
Shampoo: Preconditioned Stochastic Tensor Optimization

Vineet Gupta 1 Tomer Koren 1 Yoram Singer 2 1

Abstract
Preconditioned gradient methods are among the
most general and powerful tools in optimization.
However, preconditioning requires storing and
manipulating prohibitively large matrices. We de-
scribe and analyze a new structure-aware precondi-
tioning algorithm, called Shampoo, for stochastic
optimization over tensor spaces. Shampoo main-
tains a set of preconditioning matrices, each of
which operates on a single dimension, contract-
ing over the remaining dimensions. We establish
convergence guarantees in the stochastic convex
setting, the proof of which builds upon matrix
trace inequalities. Our experiments with state-
of-the-art deep learning models show that Sham-
poo is capable of converging considerably faster
than commonly used optimizers. Surprisingly,
although it involves a more complex update rule,
Shampoo’s runtime per step is comparable in prac-
tice to that of simple gradient methods such as
SGD, AdaGrad, and Adam.

1. Introduction
Over the last decade, stochastic first-order optimization
methods have emerged as the canonical tools for training
large-scale machine learning models. These methods are
particularly appealing due to their wide applicability and
their low runtime and memory costs.

A potentially more powerful family of algorithms consists of
preconditioned gradient methods. Preconditioning methods
maintain a matrix, termed a preconditioner, which is used
to transform (i.e., premultiply) the gradient vector before
it is used to take a step. Classic algorithms in this family
include Newton’s method, which employs the local Hessian
as a preconditioner, as well as a plethora of quasi-Newton
methods (e.g., Fletcher, 2013; Lewis and Overton, 2013;

1Google Brain, Mountain View, CA, USA 2Princeton Uni-
versity, Princeton, NJ, USA. Correspondence to: Tomer Koren
<tkoren@google.com>.

Proceedings of the 35th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

Nocedal, 1980) that can be used whenever second-order
information is unavailable or too expensive to compute.
Newer additions to this family are preconditioned online
algorithms, most notably AdaGrad (Duchi et al., 2011), that
use the covariance matrix of the accumulated gradients to
form a preconditioner.

While preconditioned methods often lead to improved con-
vergence properties, the dimensionality of typical problems
in machine learning prohibits out-of-the-box use of full-
matrix preconditioning. To mitigate this issue, specialized
variants have been devised in which the full preconditioner
is replaced with a diagonal approximation (Duchi et al.,
2011; Kingma and Ba, 2014), a sketched version (Gonen
and Shalev-Shwartz, 2015; Pilanci and Wainwright, 2017),
or various estimations thereof (Erdogdu and Montanari,
2015; Agarwal et al., 2016; Xu et al., 2016). While the
diagonal methods are heavily used in practice thanks to their
favorable scaling with the dimension, the other approaches
are seldom practical at large scale as one typically requires
a fine approximation (or estimate) of the preconditioner that
often demands super-linear memory and computation.

In this paper, we take an alternative approach to precondi-
tioning and describe an efficient and practical apparatus that
exploits the structure of the parameter space. Our approach
is motivated by the observation that in numerous machine
learning applications, the parameter space entertains a more
complex structure than a monolithic vector in Euclidean
space. In multiclass problems the parameters form a matrix
of size m × n where m is the number of features and n is
the number of classes. In neural networks, the parameters
of each fully-connected layer form an m × n matrix with n
being the number of input nodes and m is the number of
outputs. The space of parameters of convolutional neural
networks for images is a collection of 4 dimensional tensors
of the form input-depth × width × height × output-depth.
As a matter of fact, machine learning software tools such as
Torch and TensorFlow are designed with tensor structure in
mind.

Our algorithm, which we call Shampoo,1 retains the tensor
structure of the gradient and maintains a separate precondi-
tioner matrix for each of its dimensions. An illustration of
Shampoo is provided in Figure 1. The set of preconditioners

1We call it Shampoo because it has to do with pre-conditioning.

Shampoo: Preconditioned Stochastic Tensor Optimization

G

L

U

R

Figure 1. Illustration of Shampoo for a 3-dim tensor G ∈ R3×4×5.

is updated by the algorithm in an online fashion with the
second-order statistics of the accumulated gradients, sim-
ilarly to AdaGrad. Importantly, however, each individual
preconditioner is a full, yet moderately-sized, matrix that can
be effectively manipulated in large scale learning problems.

While our algorithm is motivated by modern machine learn-
ing practices, in particular training of deep neural networks,
its derivation stems from our analysis in a stochastic convex
optimization setting. In fact, we analyze Shampoo in the
broader framework of online convex optimization (Shalev-
Shwartz, 2012; Hazan, 2016), thus its convergence applies
more generally. Our analysis combines well-studied tools in
online optimization along with off-the-beaten-path inequali-
ties concerning geometric means of matrices. Moreover, the
adaptation to the high-order tensor case is non-trivial and
relies on extensions of matrix analysis to the tensor world.

We implemented Shampoo (in its general tensor form)
in Python as a new optimizer in the TensorFlow frame-
work (Abadi et al., 2016). Shampoo is extremely simple
to implement, as most of the computations it performs boil
down to standard tensor operations supported out-of-the-box
in TensorFlow and similar libraries. Using the Shampoo
optimizer is also a straightforward process. Whereas recent
optimization methods, such as (Martens and Grosse, 2015;
Neyshabur et al., 2015), need to be aware of the structure of
the underlying model, Shampoo only needs to be informed
of the tensors involved and their sizes. In our experiments
with state-of-the-art deep learning models Shampoo is capa-
ble of converging considerably faster than commonly used
optimizers. Surprisingly, albeit using more complex update
rule, Shampoo’s runtime per step is comparable to that of
simple methods such as vanilla SGD.

