
Multicalibration: Supplementary Materials

Notation. Throughout the Supplementary Materials, we
use ‖x‖2 = Ei∼D[x2

i ]. We use 〈x, y〉 = Ei∼D[xi · yi].

A. Learning Multicalibrated Predictors
Here, we will work with a more technical variant of multi-
calibration, which implies (C, α)-multicalibration. In par-
ticular, this definition will allow us to work with an ex-
plicit discretization of the values v ∈ [0, 1]. Throughout,
for a predictor f , we refer to the “categories” Sv(f) =
{i : fi ∈ λ(v)} ∩ S for all S ∈ C and v ∈ Λ[0, 1].

Definition ((C, α, λ)-multicalibration). Let C ⊆ 2X be a
collection of subsets of X . For any α, λ > 0, a predictor
f is (C, α, λ)-multicalibrated if for all S ∈ C, v ∈ Λ[0, 1],
and all categories Sv(f) such that Pri∼D[i ∈ Sv(f)] ≥
αλ · Pri∼D[i ∈ S], we have

E
i∈Sv(f)

[fi − p∗i ] ≤ α.

We claim that if learn a predictor that satisfies (C, α, λ)-
multicalibration, we can easily transform this predic-
tor into one that satisfies our earlier notion of (C, α)-
multicalibration. In particular, let fλ be the λ-discretization
of a predictor f if for all i ∈ Sv(f), fλi = Ei∼Sv(f)[fi].

Lemma 1. For α, λ > 0, suppose C ⊆ 2X is a collection
of subsets of X . If f is (α, λ)-multicalibrated on C, then fλ

is (α+ λ)-multicalibrated on C.

Proof. Consider the categories Sv(f) where Pri∼D[i ∈
Sv(f)] < αλ · Pri∼D[i ∈ S]. By the λ-discretization, there
are at most 1/λ such categories, so the cardinality of their
union is at most (1/λ)αλ · Pri∼D[i ∈ S] = αPri∼D[i ∈
S]. Thus, for each S ∈ C, there is a subset S′ ⊆ S with
Pri∼D[i ∈ S′] ≥ (1 − α) · Pri∼D[i ∈ S] where for all
v ∈ Λ[0, 1], ∣∣∣∣ E

i∼Sv(x)∩S′
[fi − p∗i ]

∣∣∣∣ ≤ α.
Further, λ-discretization will “move” the values of fi by at
most λ, so overall, fλ will be (α+ λ)-calibrated.

In this section, we prove Theorem 2 by analyzing Algo-
rithm 1, showing how to implement the algorithm from a
small sample. Theorem 1 follows as a corollary of Theo-
rem 2.

A.1. Proof of Theorem 2

Algorithm 1 runs through each possible category Sv and
if Sv is large enough, queries the oracle. The algorithm
continues searching for uncalibrated categories until f ’s

guesses on all sufficiently large categories receive X. By
the definition of the guess-and-check oracle, if the query
returns X for some category Sv, then v̄ is at most 4ω = α
far from the true value Ei∼Sv

[p∗i ]. Thus, by the stopping
condition of the loop, the predictor where all i ∈ λ(v)
receive fi = v̄ will be α-calibrated on every large category.
Finally, the algorithm updates f to be λ-discretized, so by
Lemma 1, f will be (C, α+ λ)-multicalibrated. Further, the
number of updates necessary to terminate is bounded.

Lemma 2. Suppose α, λ > 0 and C ⊆ 2X where for all
S ∈ C, Pri∼D[i ∈ S] ≥ γ. Algorithm 1 returns f after
receiving at most O(1/α3λγ) guess-and-check responses
where r ∈ [0, 1] and at most O(|C| /α4λγ) responses r =
X.

Proof. For some non-X response on Sv =
{i : fi ∈ λ(v)} ∩ S, by the properties of the guess-
and-check oracle, we can lower bound the progress of each
update in terms of the squared error. Let δv = r − v̄ be the
magnitude of the updates for i ∈ Sv .

