆ to another set
ff2 via encoding weights e(ff2)

lβ . These two sets feed into the next

layer with plastic weights w(1)
ik and w(2)

il respectively (red). The
fedback error and the filtered pre-synaptic spike train are used to
update these feedforward weights (red). In both panels, twin lines
in the connection arrows denote multi-dimensional signals, but
their number is not representative of the dimensionality.

where bk is a fixed, random neuron-specific bias. Similarly,
the current into a neuron l in the delayed set is given by

Jl =
∑
β

eff2
lβxβ(t− ∆) + bl, (3)

where bl is also a fixed, random neuron-specific bias.

The output ~̂u(t) of the network is a linearly weighted
sum of filtered spike trains Si(t) of the second hidden layer
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neurons:

ûγ(t) =
∑
i

dγi

∫ t

−∞
Si(s)κ(t− s)ds

≡
∑
i

dγi(Si ∗ κ)(t), (4)

with readout weights dγi and filtering kernel κ(t) a decaying
exponential with time constant τs = 20 ms. This readout
~̂u(t) of the network is compared to a time-delayed version
of the command input, with delay ∆u ms, to causally infer
the past command. Borrowing from adaptive control theory
(Narendra & Annaswamy, 1989; Ioannou & Sun, 2012), the
error εγ ≡ uγ(t − ∆u) − ûγ(t) is fed back as neural cur-
rents to the second hidden layer neurons with fixed random
feedback weights eiγ multiplied by a gain k = 10. The total
current into neuron i in the second hidden layer is a sum of
the two feedforward currents and the error current:

Ji =
∑
k

w
(1)
ik (Sff1

k ∗ κ)(t) +
∑
l

w
(2)
il (Sff2

l ∗ κ)(t)+∑
γ

keiγ(εγ ∗ κ)(t) + bi, (5)

where bi is a neuron-specific bias, and Sff1
k and Sff2

l are the
spike trains of the two sets of neurons in the first hidden
layer.

The trick in the FOLLOW scheme is to pre-learn the
readout weights dγi to be an auto-encoder with respect
to error feedback weights eiγ . Learning the auto-encoder
could be accomplished by existing local learning schemes
(Burbank, 2015; Urbanczik & Senn, 2014), and so the auto-
encoder was pre-learned algorithmically here. Due to this
auto-encoder, the error feedback with high gain k acts as a
negative feedback that serves to make the network output
~̂u(t) follow the true command torque ~u(t− ∆), even before
the hidden weights are learned. The system dynamics and
command torque are required to vary slower than the synap-
tic timescale. The learning rule is (Gilra & Gerstner, 2017):

dwij
dt

= η (Iεi ∗ κε)(Sj ∗ κ)(t), (6)

where Iεi ≡ k
∑
α eiαεα is the error current injected into

each neuron, κε is a decaying exponential filter of time con-
stant 200 ms and Sj is the pre-synaptic spike train. There-
fore, the learning rule uses only quantities that are locally
available at the site of the synapse.

This FOLLOW learning rule is applied on the plastic
weights (in red in Fig. 1B), while the current state of the
arm serves as input to the network. Due to the error feedback
loop, the network output follows the time-delayed command
input torque. FOLLOW learning has been shown, using a

Lyapunov approach and under reasonable approximations,
to be uniformly stable, with the squared error in the learned
output tending asymptotically to zero (Gilra & Gerstner,
2017). Details and parameters for generating the random
input, the arm dynamics and the fixed random network pa-
rameters are as in (Gilra & Gerstner, 2017), but the learning
rule has so far not been tested on the inverse model.

After the training phase, we expect that even if we remove
the error feedback loop, the network will still be able to infer
the command input given the current trajectory.

3. Learning the Inverse Model: Inferring
Control Command Given Arm Trajectory
At the start of learning, all trainable weights were ini-

tialized to zero. The state trajectory was fed as input to
the network, while the network had to learn to produce the
command (delayed by ∆u) that caused the trajectory.

