
Recurrent Predictive State Policy Networks

Appendix

9. Predictive state representations and two
stage regression

In this section we give more details on the filter compo-
nent (RFFPSR) of the RPSP network. We explain the
state update equation and the two-stage initialization al-
gorithm. We encourage the reader to refer to (Hefny et al.,
2018) for more details, derivations and theoretical anal-
ysis. Let a1:t−1 = a1, . . . ,at−1 ∈ At−1 be the set of
actions performed by an agent, followed by observations
o1:t−1 = o1, . . . ,ot−1 ∈ Ot−1 received by the environ-
ment up to time t. Together they compose the entire history
up to time t h∞t ≡ {a1:t−1,o1:t−1}. We define future
observations at time t as the sequence of consecutive k
observations ot:t+k−1 ∈ Ok and extended future observa-
tions as the sequence of consecutive k + 1 observations
ot:t+k ∈ Ok+1. Same definitions apply for actions.

We now define feature mappings shown in Figure 1, for
immediate and future actions and observations:

– φo(ot) : O 7→ RO of immediate observations,

– φa(at) : A 7→ RA of immediate actions,

– ψo(ot:t+k−1) : Ok 7→ RFO

of future observations,

– ψa(at:t+k−1) : Ak 7→ RFA

of future actions

– ξo(ot:t+k) ≡ (ψot+1 ⊗ φot ,φot ⊗ φot ) : Ok+1 7→
RFO×O × RO×O of extended observations,

– ξa(at:t+k) ≡ ψat+1 ⊗ φat : Ak+1 7→ RFA×A of ex-
tended actions.

, where φot is a shorthand for φo(ot).

These feature maps basically compute Random Fourier fea-
tures (Rahimi & Recht, 2008) projected on a lower dimen-
sional space using PCA. For faster computation of the pro-
jection we use randomized PCA (Halko et al., 2011).

Given these feature functions we define the predictive
state qt to be a linear map from future action fea-
tures ψt to expected future observation features E[ψot |
o1:t−1,do(a1:t+k−1)], where do(a1:t+k−1) means inter-
vening by actions a1:t+k−1 instead of observing actions
a1:t+k−1 (Pearl, 2009) (in the discrete case, think of a con-
ditional probability table whose values are determined by
observations and actions up to time t − 1). Such a linear
map is be represented by a matrix, which can be vectorized
and projected using PCA.

We define the extended state pt = (pξt ,p
o
t ) as a tuple con-

sisting of two similar linear maps:

pξt ≡ ξat → E[ψot ⊗ φot | o1:t−1,do(a1:t+k)]

pot ≡ ξot → E[φot ⊗ φot | o1:t−1,do(a1:t)]

The key property in the extended state pt is that, given ot
and at, we can compute qt+1 using kernel Bayes rule (Fuku-
mizu et al., 2013) as we will demonstrate.

We assume there is a linear transformation Wext ≡
(W ξ

ext,W
o
ext) such that

pt = Wextqt.

With this model formulation, it remains to show how to
perform the state update and how to learn the parameter
Wext.

9.1. State update in RFFPSR

• Given a state qt we compute the extended state pt and
undo the PCA projection.

• Given the action at and pot we can compute

Ct ≡ E[φot ⊗ φot | o1:t−1,do(a1:t)]

• We can think of the map pξt as a 4-mode tensors with
modes corresponding toψot+1, φot , ψat+1, and φat . Ker-
nel Bayes rule tells us that, by multiplying (Ct+λI)−1

along the φot mode we get a tensor for the map

ψat+1,φ
a
t ,φ

o
t → E[ψat+1 | o1:t,do(a1:t+k)]

Given at and ot we compute the corresponding features
and plug them in the previous map (by multiplying with
the appropriate modes) to give the matrix for the map

ψat+1 → E[ψat+1 | o1:t,do(a1:t+k)],

which after vectorizing and projection is qt+1.