‖p∗ − f‖2 − ‖p∗ − f ′‖2

= Pr
i∼D

[i ∈ Sv] · E
i∼Sv

[(p∗i − fi)2 − (p∗i − π[0,1](fi + δv))
2]

≥ β · E
i∼Sv

[(p∗i − fi)2 − (p∗i − (fi + δv))
2]

= β · E
i∼Sv

[2 · (p∗i − fi) · δv − δ2
v ]

= β ·
(

2δv · E
i∼Sv

[p∗i − fi]− δ2
v

)
Letting νv = Ei∼Sv [p∗i − fi] and δv = ν − τ for some
|τ | ≤ ω, we can rearrange as follows.

2 · (ν − τ) · ν − (ν − τ)2 = ν2 − τ2

Noting that by the guarantees of the guess-and-check oracle,
ν ≥ 2ω and taking ω ≤ α/4, we see that the potential
progress is at least β · Ω(α2) where β = Pri∼D[i ∈ Sv] ≥
αλγ.

As ‖p∗‖2 ≤ 1, we make at most O(1/α3λγ) updates upper
bounding the number of non-X responses. By working with
a λ-discretization, there are at most |C| /λ categories to con-
sider in every phase, so we receive at most O(|C| /α3λ2γ)
X responses.

Thus, we conclude the following theorem.

Theorem. For α, λ > 0 and C ⊆ 2X where for all S ∈
C, |S| ≥ γN , there is a statistical query algorithm that
learns a (α, λ)-multicalibrated predictor with respect to C
in O(|C| /α3λ2γ) queries.
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Again, note that our output is, in fact, (C, α + λ)-
multicalibrated, so taking λ = α, we obtain a (C, 2α)-
multicalibrated predictor in O(|C| /α5γ) queries.

A.2. Answering guess-and-check queries from a
random sample

Next, we argue that we can implement a guess-and-check
oracle from a set of random samples in a manner that guar-
antees good generalization. This, in turn, allows us to trans-
late our statistical query algorithm for learning a (C, α, λ)-
multicalibrated predictor into an algorithm that learns from
samples. Naively, we could resample for every update the
algorithm makes to the predictor. Suppose that C is such
that for all S ∈ C, |S| ≥ γN ; let β = αλγ. We could take
n = Õ(log(|C|)/α2β2) samples per update to guarantee
generalization, resulting in an overall sample complexity
of Õ(log(|C|)/α4β4). We show how to improve upon this
approach further. In particular, we show that there is a
differentially private algorithm that can answer the entire
sequence of guess-and-check queries accurately. Appeal-
ing to known connections between differential privacy and
adaptive data analysis, paired with an additional observa-
tion that our notion of approximate calibration only requires
relative additive error, we can guarantee that our algorithm
generalizes given a set of Õ(log(|C|)/α5/2β3/2) random
samples.

Algorithm 1 only interacts with the sample through the
guess-and-check oracle. Thus, to give a differentially pri-
vate implementation of the algorithm, it suffices to give a
differentially private implementation of the guess-and-check
oracle (Dwork & Roth, 2014).

Consider the sequence of queries that Algorithm 1 makes
to the guess-and-check oracle. We say the sequence
〈(S1, v1, ω1), . . . , (Sk, vk, ωk)〉 is a (k,m)-sequence of
guess-and-check queries if, over the course of the k queries,
the response to at most m of the queries is some r ∈ [0, 1],
and the responses to the remaining queries are all X. We
will assume that we know a lower bound on the minimum
absolute error β = minj∈[k] Pri∼D[i ∈ Sj ] · ωj over all of
the queries. We say that some algorithm A responds to a
guess-and-check query (S, v, ω) according to a random sam-
pleX if its response satisfies the guess-and-check properties
with Ei∼S [p∗i ] its empirical estimate on X ,

p̂S(X) =
|S|

|S ∩X|
∑

i∈S∩X
oi.