In Figure 2, we show the different stages in FOLLOW
learning for the differential feedforward network of Figure
1B. Before learning, without feedback, the network output
remained zero. With feedback on, even before the weights
have been learned, the network output approximately fol-
lowed the desired output i.e. the time-delayed reference
command, but a small error remained. With feedback on,
the network was trained with the FOLLOW learning rule,
which relies on this error fedback into the neurons (Equation
(6)). At the end of 10,000 s of FOLLOW learning on the
feedforward weights, at learning rate 2×10−4, the error had
plateaued, and we froze the weights and removed the feed-
back, in order to test if the network had learned the inverse
model. We also tested the network without feedback on a
more structured task trajectory, in addition to random motor
babbling. The network output inferred the command given
the state trajectory, without feedback, with a mean squared
error of 0.00417 ± 0.00096 (over 4 s each of 5 different
instantiations of the network, learning and test protocols),
indicating that the network had learned the inverse model.

We used a delay ∆u in supplying the target commands,
since the command in the past that caused the current state
input needs to be inferred. A second parameter is the differ-
ential delay ∆ between the undelayed and delayed sets of
neurons in the first layer. We swept the delays ∆u and ∆
over typical network time scales, shown in Figure 3A, and
found that ∆u ≈ 50 ms and ∆ ≈ 50 ms gave the lowest
test error. This ∆u is consistent with the delay due to two
synaptic filtering time constants of 20 ms each from the
input state to the inferred command. Thus, for all remaining
simulations including Figure 2, we used ∆ = 50 ms and
∆u = 50 ms. On increasing the number of neurons in the
network, the performance of the inverse model improved
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Figure 2. Stages during FOLLOW learning of inverse model using the differential feedforward network (Fig. 1B). A,B. The
vertical red lines divide the figure into three time stages: before learning without feedback on the left, during learning with feedback in the
middle, and during testing without feedback on the right. A. The input to the network ~x(t) namely the 4-dimensional state trajectories are
shown in 4 different colours. B. A component of the reference torque u2(t− ∆) to the arm (in blue) is shown along with the network
readout û2(t) (in red). Before learning without feedback (on the left), the network output (red) doesn’t infer the command torque (blue).
During learning with feedback (middle), the network output follows the command torque due to the negative feedback (Fig. 1), while the
error, which decreases over time, is used to train the hidden weights. After learning (right), i.e. freezing weights and removing feedback,
the network infers the command torque even without feedback, indicating that it has learned the inverse model. Test performance measures
and parameter sweeps are shown in Figure 3.
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Figure 3. Mean squared test error versus network parameters. For different values of the network parameters, we learned the inverse
model using the differential feedforward network (Fig. 1B). We plot the mean squared test error without feedback, after approximately
10,000 s of learning, averaged over 4 s and per state dimension Nd. Mean and standard deviations, where marked by error bars, are over
five instantiations with different seeds for the network biases, gains and fixed weights, and for the learning and test protocols. A. Mean
squared test error versus different values of differential delay ∆ and causal torque delay ∆u, with 200 neurons in each of the undelayed
and delayed sets of neurons in the first layer and 500 neurons in the next layer. The red star marks the mean squared test error for ∆ = 50
ms and ∆u = 50 ms. Note that the grid of parameters tested (gray grid on bottom surface) is not uniform, with closer sampling near the
minimum. B. Mean squared error versus number of neurons in the differential feedforward network, fixing ∆ = 50 ms and ∆u = 50 ms.
The red star marks the mean squared error for the same parameters as for the red star in panel A, while the green diamond marks it for
larger number of neurons as used in Figure 2. C. Mean squared error versus increasing values of torque filtering time constant τ , with
the same number of neurons as in panel A, fixing ∆ = 50 ms and ∆u = 50 ms. The red star and green diamond correspond to their
counterparts in panel B.
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(Fig. 3B), as expected. We used 900 neurons when testing
other parameters or architectures (Figs. 3, 4, 5), but 11,000
neurons for the final applications (Figs. 2, 7).