9.2. Learning RFFPSR Parameters

If we have access to examples of qt and pt, we can learn
Wext using linear regression. However, obtaining these
examples is as hard as learning the RFFPSR. Two-stage
regression (Hefny et al., 2015a; 2018) is based on the obser-
vation that we can replace qt and pt with their expectations
given history features

q̄t ≡ E[qt | ht]
p̄t ≡ E[pt | ht]

, where ht ≡ h(a1:t−1,o1:t−1) denotes a set of features
extracted from previous observations and actions (typically
from a fixed length window ending at t− 1). Computing q̄t
and p̄t is referred to as stage 1 (S1) regression. We use the
joint S1 regression method described in (Hefny et al., 2018).
We collect training data of tuples (ht,ψ

o
t ,ψ

a
t ). We train a



Recurrent Predictive State Policy Networks

Algorithm 2 UPDATE (VRPG)

1: Input: θn−1, trajectories D={τ i}Mi=1, and learning rate η.
2: Estimate a linear baseline bt = w>b qt, from the expected

reward-to-go function for the batch D:

wb = argmin
w

∥∥∥∥ 1
TM

M∑
i=1

Ti∑
t=1

Rt(τ
i
t )−w>qt

∥∥∥∥2.

3: Compute the VRPG loss gradient w.r.t. θ, in (6):

∇θ`1 = 1
M

M∑
i=1

Ti∑
t=0

∇θ log πθ(a
i
t|qi

t)(Rt(τ
i)− bt).

4: Compute the prediction loss gradient:

∇θ`2 = 1
M

M∑
i=1

Ti∑
t=1

∇θ

∥∥Wpred(q
i
t ⊗ ai

t)− oi
t

∥∥2.

5: Normalize gradients∇θ`j = NORMALIZE(θ, `j), in (8).
6: Compute joint loss gradient as in (5):

∇θL = α1∇θ`1 + α2∇θ`2.
7: Update policy parameters: θn = ADAM(θn−1,∇θL, η)
8: Output: Return θn = (θn

PSR,θ
n
re, η).

kernel regression model (ridge regression on RFF features)
to compute At ≡ E[ψot ⊗ ψat | ht] and another model to
compute Bt ≡ E[ψat ⊗ψat | ht]. Then, for each time step
we can compute

q̄t = At(Bt + λI)−1

and then we can project these values using PCA. Computa-
tion of p̄t can be done in a similar fashion.

Then, we can learn Wext through linear regression, which
is referred to as stage 2 (S2) regression. Having learned the
RFFPSR we can estimate the state qt and set up a regression
problem ot ≈Wpred(qt ⊗ φat ) to learn prediction weights
Wpred.

10. RPSP-network optimization algorithms
For clarity we provide the pseudo-code for the joint and
alternating update steps defined in the UPDATE step in
Algorithm 1, in section §5. We show the joint VRPG up-
date step in Algorithm 2, and the alternating (Alternating
Optimization) update in Algorithm 3.

11. Comparison to RNNs with LSTMs/GRUs
RPSP-networks and RNNs both define recursive models that
are able to retain information about previously observed in-
puts. BPTT for learning predictive states in PSRs bears
many similarities with BPTT for training hidden states in
LSTMs or GRUs. In both cases the state is updated via a
series of alternate linear and non-linear transformations. For
predictive states the linear transformation pt = Wext qt
represents the system prediction: from expectations over
futures qt to expectations over extended features pt. The
non-linear transformation, in place of the usual activation
functions (tanh, ReLU), is replaced by fcond that conditions
on the current action and observation to update the expec-
tation of the future statistics qt+1 in (2). It is worth noting

Algorithm 3 UPDATE (Alternating Optimization)

1: Input: θn−1, trajectories D = {τ i}Mi=1.
2: Estimate a linear baseline bt = w>b qt, from the expected

reward-to-go function for the batch D:

wb = argmin
w

∥∥∥∥ 1
TM

M∑
i=1

Ti∑
t=1

Rt(τ
i
t )−w>qt

∥∥∥∥2.

3: Update θPSR using the joint VRPG loss gradient in (5):
θn
PSR ← UPDATE VRPG(θn−1,D).