Responding to such a sequence in a differentially private
manner can be achieved using techniques from the private
multiplicative weights mechanism.
Lemma 3 ((Hardt & Rothblum, 2010)). Suppose
ε, δ, ω, ξ > 0 and suppose X ∼ (X × {0, 1})n is a set of n
random samples. Then there exists an (ε, δ)-differentially

private algorithm A that responds to any (k,m)-sequence
of guess-and-check queries with minimum absolute error β
according to X provided

n = Ω

(√
log(k/ξ) ·m · log(1/δ)

ε · β2

)

with probability at least 1− ξ over the randomness of A.

Using this differentially private algorithm, we can apply gen-
eralization bounds based on privacy developed in (Dwork
et al., 2015a;b;c; Bassily et al., 2016) to show that, with a
modest increase in sample complexity, we can respond to
all k guess-and-check queries.

Theorem. Let sk = 〈(S1, v1, ω), . . . , (Sk, vk, ω)〉 be a
(k,m)-sequence of guess-and-check queries such that for
all j ∈ [k], Pri∼D[i ∈ Sj ] ≥ β. Then there is an algo-
rithm A that, given n random samples X ∼ (X × {0, 1})n,
responds to sk such that for all j ∈ [k], the response
A(Sj , vj , ω̂j ;X) satisfies the guess-and-check properties
with window ω = α/4 provided

n = Ω

(
log(|C| /αβξ)
α5/2 · β3/2

)
with probability at least 1 − ξ over the randomness of A
and the draw of X .

This theorem implies that, asymptotically, we can answer
the k adaptively chosen guess-and-check queries with only
a
√

1/αβ factor increase in the sample complexity com-
pared to if we knew the queries in advance. The theorem
follows from tailoring the proof of the main “transfer” the-
orem of (Bassily et al., 2016) (Theorem 3.4) specifically
to the requirements of our guess-and-check oracle and ap-
plying the differentially private mechanism described in
Lemma 3. Combining these theorems and Algorithm 1 and
the fact that β = αλγ, we obtain an algorithm for learning
α-multicalibrated predictors from random samples.

Theorem. Suppose α, λ, γ, ξ > 0, and C ⊆ 2X where
for all S ∈ C, Pri∼D[i ∈ S] ≥ γ. Then there is an algo-
rithm that learns an (C, α, λ)-multicalibrated predictor with

probability at least 1− ξ from n = O

(
log(|C| /αλγξ)
α4 · λ3/2 · γ3/2

)
samples.

A.3. Runtime analysis of Algorithm 1

Here, we present a high-level runtime analysis of Algo-
rithm 1 for learning an (C, α, λ)-calibrated predictor on C.
In Lemma 2, we claim an upper bound of O(|C| /α3λ2γ)
on the number of guess-and-check queries needed before
Algorithm 1 converges. Here, we formally argue that each
of these queries can be implemented in the random sam-
ple model without much overhead, which upper-bounds the
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running time of the algorithm overall. This upper bound is
not immediate from our earlier analysis, as the sets and our
predictor are represented implicitly as circuits.

Claim. Algorithm 1 runs in time O(|C| · t ·
poly(1/α, 1/λ, 1/γ)), where t is an upper bound on
the time it takes to evaluate set membership for S ∈ C.

Proof. As before, let β = αλγ. First, for each S ∈ C, we
need to evaluate Pri∼D[i ∈ Sv] for Sv = {i : fi ∈ λ(v)} ∩
S for each of the O(1/λ) values v ∈ Λ[0, 1]. We do this by
sampling i ∼ D and evaluating whether i ∈ S, and if so,
checking the current value of fi. Each of the membership
queries takes at most t time and each evaluation of fi takes
at most O(t/α2β) time by the same argument as our upper
bound on the circuit size. After Õ(1/λβ2) samples, we will
be able to detect with constant probability which of the Sv
have density Pri∼D[i ∈ Sv] ≥ β. Further, if Pri∼D[i ∈ Sv]
is large, we can estimate v̄ by evaluating the current predic-
tor on samples from Sv, by rejection sampling. Similarly,
to answer the guess-and-check queries, we will estimate the
true empirical estimate of the query based on samples from
Sv and respond based on a noisy comparison between the
v̄ and the estimate of

∑
i∈Sv

oi. These estimates can all
be computed in poly(1/α, 1/β). Then, each update to the
predictor can be implemented in time proportional to the bit
complexity of the arithmetic computations, which is upper
bounded by t. Repeating this process for each S ∈ C gives
the upper bound of O(|C| · t ·poly(1/α, 1/λ, 1/γ)). Finally,
applying the upper bound on the number of guess-and-check
queries from Lemma 2, the claim follows.