In Figure 2B, we observed low-pass filtering of the in-
ferred command compared to the target command during
testing. To check its origin, we low-pass filtered the com-
mands for both the arm and the network, with increasing
filtering time constants, using a decaying exponential kernel.
The mean test error reached a minimum at a filtering time
constant of around 50 ms (Fig. 3C) corresponding roughly
to the sum of the filtering time constants of our two hidden
neuronal layers. In a fully neural system, like the brain,
the commands will also be generated by neurons and thus
filtered at a synaptic time scale. Still, for generality, we
did not use any filtering on the command torque in all our
other simulations. With filtering on the command input,
performance is expected to improve.

4. Network Architectures
In principle, we could use a recurrent network, as it is

Turing complete (Siegelmann & Sontag, 1995), to approx-
imate the inverse model, provided all the input, recurrent
and output weights are set correctly. We tried to learn the
inverse model with a recurrent network as in Figure 4A. The
total current into neuron i in the recurrent layer, having fixed
random bias bi, was a sum of the feedforward, recurrent and
error currents:

Ji =
∑
β

eff
iβxβ(t) +

∑
j

wij(Sj ∗ κ)(t)+

∑
γ

keiγ(εγ ∗ κ)(t) + bi. (7)

We kept a fixed learning rate on the feedforward weights,
but increased the learning rate on the recurrent weights from
effectively no learning to a reasonable learning rate 2×10−4

that had been suggested for learning the forward model with
a recurrent network (Gilra & Gerstner, 2017). As shown in
Figure 4, we found that the error increased sharply when
the learning rate on the recurrent weights was increased.
Near zero learning on the recurrent weights gave the lowest
mean squared test error. Even if we included a feedforward
layer between the state input and the recurrent network, with
learnable feedforward and recurrent weights, as for learning
the forward model in (Gilra & Gerstner, 2017), still test per-
formance degraded when learning on the recurrent weights
was switched on. Note that a recurrent network in the FOL-
LOW learning scheme, which has fixed output weights (Fig.
4A), cannot be transformed into the differential feedforward
architecture (Fig. 1B). Even if part of the recurrent network
can learn to delay or hold an earlier state in memory, it
remains connected to the output by fixed weights. How-
ever, gated recurrent networks like LSTMs (Hochreiter &

A

B

Figure 4. Recurrent network did not learn the inverse model
via FOLLOW learning. A. The learning configuration is same as
Figure 1A, except that the spiking network is recurrently connected.
The feedforward weights eff

iβ and the recurrent weightswij (in red)
are plastic under the FOLLOW rule. B. We trained the recurrent
network on the inverse model as in A, with 900 neurons in the
recurrent layer and ∆u = 50 ms, at increasing values of the
learning rate (x-axis, log scale) on the recurrent weights, while
the feedforward weights were learned at a constant rate. We plot
the mean squared test error (y-axis, log scale) without feedback,
after approximately 500 s of learning, averaged over 4 s and per
state dimension. The red dashed line marks the mean squared test
error obtained with the differential feedforward network having
900 neurons (red stars in Fig. 3).

Schmidhuber, 1997; Gers et al., 2000) trained via backprop-
agation through time can learn the inverse model (Rueckert
et al., 2017), albeit with a rule that is non-local in time and
biologically implausible.