1.1. Shampoo for matrices

In order to further motivate our approach we start with a
special case of Shampoo and defer a formal exposition of the
general algorithm to later sections. In the two dimensional
case, the parameters form a matrix W ∈ Rm×n. First-
order methods update iterates Wt based on the gradient

Algorithm 1 Shampoo, matrix case.
Initialize W1 = 0m×n ; L0 = ε Im ; R0 = ε In
for t = 1, . . . ,T do:

Receive loss function ft : Rm×n 7→ R

Compute gradient Gt = ∇ ft (Wt) //Gt ∈ R
m×n

Update preconditioners:
Lt = Lt−1 + GtGT

t

Rt = Rt−1 + GT
t Gt

Update parameters:

Wt+1 = Wt − ηL−
1/4

t GtR
−1/4
t

Gt = ∇ ft (Wt), which is also an m × n matrix. Here, ft is
the loss function encountered on iteration t that typically
represents the loss incurred over a single data point (or more
generally, over a batch of data).

A structure-oblivious full-matrix preconditioning scheme
would flatten the parameter space into an mn-dimensional
vector and employ preconditioning matrices Ht of size
mn × mn. In contrast, Shampoo maintains smaller left
Lt ∈ R

m×m and right Rt ∈ R
n×n matrices containing second-

moment information of the accumulated gradients. On each
iteration, two preconditioning matrices are formed from
Lt and Rt and multiply the gradient matrix from the left
and right respectively. The amount of space Shampoo uses
in the matrix case is m2 + n2 instead of m2n2. Moreover,
as the preconditioning involves matrix inversion (and often
spectral decomposition), the amount of computation required
to construct the left and right preconditioners is O(m3 + n3),
substantially lower than full-matrix methods which require
O(m3n3).

The pseudocode of Shampoo for the matrix case is given
in Algorithm 1. To recap more formally, Shampoo maintains
two different matrices: an m ×m matrix L1/4

t to precondition
the rows of Gt and R1/4

t for its columns. The 1/4 exponent
arises from our analysis; intuitively, it is a sensible choice
as it induces an overall step-size decay rate of O(1/

√
t),

which is common in stochastic optimization methods. The
motivation for the algorithm comes from the observation that
its update rule is equivalent, after flattening Wt and Gt , to a
gradient step preconditioned using the Kronecker product of
L1/4
t and R1/4

t . The latter is shown to be tightly connected to a
full unstructured preconditioner matrix used by algorithms
such as AdaGrad. Thus, the algorithm can be thought of as
maintaining a “structured” matrix which is implicitly used to
precondition the flattened gradient, without either forming
a full matrix or explicitly performing a product with the
flattened gradient vector.

Shampoo: Preconditioned Stochastic Tensor Optimization

1.2. Related work

As noted above, Shampoo is closely related to AdaGrad
(Duchi et al., 2011). The diagonal (i.e., element-wise)
version of AdaGrad is extremely popular in practice and
frequently applied to tasks ranging from learning large linear
models to training of deep neural networks models. In
contrast, the full-matrix version of AdaGrad analyzed in
(Duchi et al., 2011) is rarely used in practice due to the
prohibitive memory and runtime requirements associated
with maintaining a full preconditioner. Shampoo can be
viewed as an efficient, practical and provable apparatus
for approximately and implicitly using the full AdaGrad
preconditioner, without falling back to diagonal matrices.

Another recent optimization method that uses factored pre-
conditioning is K-FAC (Martens and Grosse, 2015), which
was specifically designed to optimize the parameters of neu-
ral networks. K-FAC employs a preconditioning scheme that
approximates the Fisher-information matrix of a generative
model represented by a neural network. The Fisher matrix
of each layer in the network is approximated by a Kronecker
product of two smaller matrices, relying on certain indepen-
dence assumptions regarding the statistics of the gradients.
K-FAC differs from Shampoo in several important ways.
While K-FAC is used for training generative models and
needs to sample from the model’s predictive distribution,
Shampoo applies in a general stochastic (more generally,
online) optimization setting and comes with convergence
guarantees in the convex case. K-FAC relies heavily on the
structure of the backpropagated gradients in a feed-forward
neural network. In contrast, Shampoo is virtually oblivi-
ous to the particular model structures and only depends on
standard gradient information. As a result, Shampoo is also
much easier to implement and use in practice as it need not
be tailored to the particular model or architecture.

