Orthogonal Recurrent Neural Networks with Scaled Cayley Transform

Supplemental Material: Proof of Theorem 3.2

For completeness, we restate and prove Theorem 3.2.

Theorem 3.2 Let $L = L(W) : \mathbb{R}^{n \times n} \to \mathbb{R}$ be some differentiable loss function for an RNN with the recurrent weight matrix W. Let $W = W(A) := (I+A)^{-1} (I-A) D$ where $A \in \mathbb{R}^{n \times n}$ is skew-symmetric and $D \in \mathbb{R}^{n \times n}$ is a fixed diagonal matrix consisting of -1 and 1 entries. Then the gradient of L = L(W(A)) with respect to A is

$$\frac{\partial L}{\partial A} = V^T - V \tag{1}$$

$$\begin{array}{l} \textit{where } V := \left(I + A\right)^{-T} \frac{\partial L}{\partial W} \left(D + W^T\right)\!, \ \frac{\partial L}{\partial A} = \left[\frac{\partial L}{\partial A_{i,j}}\right] \in \mathbb{R}^{n \times n}, \textit{ and } \frac{\partial L}{\partial W} = \left[\frac{\partial L}{\partial W_{i,j}}\right] \in \mathbb{R}^{n \times n} \end{array}$$

Proof: Let $Z:=(I+A)^{-1}(I-A)$. We consider the (i,j) entry of $\frac{\partial L}{\partial A}$. Taking the derivative with respect to $A_{i,j}$ where $i\neq j$ we obtain:

$$\begin{split} \frac{\partial L}{\partial A_{i,j}} &= \sum_{k,l=1}^{n} \frac{\partial L}{\partial W_{k,l}} \frac{\partial W_{k,l}}{\partial A_{i,j}} = \sum_{k,l=1}^{n} \frac{\partial L}{\partial W_{k,l}} D_{l,l} \frac{\partial Z_{k,l}}{\partial A_{i,j}} \\ &= \operatorname{tr} \left[\left(\frac{\partial L}{\partial W} D \right)^{T} \frac{\partial Z}{\partial A_{i,j}} \right] \end{split}$$

Using the identity (I + A) Z = I - A and taking the derivative with respect to $A_{i,j}$ to both sides we obtain:

$$\frac{\partial Z}{\partial A_{i,j}} + \frac{\partial A}{\partial A_{i,j}} Z + A \frac{\partial Z}{\partial A_{i,j}} = -\frac{\partial A}{\partial A_{i,j}}$$

and rearranging we get:

$$\frac{\partial Z}{\partial A_{i,j}} = -\left(I + A\right)^{-1} \left(\frac{\partial A}{\partial A_{i,j}} + \frac{\partial A}{\partial A_{i,j}} Z\right)$$

Let $E_{i,j}$ denote the matrix whose (i,j) entry is 1 with all others being 0. Since A is skew-symmetric, we have $\frac{\partial A}{\partial A_{i,j}} = E_{i,j} - E_{j,i}$. Combining everything, we have:

$$\frac{\partial L}{\partial A_{i,j}} = -\operatorname{tr} \left[\left(\frac{\partial L}{\partial W} D \right)^T (I + A)^{-1} (E_{i,j} - E_{j,i} + E_{i,j} Z - E_{j,i} Z) \right]$$

$$= -\operatorname{tr} \left[\left(\frac{\partial L}{\partial W} D \right)^T (I + A)^{-1} E_{i,j} \right]$$

$$+ \operatorname{tr} \left[\left(\frac{\partial L}{\partial W} D \right)^T (I + A)^{-1} E_{j,i} \right]$$

$$- \operatorname{tr} \left[\left(\frac{\partial L}{\partial W} D \right)^T (I + A)^{-1} E_{j,i} Z \right]$$

$$+ \operatorname{tr} \left[\left(\frac{\partial L}{\partial W} D \right)^T (I + A)^{-1} \right]_{i,j}^T$$

$$+ \left[\left(\frac{\partial L}{\partial W} D \right)^T (I + A)^{-1} \right]_{i,j}^T$$

$$- \left[\left(\left(\frac{\partial L}{\partial W} D \right)^T (I + A)^{-1} \right]_{i,j}^T$$

$$+ \left[Z \left(\frac{\partial L}{\partial W} D \right)^T (I + A)^{-1} \right]_{i,j}^T$$

$$= \left[(I + Z) \left(\frac{\partial L}{\partial W} D \right)^T (I + A)^{-1} \right]_{i,j}^T$$

$$- \left[\left(\left(\frac{\partial L}{\partial W} D \right)^T (I + A)^{-1} \right)^T (I + Z^T) \right]_{i,j}^T$$

$$= \left[(D + W) \left(\frac{\partial L}{\partial W} D \right)^T (I + A)^{-1} \right]_{i,j}^T$$

$$- \left[(I + A)^{-T} \frac{\partial L}{\partial W} (D + W^T) \right]_{i,j}^T$$

Using the above formulation, $\frac{\partial L}{\partial A_{j,j}}=0$ and $\frac{\partial L}{\partial A_{i,j}}=-\frac{\partial L}{\partial A_{j,i}}$ so that $\frac{\partial L}{\partial A}$ is a skew-symmetric matrix. Finally, by the definition of V we get the desired result.