Orthogonal Recurrent Neural Networks with Scaled Cayley Transform

Supplemental Material: Proof of Theorem 3.2

For completeness, we restate and prove Theorem 3.2.

Theorem 3.2 Let L = L(W) : R™*™ — R be some differ-
entiable loss function for an RNN with the recurrent weight
matrix W. Let W = W(A) == I+A)"'I-A)D
where A € R"™ " s skew-symmetric and D € R"*" is
a fixed diagonal matrix consisting of -1 and 1 entries. Then
the gradient of L = L(W (A)) with respect to A is
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Proof: Let Z = (I + A)~Y(I — A). We consider the
(i,4) entry of Takmg the derivative with respect to A, ;
where i # j we obtam
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Using the identity (I + A) Z = I — A and taking the deriva-
tive with respect to A; ; to both sides we obtain:
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and rearranging we get:
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Let E; ; denote the matrix whose (7, j) entry is 1 with
all others being 0. Since A is skew-symmetric, we have

6T,, = F; ; — I; ;. Combining everything, we have:
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Using the above formulation, aiL” = 0 and % =
757 1,7

aL aL . . . .
—94,; SO that 5% is a skew-symmetric matrix. Finally,

by the definition of V' we get the desired result. B
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