2. Background and technical tools
We use lowercase letters to denote scalars and vectors and
uppercase letters to denotematrices and tensors. Throughout,
the notation A � 0 (resp. A � 0) for a matrix A means that
A is symmetric and positive semidefinite (resp. definite), or
PSD (resp. PD) in short. Similarly, the notations A � B and
A � B mean that A − B � 0 and A − B � 0 respectively,
and both tacitly assume that A and B are symmetric. Given
A � 0 and α ∈ R, the matrix Aα is defined as the PSD
matrix obtained by applying x 7→ xα to the eigenvalues of
A; formally, if we rewrite A using its spectral decomposition∑

i λiuiu
T
i in which (λi, ui) is A’s i’th eigenpair, then Aα =∑

i λ
α
i uiu

T
i . We denote by ‖x‖A =

√
xT Ax the Mahalanobis

norm of x ∈ Rd as induced by a positive definite matrix
A � 0. The dual norm of ‖ · ‖A is denoted ‖ · ‖∗A and equals
√

xT A−1x. The inner product of two matrices A and B is

denoted as A • B = Tr(ATB). The spectral norm of a matrix
A is denoted ‖A‖2 = maxx,0 ‖Ax‖/‖x‖ and the Frobenius
norm is ‖A‖F =

√
A • A. We denote by ei the unit vector

with 1 in its i’th position and 0 elsewhere.

2.1. Online convex optimization

We use Online Convex Optimization (OCO) (Shalev-
Shwartz, 2012; Hazan, 2016) as our analysis framework.
OCO can be seen as a generalization of stochastic (convex)
optimization. In OCO a learner makes predictions in the
form of a vector belonging to a convex domainW ⊆ Rd for
T rounds. After predicting wt ∈ W on round t, a convex
function ft :W 7→ R is chosen, potentially in an adversarial
or adaptive way based on the learner’s past predictions. The
learner then suffers a loss ft (wt) and observes the function
ft as feedback. The goal of the learner is to achieve low
cumulative loss compared to any fixed vector in theW.
Formally, the learner attempts to minimize its regret, defined
as the quantity

RT =
T∑
t=1

ft (wt) − min
w∈W

T∑
t=1

ft (w) ,

Online convex optimization includes stochastic convex opti-
mization as a special case. Any regret minimizing algorithm
can be converted to a stochastic optimization algorithm
with convergence rate O(RT /T) using an online-to-batch
conversion technique (Cesa-Bianchi et al., 2004).

2.2. Adaptive regularization in online optimization

We next introduce tools from online optimization that our
algorithms rely upon. First, we describe an adaptive version
of Online Mirror Descent (OMD) in the OCO setting which
employs time-dependent regularization. The algorithm
proceeds as follows: on each round t = 1, 2, . . . ,T , it receives
the loss function ft and computes the gradient gt = ∇ ft (wt).
Then, given a positive definite matrix Ht � 0 it performs an
update according to

wt+1 = argmin
w ∈W

{
ηgT

t w +
1
2 ‖w − wt ‖

2
Ht

}
. (1)

WhenW = Rd, Eq. (1) is equivalent to a preconditioned
gradient step, wt+1 = wt − ηH−1

t gt . More generally, the
update rule can be rewritten as a projected gradient step,

wt+1 = ΠW
[
wt − ηH−1

t gt ; Ht

]
,

where ΠW[z; H] = argminw∈W ‖w − z‖H is the projection
onto the convex setW with respect to the norm ‖ · ‖H . The
following lemma provides a regret bound for Online Mirror
Descent (see, e.g., Duchi et al., 2011).

Lemma 1. For any sequence of matrices H1, . . . ,HT � 0,

Shampoo: Preconditioned Stochastic Tensor Optimization

the regret of online mirror descent is bounded above by,

1
2η

T∑
t=1

(
‖wt −w

?‖2Ht
− ‖wt+1 −w

?‖2Ht

)
+
η

2

T∑
t=1

(
‖gt ‖

∗
Ht

)2
.

In order to analyze particular regularization schemes, namely
specific strategies for choosing the matrices H1, . . . ,HT , we
need the following lemma, adopted from Gupta et al. (2017);
for completeness, we provide a short proof in the full version
of the paper (Gupta et al., 2018).
Lemma2 (Gupta et al. (2017)). Let g1, . . . , gT be a sequence
of vectors, and let Mt =

∑t
s=1 gsg

T
s for t ≥ 1. Given a

function Φ over PSD matrices, define

Ht = argmin
H�0

{
Mt • H−1 + Φ(H)

}
(and assume that a minimum is attained for all t). Then

T∑
t=1

(
‖gt ‖

∗
Ht

)2
≤

T∑
t=1

(
‖gt ‖

∗
HT

)2
+ Φ(HT) − Φ(H0) .

2.3. Kronecker products

We recall the definition of the Kronecker product, the vec-
torization operation and their calculus. Let A be an m × n
matrix and B be an m′ × n′ matrix. The Kronecker product,
denoted A ⊗ B, is an mm′ × nn′ block matrix defined as,

A ⊗ B =
©­­­­«

a11B a12B . . . a1nB
a21B a22B . . . a2nB
...

...
. . .

...
am1B am2B . . . amnB

ª®®®®¬
.

For an m×n matrix Awith rows a1, . . . , am, the vectorization
(or flattening) of A is the mn × 1 column vector2

vec(A) = (a1 a2 · · · am)T.

The next lemma collects several properties of the Kronecker
product and the vec(·) operator, that will be used throughout
the paper. For proofs and further details, we refer to (Horn
and Johnson, 1991).
Lemma 3. Let A, A′, B, B′ be matrices of appropriate di-
mensions. The following properties hold:

(i) (A ⊗ B)(A′ ⊗ B′) = (AA′) ⊗ (BB′);
(ii) (A ⊗ B)T = AT ⊗ BT;
(iii) If A, B � 0, then for any s ∈ R it holds that (A ⊗

B)s = As ⊗ Bs, and in particular, if A, B � 0 then
(A ⊗ B)−1 = A−1 ⊗ B−1;

(iv) If A � A′ and B � B′ then A ⊗ B � A′ ⊗ B′, and in
particular, if A, B � 0 then A ⊗ B � 0;

2This definition is slightly non-standard as it uses a row-major
order rather than a column-major order typically used to define
vec(); the notation vec() is used to distinguish it from the latter.