A.4. The circuit complexity of multicalibrated
predictors

An interesting corollary of our algorithm is a theorem about
the complexity of representing a multicalibrated predictor.
Indeed, from the definition of multicalibration alone, it is
not immediately clear that there should be succinct descrip-
tions of multicalibrated predictors; after all, C could contain
many sets. We argue that the cardinality of C is not the
operative parameter in determining the circuit complexity
of a predictor f that is multicalibrated on C; instead it is
the circuit complexity necessary to describe sets S ∈ C, as
well as the cardinality of the subsets in C, and the degree of
approximation.

Leveraging Lemma 2, we can see that Algorithm 1 actu-
ally gives us a way to build up a circuit that computes the
mapping from individuals to the probabilities of our learned
multicalibrated predictor f . Suppose that for all sets S ∈ C,
set membership can be determined by a circuit family of
bounded complexity; that is, for all S ∈ C, there is some cS
with size at most s, such that cS(i) = 1 if and only if i ∈ S.
Then we can use this family of circuits to build a circuit

that implements f . We assume that we maintain real-valued
numbers up to b ≥ log(1/α) bits of precision.

Theorem. Suppose C ⊆ 2X is collection of sets where for
S ∈ C, there is a circuit of size s that computes membership
in S and Pri∼D[i ∈ S] ≥ γ. For any p∗ : X → [0, 1], there
is a predictor that is (C, α)-multicalibrated implemented by
a circuit of size O(s/α4γ).

Proof. We describe how to construct a circuit cf that, on
input i, will output the prediction fi according to the pre-
dictor learned by our algorithm. We initialize cf to be the
constant function cf (i) = 1/2 for all i ∈ X . Throughout,
we will update cf based on the current outputs of cf .

Consider an iteration of Algorithm 1 where for some S
described by cS ∈ C, we update f based on a category
Sv = S ∩ {i : fi ∈ λ(v)}. This occurs when the guess-and-
check query returns some r = q̃(Sv, v̄, ω) ∈ [0, 1]. Our
goal is to implement the update to f (i.e. update cf ), such
that for all i ∈ Sv , the new value fi = r and all other values
are unchanged.

We achieve this update by testing membership i ∈ S and
separately testing if the current value cf (i) = v; if both
tests pass, then we update the value output by cf (i) to be
r. Specifically, we include a copy of cS and hard-code v
and δv = r− v̄ into the circuit; if cS(i) = 1 and the current
value of cf (i) is in λ(v), then we update cf (i) to add the
hardcoded δv to its current estimate of fi; if either test fails,
then cf (i) remains unchanged. This logic can be imple-
mented with addition and subtraction circuits to a precision
of λ with boolean circuits of size O(b). We string these
update circuits together, one for each iteration. Learning an
(α/2, α/2)-multicalibrated predictor with Algoirthm 1 only
requires O(α4γ) updates. By this upper bound, we obtain
an O(α4γ) upper bound on the resulting circuit size.

B. Multicalibration and Weak Agnostic
Learning

B.1. Multicalibration from weak agnostic learning

In this section, we show how we can use a weak agnostic
learner to solve the search problem that arises at each iter-
ation of Algorithm 1: namely, to find an update that will
make progress towards mulitcalibration. Formally, we show
the following theorem.