Among different feedforward network architectures, we
found that the best performace for a fixed number of neurons
was obtained by the differential feedward network (Fig.
5). A variant of the differential feedforward network, with
undelayed and delayed state inputs fed to a common set of
neurons in the first layer keeping total number of neurons the
same, performed similar to our default which had separate
undelayed and delayed sets of neurons in the first layer as in
Figure 5A. In learning the forward model, the command ~u
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A B C

Figure 5. Differential feedforward performs better than other feedforward architectures. A,B,C. In the top subpanels, the feedfor-
ward network architecture used to learn the inverse model is shown. Weights in red are plastic. Each network has the same number of
heterogeneous LIF neurons. Mean squared error during training with feedback is plotted versus time over approximately 10,000s seconds
of learning in the middle subpanels. Reference torque component u2 (blue) and inferred torque component û2 (red) given desired state
are plotted versus time, during 4 s of testing without feedback. The mean squared test error without feedback per unit time per state
dimension is written above the plot (mean and standard deviation are over 5 different instantiations). Mean squared error during test
without feedback is typically larger than that towards the end of training, as the latter has corrective negative feedback. A. The differential
feedforward network is our default network architecture, here with 200 neurons in the undelayed and delayed sets and 500 neurons in
the second hidden layer, with ∆ = 50 ms and ∆u = 50 ms. B. The direct differential feedforward network doesn’t have intermediate
undelayed and delayed sets of the first hidden layer. Rather the undelayed and delayed states are directly fed on to a hidden layer having
900 neurons. C. The purely feedforward network has 450 neurons in each hidden layer.

xDβ + k′εβ

+

−

control input ûγ

true state xβ

desired state
xDβ

two-link arm
dynamical system

+

+ k′

ε′β

dγi

e
(ff1)
iβ

delay ∆

e
(ff2)
kβ

w
(1)
ij

w
(2)
ik

differential feedforward network

delay ∆u

Figure 6. Schematic for control using inverse model. The desired state trajectory ~xD(t) is fed into the differential feedforward network
that is already trained as an inverse model. The control input ûγ is read out from the network. The read out control input torques are
delivered to the arm which produces the true state xβ(t), which is already close to the desired one if the inverse model performs well. To
further improve performance, the true state of the arm is compared with the desired state, delayed by ∆u = 50 ms (since the inverse
model has learned to infer the control input with this delay), and the error ε′β(t) =

(
xDβ (t− ∆u) − xβ(t)

)
is fed back with gain k′ = 3.

The non-linear feedforward control by the inverse model brings the arm state close to the desired state, after which the linear negative
feedback control brings the arm state even closer. Twin lines in the connection arrows denote multi-dimensional signals, but their number
is not representative of the dimensionality.
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must be integrated as
∫
f(~x, ~u)dt to obtain the state ~x, see

equation (1). However, for the inverse model, the state ~x
has to be differentiated, and the function f inverted, to infer
the command ~u. Thus, while a recurrent network is required
for learning the forward model (Gilra & Gerstner, 2017),
the differential feedforward network is best (among the
feedforward and recurrent networks tested) for FOLLOW
learning of the inverse model.

5. Moving the Arm As Desired Using the
Inverse Model
In a control setting, the control input is not known, but

only the target trajectory is given. Having learned the inverse
model in the differential feedforward network, we froze its
weights, and used it to control the two-link arm to reproduce
a desired state trajectory. In the open loop control mode, the
desired state xDβ (t) was fed to the network, which outputs
the requisite control command ûγ . This command generated
by the network was fed as torques to the joints of the arm to
produce the desired motion. In this open loop control mode,
small errors in the generated control command will integrate
over time, causing deviations from the desired trajectory.

To ameliorate this, we closed the loop, with a weak feed-
back of gain k′ = 3, injecting the difference between the
desired state (delayed by ∆u = 50 ms) and the true state
back into the network input (Fig. 6). We emphasize that this
feedback loop for the error in the state variables is different
from the feedback loop for the error in the control command
during learning.

We tested our motor control scheme for drawing a paral-
lelogram and a zigzag on the wall (Fig. 7). In open loop
control mode, the command torque generated by the network
enabled the arm to draw a pattern that was roughly similar
to the desired one (Fig. 7C,D and Supplementary movies 1
and 2). Open loop control mode can be considered similar
to drawing with eyes shut, i.e. without any sensory feedback.
When we closed the loop with gain k′ = 3, the pattern was
reproduced better (Fig. 7C,D and Supplementary movies 3
and 4).