(v) Tr(A ⊗ B) = Tr(A)Tr(B);
(vi) vec(uvT) = u ⊗ v for any two column vectors u, v.

The following identity connects the Kronecker product and
the vec operator; it facilitates an efficient computation of
a matrix-vector product where the matrix is a Kronecker
product of two smaller matrices. See the full version of the
paper (Gupta et al., 2018) for a proof.
Lemma 4. LetG ∈ Rm×n, L ∈ Rm×m and R ∈ Rn×n. Then,
one has (L ⊗ RT)vec(G) = vec(LGR).

2.4. Matrix inequalities

Our analysis requires the following result concerning the
geometric means of matrices. Recall that by writing X � 0
we mean, in particular, that X is a symmetric matrix.
Lemma 5 (Ando et al. (2004)). Assume that 0 � Xi � Yi
for all i = 1, . . . , n. Assume further that all Xi commute
with each other and all Yi commute with each other. Let
α1, . . . , αn ≥ 0 such that ∑n

i=1 αi = 1, then

Xα1
1 · · · X

αn
n � Yα1

1 · · ·Y
αn
n .

In words, the (weighted) geometric mean of commuting
PSD matrices is operator monotone.

Ando et al. (2004) proved a stronger result which does
not require the PSD matrices to commute with each other,
relying on a generalized notion of geometricmean, but for our
purposes the simpler commuting case suffices. We also use
the following classic result from matrix theory, attributed
to Löwner (1934), which is an immediate consequence
of Lemma 5.
Lemma 6. The function x 7→ xα is operator-monotone for
α ∈ [0, 1], that is, if 0 � X � Y then Xα � Yα.

3. Analysis of Shampoo for matrices
In this section we analyze Shampoo in the matrix case. The
analysis conveys the core ideas while avoiding numerous the
technical details imposed by the general tensor case. The
main result of this section is stated in the following theorem.
Theorem 7. Assume that the gradients G1, . . . ,GT are
matrices of rank at most r . Then the regret of Algorithm 1
compared to any W? ∈ Rm×n is bounded as follows,

T∑
t=1

ft (Wt) −
T∑
t=1

ft (W?) ≤
√

2rD Tr(L1/4
T)Tr(R1/4

T) ,

where LT = ε Im +
∑T

t=1 GtGT
t , RT = ε In +

∑T
t=0 GT

t Gt and
D = maxt∈[T] ‖Wt −W?‖F .

Let us make a few comments regarding the bound. First,
under mild conditions, each of the trace terms on the right-
hand side of the bound scales as O(T1/4). Thus, the overall

Shampoo: Preconditioned Stochastic Tensor Optimization

scaling of the bound with respect to the number of iterations
T is O(

√
T), which is the best possible in the context of

online (or stochastic) optimization. For example, assume
that the functions ft are 1-Lipschitz with respect to the
spectral norm, that is, ‖Gt ‖2 ≤ 1 for all t. Let us also fix
ε = 0 for simplicity. Then, GtGT

t � Im and GT
t Gt � In for

all t, and so we have Tr(L1/4
T) ≤ mT 1/4 and Tr(R1/4

T) ≤ nT 1/4.
That is, in the worst case, while only assuming convex and
Lipschitz losses, the regret of the algorithm is O(

√
T).

Second, we note that D in the above bound could in principle
grow with the number of iterations T and is not necessarily
bounded by a constant. This issue can be easily addressed,
for instance, by adding an additional step to the algorithm
in which Wt is projected Wt onto the convex set of matrices
whose Frobenius norm is bounded by D/2. Concretely, the
projection at step t needs to be computed with respect to
the norm induced by the pair of matrices (Lt, Rt), defined
as ‖A‖2t = Tr(ATL1/4

t AR1/4
t); it is not hard to verify that the

latter indeed defines a norm over Rm×n, for any Lt, Rt � 0.
Alas, the projection becomes computationally expensive in
large scale problems and is rarely performed in practice. We
therefore omitted the projection step from Algorithm 1 in
favor of a slightly looser bound.

The main step in the proof of the theorem is established in
the following lemma. The lemma implies that the Kronecker
product of the two preconditioners used by the algorithm is
lower bounded by a full mn × mn matrix often employed in
full-matrix preconditioning methods.

Lemma 8. Assume that G1, . . . ,GT ∈ R
m×n are matrices

of rank at most r . Let gt = vec(Gt) denote the vectorization
of Gt for all t. Then, for any ε ≥ 0,

ε Imn +
1
r

T∑
t=1

gtg
T
t

�

(
ε Im +

T∑
t=1

GtG
T
t

)1/2
⊗

(
ε In +

T∑
t=1

GT
t Gt

)1/2
.

In particular, the lemma shows that the small eigenvalues
of the full-matrix preconditioner on the left, which are the
most important for effective preconditioning, do not vanish
as a result of the implicit approximation. In order to prove
Lemma 8 we need the following technical result, the proof
of which is relegated to the full version of the paper (Gupta
et al., 2018).