Theorem. Let ρ, τ > 0 and C ⊆ 2X be some con-
cept class. If C admits a (ρ, τ)-weak agnostic learner
that runs in time T (|C| , ρ, τ), then there is an algorithm
that learns a predictor that is (C, α)-multicalibrated on
C′ = {S ∈ C : Pri∼D[i ∈ S] ≥ γ} in time O(T (|C| , ρ, τ) ·
poly(1/α, 1/λ, 1/γ)) as long as ρ ≤ α2λγ/2 and τ =
poly(α, λ, γ).
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That is, if there is an algorithm for learning the concept
class C over the hypothesis class of real-valued functions
H = {h : X → [−1, 1]} on the distribution of individuals
in polynomial time in log(|C|), 1/ρ, and 1/τ , then there
is an algorithm for learning an α-multicalibrated predic-
tor on the large sets in C that runs in time polynomial in
log(|C|), 1/α, 1/λ, 1/γ. For clarity of presentation in the
reduction, we make no attempts to optimize the sample
complexity or running time. Indeed, the exact sample com-
plexity and running time will largely depend on how strong
the weak learning guarantee is for the specific class C.

We prove the theorem by using the weak learner for C to
learn a (α, λ)-multicalibrated predictor. Recall Algorithm 1:
we maintain a predictor f and iteratively look for a set
S ∈ C where f violates the calibration constraint on Sv =
{i : fi ∈ λ(v)} ∩ S for some value v. In fact, the proof of
Lemma 2 reveals that we are not restricted to updates on Sv
for S ∈ C. As long as there is some uncalibrated category
Sv, we can find an update that makes nontrivial progress
in `22 distance from p∗ – even if this update is not on any
S ∈ C – then we can bound the number of iterations it will
take before there are no more uncalibrated categories. We
show that a weak agnostic learner allows us to find such an
update.

Proof. Throughout the proof, let β = αλγ, ρ = αβ/2, and
τ = ρd for some constant d ≥ 1. Let f be a predictor
initialized to be the constant function fi = 1/2 for all
i ∈ X .

Consider the search problem that arises during Algorithm 1
immediately after updating the predictor f . Let Xv =
{i : fi ∈ λ(v)} be the set of individuals in the λ-interval
surrounding v. Our goal is to determine if there is some
v ∈ Λ[0, 1] and S ∈ C such that Pri∼D[i ∈ Sv] ≥ β, where∣∣∣∣ E

i∼Sv

[fi − p∗i ]
∣∣∣∣ ≥ α |Sv| . (1)

We reduce this search problem to the problem of weak
agnostic learning over C on the distribution D. For any
v ∈ Λ[0, 1], if Pri∼D[i ∈ Xv] < β, then clearly there is no
uncalibrated category Sv with Pri∼D[i ∈ Sv] ≥ β; for each
v ∈ Λ[0, 1], we will test if Xv is large enough by taking
O(log(1/βξ)/β) random draws from X .

We assume that f is overall τ/4-calibrated on X ; if f were
not, we can update fi for all i ∈ Xv for the violated values
to make Ω(τ2) progress as the analysis of Algorithm 1.

For each v ∈ Λ[0, 1], we consider the following learning
problem. For i ∈ Xv, let ∆i = fi−oi

2 . For i ∈ X \ Xv, let
∆i = 0. We claim that if there is some Sv satisfying (1),
then for i ∼ DX , the labeled samples of either (i,∆i) or
(i,−∆i) satisfy the weak learning promise for ρ = αβ/4.
Note that we assume the learner takes enough samples to

guarantee that the empirical estimates using outcomes con-
centrate around their underlying expectations; for the sake
of clarity of presentation, we make no attempt to optimize
the sample complexity in this section.

Claim. Let cS : X → {−1, 1} be the boolean function
associated with some S ∈ C. For v ∈ Λ[0, 1], if Sv =
{i : fi ∈ λ(v)} ∩ S satisfies Ei∼Sv

[fi − p∗i ] ≥ α, then

〈cS ,∆〉 ≥ ρ.

Note that the supposition of the claim is satisfied when (1)
holds without the absolute value. In the case where (1)
holds in the other direction, the claim will hold for −∆.
The argument will be identical.