Without the inverse model, the linear negative feedback
loop on the state variables cannot make the arm follow the
desired trajectory, even by tuning feedback gains, because
of the complicated non-linear dynamics of the two-link
arm. In our control scheme, the intuition is that the inverse
model learned in the weights of the network produces an
open-loop command that brings the arm close enough to the
desired state, such that linear negative feedback around this
momentary operating point can bring the arm even further
closer.

open-loop closed loop

open-loop closed loop
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Figure 7. Control of two-link arm via inverse model. A. The
elbow and shoulder control torques generated by the learned dif-
ferential feedforward network, under closed loop in the control
architecture of Figure 6, in reponse to a desired zigzag drawing
trajectory. B. The zigzag drawing trajectories for the angles (solid)
and angular velocities (dashed) as desired (blue), and as produced
by the arm (red) in response to the torques in A, under closed
loop control of the inverse model. C,D. The network controls the
arm to draw a parallelogram (C) and a zigzag (D). On the left in
blue, is the desired trajectory, in coordinate space, that the end-
point of the arm is required to trace, starting in the direction of
the green arrow. In the middle in red, is the trace produced by
the arm under open-loop control, i.e. no feedback of the error in
state back to the network. To the right, in red is the trace produced
under closed-loop, with feedback (gain k′ = 3) of the error in state
variables.

6. Discussion
We used the synaptically local, online and stable learn-

ing scheme, FOLLOW (Gilra & Gerstner, 2017), to train
a heterogeneous network of spiking neurons with hidden
layers, to infer the continuous-time command needed to
drive a non-linear dynamical system, here a two-link arm,
to produce a desired trajectory. We found that the differ-
ential feedforward network architecture performed best in
learning the inverse model, from among a variety of feed-
forward and recurrent architectures. Under closed-loop, the
trained inverse model was able to control a two-link arm.
Here, we used only proportional feedback with low gain.
A proportional-integral-derivative (PID) feedback should
provide even better control of the arm without oscillations
and offset.

Previous methods of training neural networks with hid-
den units incorporate only some of the desirable features of
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FOLLOW learning. Backpropagation and variants, back-
propagation through time (BPTT) (Rumelhart et al., 1986)
and real-time recurrent learning (RTRL) (Williams & Zipser,
1989), are non-local in time or space (Pearlmutter, 1995).
Synaptically local learning rules in recurrent spiking neural
networks have typically not been demonstrated for learn-
ing inverse models and non-linear motor control (MacNeil
& Eliasmith, 2011; Bourdoukan & Denève, 2015; Gilra
& Gerstner, 2017; Alemi et al., 2017). Reservoir comput-
ing methods (Jaeger, 2001; Maass et al., 2002; Legenstein
et al., 2003; Maass & Markram, 2004; Jaeger & Haas, 2004;
Joshi & Maass, 2005; Legenstein & Maass, 2007; Waege-
man et al., 2012) did not initially learn weights within
the hidden units, while newer FORCE learning methods
that did (Sussillo & Abbott, 2009; 2012; DePasquale et al.,
2016; Thalmeier et al., 2016; Nicola & Clopath, 2016), re-
quire weights to change faster than the time scale of the
dynamics, and require different components of a multi-
dimensional error to be fed to different sub-parts of the
network. Reward-modulated Hebbian rules have not yet
been used for continuous-time control (Legenstein et al.,
2010; Hoerzer et al., 2014; Kappel et al., 2017). Several
known approaches to neural control of non-linear systems
use non-local learning rules (Narendra & Parthasarathy,
1990; Sanner & Slotine, 1992; Slotine & Li, 1987; Slo-
tine & Coetsee, 1986; DeWolf et al., 2016; Zerkaoui et al.,
2009; Hennequin et al., 2014; Song et al., 2016; Rueck-
ert et al., 2017) or abstract networks (Berniker & Kording,
2015; Hanuschkin et al., 2013), and are thus further away
from biological plausibility than our spiking network with
local plasticity suggested here.