Lemma 9. Let G be an m × n matrix of rank at most r and
denote g = vec(G). Then,

1
r
ggT � Im ⊗ (GTG) and

1
r
ggT � (GGT) ⊗ In .

Proof of Lemma 8. Let us introduce the following notations

to simplify our derivation,

Am
def
= ε Im +

T∑
t=1

GtG
T
t , Bn

def
= ε In +

T∑
t=1

GT
t Gt .

From Lemma 9 we get,

ε Imn +
1
r

T∑
t=1

gtg
T
t � Im ⊗ Bn, ε Imn +

1
r

T∑
t=1

gtg
T
t � Am ⊗ In .

Now, observe that Im ⊗ Bn and Am ⊗ In commute with
each other. Using Lemma 5 followed by Lemma 3(iii) and
Lemma 3(i) yields

ε Imn +
1
r

T∑
t=1

gtg
T
t �

(
Im ⊗ Bn

)1/2 (Am ⊗ In
)1/2

=
(
Im ⊗ B1/2

n

) (
A1/2
m ⊗ In

)
= A1/2

m ⊗ B1/2
n ,

which completes the proof. �

We can now prove the main result of the section.

Proof of Theorem 7. Recall the update performed in Algo-
rithm 1,

Wt+1 = Wt − ηL−
1/4

t GtR
−1/4
t .

Note that the pair of left and right preconditioning matrices,
L1/4
t and R1/4

t , is equivalent due to Lemma 4 to a single
preconditioning matrix Ht = L1/4

t ⊗ R1/4
t ∈ Rmn×mn. This

matrix is applied to flattened version of the gradient gt =
vec(Gt). More formally, letting wt = vec(Wt) we have that
the update rule of the algorithm is equivalent to,

wt+1 = wt − ηH−1
t gt . (2)

Hence, we can invoke Lemma 1 in conjuction the fact that
0 ≺ H1 � . . . � HT . The latter follows from Lemma 3(iv),
as 0 ≺ L1 � . . . � LT and 0 ≺ R1 � . . . � RT . We thus
further bound the first term of Lemma 1 by,

T∑
t=1
(wt−w

?)T(Ht − Ht−1)(wt − w
?)

≤ D2
T∑
t=1

Tr(Ht − Ht−1) = D2 Tr(HT) , (3)

for D = maxt∈[T] ‖wt −w
?‖ = maxt∈[T] ‖Wt −W?‖F where

w? = vec(W?) and H0 = 0. We obtain the regret bound

T∑
t=1

ft (Wt) − ft (W?) ≤
D2

2η
Tr(HT) +

η

2

T∑
t=1

(
‖gt ‖

∗
Ht

)2
. (4)

Let us next bound the sum on the right-hand side of Eq. (4).
First, according to Lemma 8 and the monotonicity (in the

Shampoo: Preconditioned Stochastic Tensor Optimization

operator sense) of the square root function x 7→ x1/2 (recall
Lemma 6), for the preconditioner Ht we have that

Ĥt
def
=

(
rε I +

t∑
s=1

gsg
T
s

)1/2
�
√

rHt . (5)

On the other hand, invoking Lemma 2 with the choice of
potential Φ(H) = Tr(H) + rε Tr(H−1) and Mt =

∑t
s=1 gtg

T
t ,

we get,

argmin
H�0

{
Mt • H−1 + Φ(H)

}
= argmin

H�0
Tr

(
Ĥ2

t H−1 + H
)
= Ĥt .

To see the last equality, observe that for any symmetric A � 0,
the function Tr(AX + X−1) is minimized at X = A−1/2, since
∇X Tr(AX + X−1) = A − X−2. Hence, Lemma 2 implies

T∑
t=1

(
‖gt ‖

∗

Ĥt

)2
≤

T∑
t=1

(
‖gt ‖

∗

ĤT

)2
+ Φ(ĤT) − Φ(Ĥ0)

≤

(
rε I +

T∑
t=1

gtg
T
t

)
• Ĥ−1

T + Tr(ĤT) (6)

= 2 Tr(ĤT) .

Using Eq. (5) twice along with Eq. (6), we obtain

T∑
t=1
(‖gt ‖

∗
Ht
)2 ≤
√

r
T∑
t=1
(‖gt ‖

∗

Ĥt
)2 ≤ 2

√
r Tr(ĤT) ≤ 2r Tr(HT) .

Finally, using the above upper bound in Eq. (4) and choosing
η = D/

√
2r gives the desired regret bound:

T∑
t=1

ft (Wt) −
T∑
t=1

ft (W?)

≤

(D2

2η
+ ηr

)
Tr(HT) =

√
2rD Tr(L1/4

T)Tr(R1/4
T) . �

4. Shampoo for tensors
In this section we introduce the Shampoo algorithm in its
general form, which is applicable to tensors of arbitrary
dimension. Before we can present the algorithm, we review
further definitions and operations involving tensors.

4.1. Tensors: notation and definitions

A tensor is a multidimensional array. The order of a tensor
is the number of dimensions (also called modes). For an
order-k tensor A of dimension n1 × · · · × nk , we use the
notation Aj1,..., jk to refer to the single element at position ji
on the i’th dimension for all i where 1 ≤ ji ≤ ni . We also
denote

n =
k∏
i=1

ni and ∀i : n−i =
∏
j,i

nj .

The following definitions are used throughout the section.