4: Compute descent direction for TRPO update of θre:
v = H−1g, where

H = ∇2
θre

M∑
i=1

DKL

(
πθn−1(ai

t|qi
t) | πθ(a

i
t|qi

t)
)
,

g = ∇θre

1

M

M∑
i=1

Ti∑
t=1

πθ(a
i
t|qi

t)

πθn−1(ai
t|qi

t)
(Rt(τ

i)− bt).

5: Determine a step size η through a line search on v to maximize
the objective in (7) while maintaining the constraint.

6: θn
PSR ← θn−1

PSR + ηv
7: Output: Return θn = (θn

PSR,θ
n
re).

that these transformations represent non-linear state updates,
as in RNNs, but where the form of the update is defined by
the choice of representation of the state. For Hilbert Space
embeddings it corresponds to conditioning using Kernel
Bayes Rule. An additional source of linearity is the repre-
sentation itself. When we consider linear transformations
Wpred and Wext we refer to transformations between kernel
representations, between Hilbert Space Embeddings.

PSRs also define computation graphs, where the parame-
ters are optimized by leveraging the states of the system.
Predictive states can leverage history like LSTMs/GRUs,
PSRs also have memory, since they learn to track in the
Reproducing Kernel Hilbert Space (RKHS) space of dis-
tributions of future observations based on past histories.
PSRs provide the additional benefit of being well-defined
as conditional distributions of observed features and could
be trained based on that definition. For this reason, RPSPs
have a statistically driven form of initialization, that can be
obtained using a moment matching technique, with good
theoretical guarantees (Hefny et al., 2018).

12. Additional Experiments
In this section, we investigate the effect of using differ-
ent variants of RPSP networks, we test against a random
initialization of the predictive layer, and provide further
experimental evidence for baselines.

RPSP optimizers: Next, we compare several RPSP vari-
ants for all environments. We test the two RPSP variants,
joint and alternate loss with predictive states and with aug-
mented predictive states (+obs). The first variant is the
standard “vanilla” RPSP, while the second variant is an
RPSP with augmented state representation where we con-
catenate the previous window of observations to the pre-
dictive state (+obs). We provide a complete comparison



Recurrent Predictive State Policy Networks

of RPSP models using augmented states with observations
for all environments in Figure 9. We compare with both
joint optimization (VRPG+obs) and an alternating approach
(Alt+obs). Extended predictive states with a window of
observations (w = 2) provide better results in particular for
joint optimization. This extension might mitigate prediction
errors, improving information carried over by the filtering
states.

Finite Memory models: Next, we present all finite memory
models used as baselines in §6. Figure 7 shows finite mem-
ory models with three different window sizes w = 1, 2, 5
for all environments. We report in the main comparison
the best of each environment (FM2 for Walker, Swimmer,
Cart-Pole, and FM1 for Hopper).

GRU baselines: In this section we report results obtained
for RNN with GRUs using the best learning rate η = 0.01.
Figure 8 shows the results using different number of hidden
units d = 16, 32, 64, 128 for all the environments.

Figure 5: Predictive filter regularization effect for Walker2d,
CartPole and Swimmer environments. RPSP with predic-
tive regularization (RPSP:blue), RPSP with fixed PSR filter
parameters (fix PSR:red), RPSP without predictive regular-
ization loss (reactive PSR: grey).



Recurrent Predictive State Policy Networks

Figure 6: GRU vs. RPSP filter comparison for other Walker
and CartPole environments. GRU filter without regulariza-
tion loss (GRU:red), GRU filter with regularized predictive
loss (reg GRU: yellow), RPSP (RPSP:blue)



Recurrent Predictive State Policy Networks

Figure 7: Empirical expected return using finite memory
models of w = 1 (black), w = 2 (light green), w = 5
(brown) window sizes. (top-down) Walker, Hopper, Cart-
Pole, and Swimmer.

Figure 8: Empirical expected return using RNN with GRUs
d = 16 (green), d = 32 (blue), d = 64 (red) and d = 128
(yellow) hidden units. (top-down) Walker, Hopper, Cart-
Pole, and Swimmer.



Recurrent Predictive State Policy Networks

Figure 9: Reward over iterations for RPSP variants over a
batch of M = 10 trajectories and 10 trials.