Our network approximates the inverse dynamics using
the tuning curves of heterogeneous neurons as an overcom-
plete set of basis functions (Funahashi, 1989; Hornik et al.,
1989; Girosi & Poggio, 1990; Eliasmith & Anderson, 2004).
As studied in adaptive control theory (Ioannou & Sun, 2012;
Narendra & Annaswamy, 1989), the error due to model
approximation causes a drift in weights, which can lead to
error increasing after some training time. The same litera-
ture also suggests ameliorative techniques which include a
weight leakage term switched on slowly, whenever a weight
crosses a set value (Ioannou & Tsakalis, 1986; Narendra &
Annaswamy, 1989), or a dead zone policy of not updating
weights if the error falls below a threshold (Slotine & Co-
etsee, 1986; Ioannou & Sun, 2012). However, we did not
need to implement these techniques for learning the inverse
model with our networks.

Our scheme should be applicable to any arbitrary fully-
observed finite-dimensional dynamical system. Depending
on the non-linearity and the coupling amongst the dimen-
sions of the dynamical system, we expect the number of
neurons required to scale supra-linearly with the dimen-

sionality. The analysis of the precise scaling is left for
further work. The learning rule and architecture can also
be used with continuous-valued artificial neural networks,
with either the same or potentially even a smaller number
of neurons.

Relating our work to neuroscience, forward and inverse
models have been linked to the cerebellum and the motor
cortex (Kawato, 1999; Sabes, 2000; Golub et al., 2015). The
FOLLOW rule predicts that plasticity in feedforward or re-
current synaptic connections is modulated by independent
error feedback, reminiscent of plasticity in parallel fibre to
Purkinje cell synapses mediated by supervisory feedback via
climbing fibres (D’Angelo, 2014), often tuned to account for
sensory delays up to 150 ms (Suvrathan et al., 2016). Fur-
ther, the delay lines of around 50 ms required for learning
and control can be created by harnessing smaller synaptic
delays in a spiking neural network (Voelker & Eliasmith,
2017). Additional detailed modelling, large-scale record-
ings and systems-level experiments are required to verify or
falsify the learning rule and the predicted architectures for
the forward and inverse models.

Our FOLLOW-based learning of motor control can be
implemented directly in neuromorphic hardware (Schuman
et al., 2017) and incorporated into (neuro-)robotics for mo-
tor control, where the spike-based coding provides power
efficiency, and locality eases hardware implementation and
speeds up computations required for learning.

Interesting directions to explore could be to learn and
control more complex dynamical systems like robotic arms
in real-time, to implement the same on neuromorphic hard-
ware, to include Dale’s law into the FOLLOW scheme, to
learn to generate the desired trajectory given a higher-level
goal via reinforcement learning, and to extend motor control
to a hierarchy of levels as in the brain.

Code for learning the inverse model using FOLLOW
and employing it for closed-loop control, is available at
https://github.com/adityagilra/FOLLOWControl.
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Ben-Ari, Y., and Buzsáki, G. Nature, 432(7018):758–761,
2004.

Lalazar, H. and Vaadia, E. Current Opinion in Neurobiology,
18(6):573–581, 2008.

Legenstein, R. and Maass, W. Neural Networks, 20(3):
323–334, 2007.

Legenstein, R., Markram, H., and Maass, W. Reviews in the
Neurosciences, 14(1-2):5–19, 2003.

Legenstein, R., Chase, S. M., Schwartz, A. B., and Maass,
W. Journal of Neuroscience, 30(25):8400–8410, 2010.

Li, W. PhD thesis, University of California, San Diego,
2006.

Maass, W. and Markram, H. Journal of Computer and
System Sciences, 69(4):593–616, 2004.
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