• A slice of an order-k tensor along its i’th dimension is a
tensor of order k − 1 which consists of entries with the
same index on the i’th dimension. A slice generalizes the
notion of rows and columns of a matrix.

• An n1 × · · · × nk tensor A is of rank one if it can be written
as an outer product of k vectors of appropriate dimensions.
Formally, let ◦ denote the vector outer product and and set
A = u1 ◦ u2 ◦ · · · ◦ uk where ui ∈ Rni for all i. Then A is
an order-k tensor defined through

Aj1,..., jk = (u
1 ◦ u2 ◦ · · · ◦ uk)j1,..., jk

= u1
j1

u2
j2
· · · uk

jk
, ∀ 1 ≤ ji ≤ ni (i ∈ [k]) .

• The vectorization operator flattens a tensor to a column
vector in Rn, generalizing the matrix vec operator. For
an n1 × · · · × nk tensor A with slices A1

1, . . . , A1
n1 along its

first dimension, this operation can be defined recursively
as follows:

vec(A) =
(
vec(A1

1)
T · · · vec(A1

n1)
T)T,

where for the base case (k = 1), we define vec(u) = u for
any column vector u.

• The matricization operator mati(A) reshapes a tensor
A to a matrix by vectorizing the slices of A along the
i’th dimension and stacking them as rows of a matrix.
More formally, for an n1 × · · · × nk tensor A with slices
Ai

1, . . . , Ai
ni

along the i’th dimension, matricization is
defined as the ni × n−i matrix,

mati(A) =
(
vec(Ai

1) · · · vec(Ai
ni
)
)T
.

• The matrix product of an n1 × · · · × nk tensor A with an
m × ni matrix M is defined as the n1 × · · · × ni−1 × m ×
ni+1 × · · · × nk tensor, denoted A ×i M, for which the
identity mati(A ×i M) = Mmati(A) holds. Explicitly, we
define A ×i M element-wise as

(A ×i M)j1,..., jk =
ni∑
s=1

Mji sAj1,... ji−1,s, ji+1,..., jk .

A useful fact, that follows directly from this definition,
is that the tensor-matrix product is commutative, in the
sense that A ×i M ×i′ M ′ = A ×i′ M ′ ×i M for any i , i′

and matrices M ∈ Rni×ni , M ′ ∈ Rni′×ni′ .
• The contraction of an n1 × · · · × nk tensor A with itself
along all but the i’th dimension is an ni ×ni matrix defined
as A(i) = mati(A)mati(A)T, or more explicitly as

A(i)j, j′ =
∑
α−i

Aj,α−i Aj′,α−i ∀ 1 ≤ j, j ′ ≤ ni,

where the sum ranges over all possible indexings α−i of
all dimensions , i.

Shampoo: Preconditioned Stochastic Tensor Optimization

4.2. The algorithm

We can now describe the Shampoo algorithm in the general,
order-k tensor case, using the definitions established above.
Here we assume that the optimization domain is W =

Rn1×···×nk , that is, the vector space of order-k tensors, and
the functions f1, . . . , fT are convex over this domain. In
particular, the gradient ∇ ft is also an n1 × · · · × nk tensor.

The Shampoo algorithm in its general form, presented in
Algorithm 2, is analogous to Algorithm 1. It maintains a
separate preconditioning matrix Hi

t (of size ni × ni) corre-
sponding to for each dimension i ∈ [k] of the gradient. On
step t, the i’th mode of the gradient Gt is then multiplied
by the matrix (Hi

t)
−1/2k through the tensor-matrix product

operator ×i . (Recall that the order in which the multiplica-
tions are carried out does not affect the end result.) After
all dimensions have been processed and the preconditioned
gradient G̃t has been obtained, a gradient step is taken.

Algorithm 2 Shampoo, general tensor case.
Initialize: W1 = 0n1×···×nk ; ∀i ∈ [k] : Hi

0 = ε Ini
for t = 1, . . . ,T do:

Receive loss function ft : Rn1×···×nk 7→ R

Compute Gt = ∇ ft (Wt) //Gt ∈ R
n1×···×nk

G̃t ← Gt // G̃t is preconditioned gradient
for i = 1, . . . , k do:

Hi
t = Hi

t−1 + G(i)t
G̃t ← G̃t ×i (Hi

t)
−1/2k

Update: Wt+1 = Wt − ηG̃t

The tensor operations A(i) and M ×i A can be implemented
using tensor contraction, which is a standard library function
in scientific computing libraries and is fully supported by
modern machine learning frameworks such as TensorFlow
(Abadi et al., 2016). See Section 5 for further details on our
implementation of the algorithm in TensorFlow.

We now state the main result of this section.
Theorem 10. Assume that for all i ∈ [k] and t = 1, . . . ,T
it holds that rank(mati(Gt)) ≤ ri , and let r = (

∏k
i=1 ri)

1/k .
Then the regret of Algorithm 2 compared to any W? ∈

Rn1×···×nk is

T∑
t=1

ft (Wt) −
T∑
t=1

ft (W?) ≤
√

2rD
k∏
i=1

Tr
(
(Hi

T)
1/2k),

where Hi
T = ε Ini +

∑T
t=1 G(i)t for all i ∈ [k] and D =

maxt∈[T] ‖Wt −W?‖F.

The comments following Theorem 7 regarding the parameter
D in the above bound and the lack of projections in the
algorithm apply also in the general tensor case. Furthermore,
as in the matrix case, under standard assumptions each of
the trace terms on the right-hand side of the above bound is

bounded by O(T 1/2k). Therefore, their product, and thereby
the overall regret bound, is O(

√
T).

