Learning unknown ODE models with Gaussian processes

SUPPLEMENTARY DOCUMENT

Markus Heinonen!?*

Cagatay Yildiz!*

Henrik Mannerstrom!

Jukka Intosalmi!

MARKUS.O.HEINONEN@AALTO.FI

CAGATAY.YILDIZQAALTO.FI

HENRIK.MANNERSTROM@AALTO.FI

JUKKA.INTOSALMIQAALTO.FI

Harri Lihdesmaki! HARRI.LAHDESMAKIQAALTO.FI

! Aalto University, Finland; 2Helsinki Institute of Information Technology HIIT, Finland
*Joint first author

1. Sensitivity Equations

In the main text, the sensitivity equation is formulated using matrix notation

S(t) = J@®)S(t) + R(2). (1)
Here, the time-dependent matrices are obtained by differentiating the vector valued functions with respect to
vectors i.e.
[dz,(t,U) dx,(t,U) dx1(t,U) 7
duy dus dunmp
dwz(t,U) dZQ(t,U) d$2 (t,U)
duq duo dunp
S(t) = (2)
dxp (t,U) dID(t,U) dID(t,U)
duq dus dum b
L I pxmD
[of(x(t),U); Of(x(t),U)s 0f(x(t),U)1]
oxq Oxo Orp
Of(x(®),U)2 9f(x(¥),U)2 0f(x(t),U)2
Oxq Oxo Orp
J(t) = 3)
ofx(),U)p 0f(x(t),U)p of(x(t),U)p
L Oz Oz Oxp 4 DxD
[Of(x(t),U)1 Of(x(¢).U)s 0f(x(¢),U)1]
Ou1 Ous Ounp
Of(x(t),U)2 9f(x(¥),U)2 0f(x(¥).U)2
Ou1 Ous Ounp
R(t) = (4)
of(x®),U)p 9f(x(t),U)p of(x(1),U)p
Ouq Ousy Oump Jd DxMD
2. Optimization
Below is the explicit form of the log posterior. Note that we introduce u = vec(U) and Q = diag(w?, . ..,w%) for

notational simplicity.

Learning unknown nonparameteric ODE’s

log £ = log p(U10) + log p(Y |0, U, w) (5)
N
= log N (u[0,Ko(Z, Z)) + Y log N (yilx(t:, U),2) (6)
=1
N D N
_ 1z 1 1 (yij — 2(ti, U, x0))* 1
= —5u"Ko(Z,2)"'u— 5 log|Kp(Z, 2)| 2;; 2 ggloglm (7)

_‘E‘{Z
NE

s
I
—

<.
Il
—

1, 1
—5u'Ko(Z,2) u— S log|Ko(Z, Z)| - 2

(yi,j 7$j(ti,U;XO))2 fNilogwj (8)
j=1

Our goal is to compute the gradients with respect to the initial state xg, latent vector field U , kernel parameters

6 and noise variables w. As explained in the paper, we compute the gradient of the posterior with respect to

inducing vectors U and project them to the white domain thanks to noncentral parameterisation. The analytical

forms of the partial derivatives are as follows:

6log£ N D Yi,j —Jij(ti,U,Xo) 6xj(ti,U,x0) 1
—2= = : ~Ko(Z,2) 'u 9
Ouy, ;; wy Ouy, o))
810g£ N D Yi i .Z’j(ti, U, Xo) 8.’L‘j(ti, U, Xo)
= . 10
O(zo)a Z:ZU; w? 0(z0)a (10)
Odlog L 1 & s N
= — i — xi(ti, U, - = 11
O, w]3 ;(Z‘/ g — zj(t:, U, x0)) w; (11)

Seemingly hard to compute terms, 2% %L’kU’xO) and az]é(f;g(’ix(’), are computed using sensitivities. The lengthscale

parameter £ is considered as a model complexity parameter and is chosen from a grid using cross-validation. We

furthermore need the gradient with respect to the other kernel variable, i.e., the signal variance U?. Because

Ko(Z,Z) and x(t;,U) are the functions of kernel, computing the gradients with respect to O'J% is not trivial and
we make use of finite differences:
dlog L logL(of +d) —log L(oy)
Jo g N 6

(12)

We use § = 10~ to compute the finite differences.

One problem of using gradient-based optimization techniques is that they do not ensure the positivity of
the parameters being optimized. Therefore, we perform the optimization of the noise standard deviations
w = (w1,...,wp) and signal variance oy with respect to their logarithms:

OlogL OdlogL dc alogﬁc

dloge 9dc¢ dloge Oc (13)
where ¢ € (o7, w). The training algorithm is given in Algorithm 1.
3. Implementation Details
We initialise the inducing vectors U = (uy,...ups) by computing the empirical gradients y; = y; — y;—1, and
conditioning as
Us=K(Z,Y)K(Y,Y) ley, (14)

where we optimize the scale ¢ against the posterior. The whitened inducing vector is obtained as 170 = Lgon.
This procedure produces initial vector fields that partially match the trajectory already. We then do 100 restarts
of the optimization from random perturbations U = Uy + €.

Learning unknown nonparameteric ODE’s

Algorithm 1: NPODE training algorithm

1 Initialize U, Z, xq, 0, w

2 Compute Kg(Z, Z) and Lg

3 while not converged do

Integrate the system to compute the path x(¢) and the sensitivities S(t)
Compute the gradients by (9), (10), (11), (12) and (13),

Apply the noncenteral parameterization trick: V log £ = LiVylogL
Update xg, [7, oy,w based on L-BFGS update rule

Set U = LoU

® N o oA

We use L-BFGS gradient optimization routine in Matlab. We initialise the inducing vector locations Z on a
equidistant fixed grid on a box containing the observed points. We select the lengthscales ¢, ..., {p using cross-
validation from values {0.5,0.75,1,1.25,1.5}. In general large lengthscales induce smoother models, while lower
lengthscales cause overfitting.