〈cS ,∆〉 =
1

2
E
i∼D

[(fi − oi) · cS(i)]

=
1

2
Pr
i∼D

[i ∈ Xv] · E
i∼Xv

[(fi − oi) · cS(i)]

=
1

2
Pr
i∼D

[i ∈ Sv] · E
i∼Sv

[(fi − oi)]

− 1

2
Pr
i∼D

[i ∈ Xv \ Sv] · E
i∼Xv\Sv

[(fi − oi)]

≥ Pr
i∼D

[i ∈ Sv] · E
i∼Sv

[(fi − oi)]− τ/4 (2)

≥ βα/2− τ/4 (3)
≥ ρ

where the inequality (2) follows from the assumption that f
is τ/4-calibrated onX , (3) follows from the assumption that
Pri∼D[i ∈ Sv] ≥ β and our assumption on Ei∼Sv [fi − p∗i ].
Noting that τ ≤ ρ gives the claim.

Thus, because the (ρ, τ)-weak agnostic learning promise is
satisfied, the learner will return to us some h : X → [−1, 1]
that is nontrivally correlated with f−p∗ onXv . In particular,
if we use this h as an update step, updating fi → v − ηhi
(projecting onto [0, 1] if necessary) for η = Ω(τ), then
we can guarantee that each such update will achieve τ2β
progress in ‖f − p∗‖2. The analysis follows in the same
way as the analysis of Algorithm 1.

B.2. Weak agnostic learning from multicalibration

In this section, we show the converse reduction. In partic-
ular, we will show that for a concept class C, an efficient
algorithm for obtaining an α-multicalibrated predictor with
respect to C′ = {S ∈ C : |S| ≥ γN}, gives an efficient al-
gorithm for responding to weak agnostic learning queries
on C.

Theorem. Let α, γ > 0 and suppose C ⊆ 2X

is a concept class. If there is an algorithm for
learning an α-multicalibrated predictor on C′ =
{S ∈ C : Pri∼D[i ∈ S] ≥ γ} in time T (|C| , α, γ) then we
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can implement a (ρ, τ)-weak agnostic learner for C in time
O(T (|C| , α, γ) · poly(1/τ)) for any ρ, τ > 0 such that
τ ≤ min {ρ− 2γ, ρ/4− 4α}.

Proof. Suppose we want to weak agnostic learn over C on
sampled observations from y ∈ [−1, 1]N . We assume there
is some cS ∈ C such that 〈cS , y〉 > ρ.

There are two cases to handle. First, suppose the support
of cS is small; that is, for the corresponding S ∈ C, |S| <
γ. Then, the correlation between y and the the constant
hypothesis h(i) = −1 for all i ∈ X will be at least ρ− 2γ.
Thus, for τ < ρ− 2γ, in the case when the support of cS is
small, then we can return the hypothesis −1. We can test
if the constant hypothesis is sufficiently correlated with y
in poly(1/τ) log(1/ξ) time by random sampling to succeed
with probability at least 1− ξ.

Next, we will proceed assuming |Ei∼X [yi]| < 2ω. By
the same argument as above, this means Pri∼D[i ∈ S] ·
Ei∼S [yi] >

ρ
2 − ω. Suppose we learn an f that is α-

multicalibrated with respect to C′ = C ∪ {X} on the la-
bels y. This implies that there is some X ′ ⊆ X such that
Pri∼D[i ∈ X ′] ≥ 1 − α and for all v ∈ [−1, 1], we have
v − α ≤ Ei∼X′

v
[yi] ≤ v + α. In turn, this implies the

following inequality.

sgn(v) · E
i∼X ′

v

[yi] ≥ |v| − α (4)

Then, let h(f) be the hypothesis defined as h(f)
i = sgn(fi).

Consider the inner product with y.

