
Learning to Search with MCTSnets

A. Architectural choices and experimental
setup

For the Sokoban domain, we use 10× 10 map layout with
four boxes and targets. For level generation, we gained ac-
cess to the level generator described by Weber et al. (2017).
We directly provide a symbolic representation of the envi-
ronment, coded as 10×10×4 feature map (with one feature
map per type of object: wall, agent, box, target), see Fig. 8
for a visual representation.

A.1. Dataset

Vanilla MCTS with a deep value network (see Alg. 1)
and long search times (approx. 2000 simulations per step)
was employed to generate good quality trajectories, as an
oracle surrogate. Specifically, we use a pre-trained value
network for leaf evaluation, depth-wise transposition tables
to deal with symmetries, and we reuse the relevant search
subtree after each real step. Other solving methods could
have been used since this is only to generate labels for
supervised learning. The training dataset consists of 250000
trajectories of distinct levels; approximately 92% of those
levels are solved by the agent; solved levels take on average
60 steps, while unsolved levels are interrupted after 100
steps. We also create a testing set with 2500 trajectories.

A.2. Network architecture details

Our embedding network ε is a convolution network with 3
residual blocks. Each residual block is composed of two
64-channel convolution layers with 3x3 kernels applied with
stride 1. The residual blocks are preceded by a convolution
layer with the same properties, and followed by a convolu-
tion layer of 1x1 kernel to 32 channels. A linear layer maps
the final convolutional activations into a 1D vector of size
128.

The readout network is a simple MLP with a single hidden
layer of size 128. Non-linearities between all layers are
ReLus. The policy prior network has a similar architecture
to the embedding network, but with 2 residual blocks and
32-channel convolutions.

A.3. Implementation and Training

We implemented MCTSnet in Tensorflow, making extensive
use of control flow operations to generate the necessary
search logic. Tree node and simulation statistics are stored in
arrays of variables and tensors that are accessed with sparse
operators. The variables help determine the computational
graph for a given execution (by storing the relation between
nodes and temporary variables such as rewards). A single
forward execution of the network generates the full search
which includes multiple simulations. For a fixed expanded
tree, gradients can flow through all the node statistics to

learn the backup and embedding networks.

We train MCTSnet in an asynchronous distributed fashion.
We use a batch of size 1, 32 workers and SGD for optimiza-
tion with a learning rate of 5e-4.



Learning to Search with MCTSnets

B. Additional figures

Action distribution

readout 
network

Input 
state

...

embedding 
network

backup 
network

simulation 
network

S
im

ul
at

io
n

 n
um

be
r

Figure 6. Diagram illustrating a MCTSnet search (i.e., a single forward pass of the network). The first two simulations are detailed, as
well as an extract of the last simulation where the readout network is employed to output the action distribution from the root memory
statistic. A detail of a longer simulation is given in Figure 7.

...

embedding 
network

backup 
network

simulation 
network

Simulation phase Backup phase

Leaf state

Figure 7. This diagram represents simulation m+ 1 in MCTSnet (applied to Sokoban). The leftmost part represents the simulation phase
down the tree until a leaf node sL, using the current state of the tree memory at the end of simulation m. The right part of the diagram
illustrates the embedding and backup phase, where the memory vectors h on the traversed tree path get updated in a bottom-up fashion.
Memory vectors for nodes not visited on this tree path stay constant.

Agent

Wall

Target

Box

Figure 8. The different elements composing a Sokoban frame. This is represented as four planes of 10x10 to the agent.