The proof of Theorem 10 is based on a technical generaliza-
tion of the arguments in the matrix case, and can be found
in the full version of the paper (Gupta et al., 2018).

5. Implementation details
We implemented Shampoo in its general tensor form in
Python as a new TensorFlow (Abadi et al., 2016) optimizer.
Our implementation follows almost verbatim the pseudocode
shown in Algorithm 2. We used the built-in tensordot op-
eration to implement tensor contractions and tensor-matrix
products. Matrix powers were computed simply by con-
structing a singular value decomposition (SVD) and then
taking the powers of the singular values. These operations
are fully supported in TensorFlow on GPUs. We plan to
implement Shampoo in PyTorch in the near future.

Our optimizer treats each tensor in the input model as a
separate optimization variable and applies the Shampoo
update to each of these tensors independently. This has
the advantage of making the optimizer entirely oblivious
to the specifics of the architecture, and it only has to be
aware of the tensors involved and their dimensions. In terms
of preconditioning, this approach amounts to employing a
block-diagonal preconditioner, with blocks corresponding to
the different tensors in the model. In particular, only intra-
tensor correlations are captured and correlations between
parameters in different tensors are ignored entirely.

Our optimizer also implements a diagonal variant of Sham-
poo which is automatically activated for a dimension of a
tensor whenever it is considered too large for the associated
preconditioner to be stored inmemory or to compute its SVD.
Other dimensions of the same tensor are not affected and can
still use non-diagonal preconditioning (unless they are too
large themselves). See the full version of the paper (Gupta
et al., 2018) for a detailed description of this variant and its
analysis. In our experiments, we used a threshold of around
1200 for each dimension to trigger the diagonal version with
no apparent sacrifice in performance. This option gives
the benefit of working with full preconditioners whenever
possible, while still being able to train models where some
of the tensors are prohibitively large, and without having to
modify either the architecture or the code used for training.

6. Experimental results
We performed experiments with Shampoo on several
datasets, using standard deep neural-network models. We
focused on two domains: image classification on CIFAR-
10/100, and statistical language modeling on LM1B. In each
experiment, we relied on existing code for training the mod-

Shampoo: Preconditioned Stochastic Tensor Optimization

Dataset SGD Adam AdaGrad Shampoo
CIFAR10 (ResNet-32) 2.184 2.184 2.197 2.151
CIFAR10 (Inception) 3.638 3.667 3.682 3.506
CIFAR100 (ResNet-55) 1.210 1.203 1.210 1.249
LM1B (Transformer) 4.919 4.871 4.908 3.509

Table 1. Average number of steps per second (with batch size of
128) in each experiment, for each algorithm we tested.

0 50 100 150 200 250
epochs

0.2

0.4

0.6

0.8

1.0

1.2

1.4 sgd
shampoo
adagrad
adam

0 50 100 150 200 250
epochs

0.05

0.10

0.15

0.20

0.25

0.30 sgd
shampoo
adagrad
adam

Figure 2. Convergence of training (cross-entropy) loss for a 32-layer
ResNet (left) and an Inception network (right) on CIFAR-10.

els, and merely replaced the TensorFlow optimizer without
making any other changes to the code.

In all of our experiments, we worked with a mini-batch of
size 128. In Shampoo, this simply means that the gradient
Gt used in each iteration of the algorithm is the average of the
gradient over 128 examples, but otherwise has no effect on
the algorithm. Notice that, in particular, the preconditioners
are also updated once per batch using the averaged gradient
rather than with gradients over individual examples.

We made two minor heuristic adjustments to Shampoo to
improve performance. First, we employed a delayed update
for the preconditioners, and recomputed the roots of the
matrices Hi

t once in every 20–100 steps. This had almost
no impact on accuracy, but helped to improve the amortized
runtime per step. Second, we incorporated momentum into
the gradient step, essentially computing the running average
of the gradients Gt = αGt−1 + (1−α)Gt with a fixed setting
of α = 0.9. This slightly improved the convergence of the
algorithm, as is the case with many first-order methods.

Quite surprisingly, while the Shampoo algorithm performs
significantly more computation per step than algorithms like
SGD (with momentum), AdaGrad, and Adam, its actual
runtime in practice is not much worse. Table 1 shows the
average number of steps (i.e., batches of size 128) per second
on a Tesla K40 GPU, for each of the algorithms we tested.
As can be seen from the results, each step of Shampoo is
typically slower than that of the other algorithms by a small
margin, and in some cases (ResNet-55) it is actually faster.

Image classification. We experimented with Shampoo
over the CIFAR-10 benchmark with several different archi-
tectures. For each optimization algorithm, we explored 10
different learning rates between 0.01 and 10.0 (scaling the
entire range for Adam by a factor of 10−4), and chose the one
with the best loss. (See the full version of the paper (Gupta

et al., 2018) for the precise learning rates and schedules used
in all of our experiments.) Fig. 2 shows the training loss
convergence for a 32-layer ResNet with 2.4M parameters.
This network is capable of reaching an error rate of 5% on
the test set. We also ran on the 20-layer small inception
network described in Zhang et al. (2017), with 1.65M train-
able parameters, capable of reaching an error rate of 7.5%
on test data. On CIFAR-100 (Fig. 3), we used a standard
55-layer residual network with 13.5M trainable parameters.
In this model, the trainable variables are all tensors of order
4 (all layers are convolutional), where the largest layer is of
dimension (256, 3, 3, 256); it does not employ batch-norm,
dropout, etc., and reaches 24% top-1 error on the test set.