〈h(f), y〉 = E
i∈X

[h
(f)
i · yi] (5)

=
∑

v∈[−1,1]

Pr
i∼D

[i ∈ Xv] · E
i∈Xv

[h
(f)
i · yi] (6)

≥
∑

v∈[−1,1]

Pr
i∼D

[i ∈ Xv] · sgn(v) · E
i∈X ′

v

[yi]− α

(7)

≥
∑

v∈[−1,1]

Pr
i∼D

[i ∈ Xv] · |v| − 2α (8)

≥
∑

v∈[−1,1]

Pr
i∼D

[i ∈ X ′v] ·
∣∣∣∣ E
i∼S′

v

[yi]

∣∣∣∣− 3α (9)

≥ Pr
i∼D

[i ∈ S] · E
i∼S

[yi]− 4α (10)

≥ ρ

2
− ω − 4α (11)

where the first equalities follow by the definition of h(f);
(7) follows by the choice of X ′ and α-multicalibration; (8)
follows by applying (4) for each v ∈ [−1, 1]; (9) follows
by substituting v for the empirical average of y over S′v
invoking α-multicalibration for the appropriate choice of

S′ ⊆ S; (10) follows by the triangle inequality; and (11)
follows from the assumed inequality on Ei∼S [yi].

Thus, h(f) satisfies the (ρ, τ)-weak agnostic learning guar-
antee for any τ ≤ ρ/4− 4α by our choice of ω = ρ/4.

C. Best-in-class Predictions
Theorem (Best-in-class prediction). Suppose C ⊆ 2X is a
collection of subsets of X andH is a set of predictors. Then
there is a predictor f that is α-multicalibrated on C such
that

‖f − p∗‖2 − ‖h∗ − p∗‖2 < 6α,

where h∗ = argminh∈H ‖h− p∗‖
2. Further, suppose that

for all S ∈ C, Pri∼D[i ∈ S] ≥ γ, and suppose that set
membership for S ∈ C and h ∈ H are computable by
circuits of size at most s; then f is computable by a circuit
of size at most O(s/α4γ).

The proof of the theorem actually reveals something
stronger: if f is calibrated on the set S(H), then for ev-
ery category Sv(h) ∈ S(H), if f is significantly different
from h on this category – that is, if Ei∈Sv(h)[(hi − fi)2]
is large – then f actually achieves significantly improved
prediction error on this category compared to h. This is
stated formally in Lemma 4.

Lemma 4. Suppose g is an arbitrary predictor and let
S(g) = {Sv(g)}v∈Λ[0,1]. Suppose f is an arbitrary
(S(g), α)-multicalibrated predictor. Then for v ∈ Λ[0, 1],

E
i∼Sv(g)

[
(gi − fi)2

]
− (4α+ λ)

≤ E
i∼Sv(g)

[
(gi − p∗i )2

]
− E
i∼Sv(g)

[
(fi − p∗i )2

]
.

Consequently,

‖g − p∗‖2 − ‖f − p∗‖2 ≥ ‖g − f‖2 − (4α+ λ).

This lemma shows that calibrating on the categories of a
predictor not only prevents the squared prediction error from
degrading beyond a small additive approximation, but it also
guarantees that if calibrating changes the predictor signif-
icantly on any category, this change represents significant
progress towards the true underlying probabilities on this
category. Assuming Lemma 4, the theorem follows.

Proof. Note that if f is α-multicalibrated on C, then f
is α-multicalibrated on any C′ ⊆ C. Consider enforc-
ing calibration on the collection C ∪ S(H) as defined
above. If f is (C ∪ S(H), α, λ)-calibrated, then it is
({Sv(h)}v∈Λ[0,1] , α, λ)-multicalibrated for all h ∈ H and
specifically for h∗. By Lemma 4, and the fact that the
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squared difference is nonnegative, we obtain the following
inequality:

‖h∗ − p∗‖2 − ‖f − p∗‖2 ≥ ‖f − h∗‖2 − (4α+ λ)

≥ −(4α+ λ)

This inequality suffices to prove the accuracy guarantee;
however, to also guarantee the predictor f can be imple-
mented by a small circuit, we have to be a bit more careful.
In particular, when calibrating, we will ignore any Sv(h)
such that |Sv(h)| < λαN . Note that because we have λ-
discretized, there are at most 1/λ categories; thus, excluding
the sets Sv(h) where |Sv(h)| < αλN introduces at most an
additional αN error. Taking λ = α, in turn, this implies that
the difference in squared prediction error can be bounded
as ‖f − p∗‖2 − ‖h∗ − p∗‖2 ≤ 6αN . Finally, because the
sets we want to calibrate on are at least α2γN in cardi-
nality, the circuit complexity bound follows by applying
Lemma 2.

