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Figure 7: Network architectures used for digit experiments.
We show here the task net (f), discriminator for feature level
adaptation (D7€%?), discriminator for image level adaptation
(D™29¢), and generator for source to target (G) — same
network used for target to source.

A. Appendix

A.1. Implementation Details

We begin by pretraining the source task model, fs, using the task
loss on the labeled source data. Next, we perform pixel-level adap-
tation using our image space GAN losses together with semantic
consistency and cycle consistency losses. This yeilds learned pa-
rameters for the image transformations, Gs_.7 and Gr_, s, image
discriminators, Dg and D7, as well as an initial setting of the task
model, fr, which is trained using pixel transformed source images
and the corresponding source pixel labels. Finally, we perform
feature space adpatation in order to update the target semantic
model, fr, to have features which are aligned between the source
images mapped into target style and the real target images. During
this phase, we learn the feature discriminator, Dy, and use this
to guide the representation update to fr. In general, our method
could also perform phases 2 and 3 simultaneously, but this would
require more GPU memory then available at the time of these
experiments.

For all feature space adaptation we equally weight the generator
and discriminator losses. We only update the generator when the
discriminator accuracy is above 60% over the last batch (digits)
or last 100 iterations (semantic segmentation) — this reduces the
potential for volatile training. If after an epoch (entire pass over
dataset) no suitable discriminator is found, the feature adaptation
stops, otherwise it continues until max iterations are reached.

A.1.1. DIGIT EXPERIMENTS

For all digit experiments we use a variant of the LeNet architecture
as the task net (Figure 7 left). Our feature discriminator network
consists of 3 fully connected layers (Figure 7 mid left). The image
discriminator network consists of 6 convolutional layers culmi-
nating in a single value per pixel (Figure 7 mid right). Finally,
to generate one image domain from another we use a multilayer
network which consists of convolution layers followed by two
residual blocks and then deconvolution layers (Figure 7 right). All
stages are trained using the Adam optimizer.

Hyperparameters. For training the source task net model, we
use learning rate le-4 and train for 100 epochs over the data with
batch size 128. For feature space adaptation we use learning rate
le-5 and train for max 200 epochs over the data. For pixel space
adaptation we train our generators and discriminators with equal
weighting on all losses, use batch size 100, learning rate 2e-4
(default from CycleGAN), and trained for 50 epochs. We ran
each experiment 4 times and report the average and standard error
across the runs.

A.1.2. SEMANTIC SEGMENTATION

We experiment with both the VGG16-FCN8s (Long et al., 2015)
architecture as well as the DRN-26 (Yu et al., 2017) architecture.
For FCNS8s, we train our source semantic segmentation model for
100k iterations using SGD with learning rate 1e-3 and momentum
0.9. For the DRN-26 architecture, we train our source semantic
segmentation model for 115K iterations using SGD with learning
rate le-3 and momentum 0.9. We use a crop size of 600x600 and
a batch size of 8 for this training. For cycle-consistent image level
adaptation, we followed the network architecture and hyperparam-
eters of CycleGAN(Zhu et al., 2017). All images were resized
to have width of 1024 pixels while keeping the aspect ratio, and
the training was performed with randomly cropped patches of size
400 by 400. Also, due to large size of the dataset, we trained only
20 epochs. For feature level adaptation, we train using SGD with
momentum, 0.99, and learning rate 1e-5. We weight the representa-
tion loss ten times less than the discriminator loss as a convenience
since otherwise the discriminator did not learn a suitable model
within a single epoch. Then the segmentation model was trained
separately using the adapted source images and the ground truth
labels of the source data. Due to memory limitations we can only
include a single source and single target image at a time (crops
of size 768x768), this small batch is one of the main reasons for
using a high momentum parameter.

A.2. Cross-season adaptation

As an additional semantic segmentation evaluation, we consider
the SYNTHIA dataset (Ros et al., 2016a), which contains syn-
thetic renderings of urban scenes. We use the SYNTHIA video
sequences, which are rendered across a variety of environments,
weather conditions, and lighting conditions. This provides a syn-
thetic testbed for evaluating adaptation techniques. For comparison
with previous work, in this work we focus on adaptation between
seasons. We use only the front-facing views in the sequences so
as to mimic dashcam imagery, and adapt from fall to winter. The
subset of the dataset we use contains 13 classes and consists of
10,852 fall images and 7,654 winter images.