0 50 100 150 200 250
epochs

0.5

1.0

1.5

2.0

2.5

3.0

cr
os

s e
nt

ro
py

sgd
shampoo
adagrad
adam

Figure 3. Convergence of training loss for a 55-layer ResNet on
CIFAR-100.

Languagemodels. Our next experiment was on the LM1B
benchmark for statistical language modeling (Chelba et al.,
2013). We used the Transformer model with 9.8M trainable
parameters from (Vaswani et al., 2017). This model has a
succession of fully connected-layers, with corresponding
tensors of order atmost 2, the largest of which is of dimension
(2000, 256). For Shampoo, we simply used the default
learning rate of η = 1.0. For the other algorithms we
explored various different settings of the learning rate. The
convergence of the test perplexity is shown in Fig. 4.

0k 100k 200k 300k 400k 500k
steps

4.2

4.3

4.4

4.5

4.6

4.7

lo
g-
pe

rp
le
xi
ty

sgd(mom)
shampoo
adagrad
adam

Figure 4. Convergence of test loss for the Transformer model for
machine translation (Vaswani et al., 2017) on LM1B.

Shampoo: Preconditioned Stochastic Tensor Optimization

Acknowledgements

We are grateful to Samy Bengio, Roy Frostig, Phil Long,
Aleksander Mądry and Kunal Talwar for numerous discus-
sions and helpful suggestions. Special thanks go to Roy for
coming up with the name “Shampoo.”

References
M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kud-
lur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,
B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke,
Y. Yu, and X. Zheng. Tensorflow: A system for large-
scale machine learning. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
16), pages 265–283, 2016.

N. Agarwal, B. Bullins, and E. Hazan. Second order
stochastic optimization in linear time. arXiv preprint
arXiv:1602.03943, 2016.

T. Ando, C.-K. Li, and R.Mathias. Geometric means. Linear
algebra and its applications, 385:305–334, 2004.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the
generalization ability of on-line learning algorithms. IEEE
Transactions on Information Theory, 50(9):2050–2057,
2004.

C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants,
P. Koehn, and T. Robinson. One billion word benchmark
for measuring progress in statistical language modeling.
Technical report, Google, 2013.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(Jul):2121–
2159, 2011.

M. A. Erdogdu and A. Montanari. Convergence rates of
sub-sampled newton methods. In Proceedings of the
28th International Conference on Neural Information
Processing Systems-Volume 2, pages 3052–3060. MIT
Press, 2015.

R. Fletcher. Practical methods of optimization. John Wiley
& Sons, 2013.

A. Gonen and S. Shalev-Shwartz. Faster sgd using sketched
conditioning. arXiv preprint arXiv:1506.02649, 2015.

V. Gupta, T. Koren, and Y. Singer. A unified approach to
adaptive regularization in online and stochastic optimiza-
tion. arXiv preprint arXiv:1706.06569, 2017.

V. Gupta, T. Koren, and Y. Singer. Shampoo: Precon-
ditioned stochastic tensor optimization. arXiv preprint
arXiv:1802.09568, 2018.

E. Hazan. Introduction to online convex optimization. Foun-
dations and Trends in Optimization, 2(3-4):157–325,
2016.

R. A. Horn and C. R. Johnson. Topics in matrix analysis,
1991. Cambridge University Presss, Cambridge, 37:39,
1991.

A. Kalai and S. Vempala. Efficient algorithms for online
decision problems. Journal of Computer and System
Sciences, 71(3):291–307, 2005.

D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

A. S. Lewis and M. L. Overton. Nonsmooth optimization
via quasi-newton methods. Mathematical Programming,
141(1-2):135–163, 2013.

K. Löwner. Über monotone matrixfunktionen. Mathematis-
che Zeitschrift, 38(1):177–216, 1934.

J. Martens and R. Grosse. Optimizing neural networks with
Kronecker-factored approximate curvature. In Interna-
tional conference on machine learning, pages 2408–2417,
2015.

B. Neyshabur, R. R. Salakhutdinov, and N. Srebro. Path-sgd:
Path-normalized optimization in deep neural networks.
In Advances in Neural Information Processing Systems,
pages 2422–2430, 2015.

J. Nocedal. Updating quasi-newton matrices with limited
storage. Mathematics of computation, 35(151):773–782,
1980.

M. Pilanci and M. J. Wainwright. Newton sketch: A near
linear-time optimization algorithm with linear-quadratic
convergence. SIAM Journal on Optimization, 27(1):205–
245, 2017.

S. Shalev-Shwartz. Online learning and online convex opti-
mization. Foundations and Trends in Machine Learning,
4(2):107–194, 2012.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all
you need. In Advances in Neural Information Processing
Systems, pages 6000–6010, 2017.

P. Xu, J. Yang, F. Roosta-Khorasani, C. Ré, and M. W. Ma-
honey. Sub-sampled newton methods with non-uniform
sampling. In Advances in Neural Information Processing
Systems, pages 3000–3008, 2016.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals.
Understanding deep learning requires rethinking gener-
alization. In 5th International Conference on Learning
Representations, ICLR 2017, 2017.