We turn to proving Lemma 4. The lemma follows by expand-
ing the difference in squared prediction errors and invoking
the definition of α-calibration.

Proof of Lemma 4. Let Svu represent the set of indi-
viduals i where gi ∈ λ(v) and fi = u. By the assump-
tion that f is α-calibrated on S(g), we know for every
Sv(g) ∈ S(g), there is some subset S′v(g) ⊆ Sv(g) such
that Pri∼D[i ∈ S′v(g)] ≥ (1 − α) · Pri∼D[i ∈ Sv(y)] for
which the predictions of f are approximately correct. In
particular, let S′vu = S′v(g) ∩ Su(f); if f is α-calibrated
with respect to Sv(g), this guarantees that for all values
u ∈ [0, 1], we have∣∣∣∣ E

i∼S′
vu

[p∗i − u]

∣∣∣∣ ≤ α. (12)

Using this fact, and the fact that the remaining α-fraction
of Sv(g) can contribute at most α to the squared error over
Sv(g), we can express the difference in the squared errors
of g and f on Sv(g):

E
i∼Sv(g)

[(gi − p∗i )2]− E
i∼Sv(g)

[(fi − p∗i )2]

= E
i∼Sv(g)

[(v − p∗i + (gi − v))2]− E
i∼Sv(g)

[(fi − p∗i )2]

≥ E
i∼Sv(g)

[(v − p∗i )2]− E
i∼Sv(g)

[(fi − p∗i )2]

+ 2 E
i∼Sv(g)

[(v − p∗i )(gi − v)]

≥ E
i∼Sv(g)

[(2(p∗i − v)(fi − v)− (fi − v)2)]− λ. (13)

where (13) follows by the observation that (gi−v)2 ≥ 0 and
if gi ∈ λ(v), then |gi − v| ≤ λ/2 and |v − p∗i | is trivially

bounded by 1. We bound the first term as follows.

E
i∼Sv(g)

[(p∗i − v)(fi − v)]

=
∑
u∈[0,1]

Pr
i∼Sv

[i ∈ Svu] · E
i∼Svu

[(p∗i − v)(u− v)]

Then, for each u ∈ [0, 1],

E
i∼Svu

[(p∗i − v)(u− v)]

= (u− v) E
i∼Svu

[p∗i − v]

= (u− v) E
i∼Svu

[u− v + p∗i − u]

= (u− v)2 + (u− v) E
i∼Svu

[p∗i − u].

At this point, we note that |u− v| ≤ 1. Thus, we can bound
the contribution of the expectation over Svu by its negative
absolute value:

≥ (u− v)2 − |u− v| ·
∣∣∣∣ E
i∼Svu

[p∗i − u]

∣∣∣∣
≥ (u− v)2 − (1− α) ·

∣∣∣∣ E
i∼S′

vu

[p∗i − u]

∣∣∣∣− α
≥ (u− v)2 − 2α

Summing over u ∈ [0, 1],∑
u∈[0,1]

Pr
i∼D

[i ∈ Svu] ·
(
(u− v)2 − 2α

)
= E
i∼Sv(g)

[(v − fi)2]− 2α,

where we bound the sums over Svu by invoking α-
calibration and applying (12). Plugging this bound into
(13), we see that

E
i∼Sv(g)

[
(gi − p∗i )2 − (fi − p∗i )2

]
≥ 2

(
E

i∼Sv(g)
[(v − f∗i )2]− 2α

)
− λ− E

i∼Sv(g)
[(v − fi)2]

= E
i∈Sv(g)

[(v − f∗i )2]− (4α− λ).

Summing over v ∈ [0, 1], we can conclude

‖g − p∗‖2 − ‖f − p∗‖2 ≥ ‖f − g‖2 − (4α− λ)

showing the lemma. �
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