We start by exploring the abilities of pixel space adaptation alone
(using FCNS8s architecture) for the setting of adapting across sea-
sons in synthetic data. For this we use the SYNTHIA dataset and
adapt from fall to winter weather conditions. Typically in unsuper-
vised adaptation settings it is difficult to interpret what causes the
performance improvement after adaptation. Therefore, we use this
setting as an example where we may directly visualize the shift
from fall to winter and inspect the intermediate pixel level adap-
tation result from our algorithm. In Figure 8 we show the result
of pixel only adaptation as we generate a winter domain image
(b) from a fall domain image (a), and visa versa (c-d). We may
clearly see the changes of adding or removing snow. This visually
interpretable result matches our expectation of the true shift be-
tween these domains and indeed results in favorable final semantic
segmentation performance from fall to winter as shown in Table 6.



CyCADA: Cycle-Consistent Adversarial Domain Adaptation

(a) Fall

(b) Fall — Winter

(c) Winter (d) Winter — Fall

Figure 8: Cross Season Image Translation. Example image-space conversions for the SYNTHIA seasons adaptation
setting. We show real samples from each domain (Fall and Winter) alongside conversions to the opposite domain.
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Source only 91.7 80.6 79.7 12.1 71.8 442 26.1 428 49.0 38.7 45.1 413 245 49.8 71.7 823
FCNs in the wild 92.1 86.7 913 20.8 72.7 529 46.5 643 50.0 59.5 54.6 57.5 26.1 596 — —
CyCADA pixel-only 92.5 90.1 919 799 85.7 47.1 369 82.6 450 49.1 462 546 21.5 63.3 85.7 92.1
Oracle (Train on target) \ 93.8 922 947 90.7 90.2 644 38.1 885 554 51.0 520 68.9 373 70.5 89.9 945

Table 6: Adaptation between seasons in the SYNTHIA dataset. We report IoU for each class and mean IoU, freq-weighted
IoU and pixel accuracy. Our CyCADA method achieves state-of-the-art performance on average across all categories.

*FCNs in the wild is by Hoffman et al. (2016).

We find that CyCADA achieves state-of-the-art performance on
this task with image space adaptation alone, however does not re-
cover full supervised learning performance (train on target). Some
example errors includes adding snow to the sidewalks, but not to
the road, while in the true winter domain snow appears in both
locations. However, even this mistake is interesting as it implies
that the model is learning to distinguish road from sidewalk during
pixel adaptation, despite the lack of pixel annotations.

Cycle-consistent adversarial adaptation achieves state-of-the-art
adaptation performance. We see that under the fwloU and pixel ac-
curacy metrics, CyCADA approaches oracle performance, falling
short by only a few points, despite being entirely unsupervised.
This indicates that CyCADA is extremely effective at correcting
the most common classes in the dataset. This conclusion is sup-
ported by inspection of the individual classes in Table 6, where we
see the largest improvement on common classes such as road and
sidewalk.

A.3. Comparison to Shrivastava et al. (2017) for
Semantic Segmentation

We illustrate the performance of a recent pixel level adaptation
approach proposed by Shrivastava et al. (2017) on our semantic
segmentation data — GTA to Cityscapes. These images are signif-
icantly larger and more complex than those shown in the experi-
ments in the original paper. We show image to image translation
results under three different settings of the model hyperparameter,
A, which controls the tradeoff between the reconstruction loss and
the visual style loss. When A = 10 (Figure 9 right), the resulting
image converges to a near replica of the original image, thus pre-
serving content but lacking the correct target style. When A = 1
or A = 2.5 (Figure 9 left), the results lack any consistent seman-
tics making it difficult to perceive the style of the transformed
image. Thus, the resulting performance for this model is 11.6
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Figure 9: Image transformation results from Shrivastava
et al. (2017) applied to GTA to CityScapes transformation.
We demonstrate results using three different settings for .

mloU for FCN8s with VGG, well below the performance of the
corresponding source model of 17.9 mloU.
A.4. Additional GTA to CityScapes Visualizations

We show additional image-space adaptation visualiztions for the
GTA to CityScapes scenario in Figure 10.
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(a) GTAS (b) GTAS — Cityscapes (c) CityScapes (d) CityScapes — GTAS

Figure 10: GTAS to CityScapes Image Translation. Example images from the GTAS (a) and Cityscapes (c) datasets,
alongside their image-space conversions to the opposite domain, (b) and (d), respectively. Our model achieves highly
realistic domain conversions.



