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Abstract

Dropout, a stochastic regularisation technique for
training of neural networks, has recently been
reinterpreted as a specific type of approximate
inference algorithm for Bayesian neural networks.
The main contribution of the reinterpretation is
in providing a theoretical framework useful for
analysing and extending the algorithm. We show
that the proposed framework suffers from several
issues; from undefined or pathological behaviour
of the true posterior related to use of improper
priors, to an ill-defined variational objective due
to singularity of the approximating distribution
relative to the true posterior. Our analysis of
the improper log uniform prior used in variational
Gaussian dropout suggests the pathologies are
generally irredeemable, and that the algorithm
still works only because the variational formu-
lation annuls some of the pathologies. To ad-
dress the singularity issue, we proffer Quasi-KL
(QKL) divergence, a new approximate inference
objective for approximation of high-dimensional
distributions. We show that motivations for varia-
tional Bernoulli dropout based on discretisation
and noise have QKL as a limit. Properties of
QKL are studied both theoretically and on a sim-
ple practical example which shows that the QKL-
optimal approximation of a full rank Gaussian
with a degenerate one naturally leads to the Prin-
cipal Component Analysis solution.

1. Introduction

Srivastava et al. (2014) proposed dropout as a cheap way
of preventing Neural Networks (NN) from overfitting.
This work was rather impactful and sparked large inter-
est in studying and extending the algorithm. One strand of
this research lead to reinterpretation of dropout as a form of
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approximate Bayesian variational inference (Kingma et al.,
2015; Gal & Ghahramani, 2016; Gal, 2016).

There are two main reasons for attempting reinterpretation
of an existing method: 1) providing a principled interpre-
tation of the empirical behaviour; 2) extending the method
based on the acquired insights. Variational Bayesian dropout
has been arguably successful in meeting the latter criterion
(Kingma et al., 2015; Gal, 2016; Molchanov et al., 2017).
This paper thus focuses on the former by studying the theo-
retical soundness of variational Bayesian dropout and the im-
plications for interpretation of the empirical results.

The first main contribution of our work is identifica-
tion of two main sources of issues in current variational
Bayesian dropout theory:

(a) use of improper or pathological prior distributions;

(b) singularity of the approximate posterior distribution.

As we describe in Section 3, the log uniform prior in-
troduced in (Kingma et al., 2015) generally does not in-
duce a proper posterior, and thus the reported sparsifi-
cation (Molchanov et al., 2017) cannot be explained by
the standard Bayesian and the related minimum descrip-
tion length (MDL) arguments. In this sense, sparsification
via variational inference with log uniform prior falls into
the same category of non-Bayesian approaches as, for exam-
ple, Lasso (Tibshirani, 1996). Specifically, the approximate
uncertainty estimates do not have the usual interpretation,
and the model may exhibit overfitting. Consequently, we
study the objective from a non-Bayesian perspective, prov-
ing that the optimised objective is impervious to some of
the described pathologies due to the properties of the varia-
tional formulation itself, which might explain why the algo-
rithm can still provide good empirical results.'

Section 4 shows how mismatch between support of the ap-
proximate and the true posterior renders application of
the standard Variational Inference (VI) impossible by mak-
ing the Kullback-Leibler (KL) divergence undefined. As
the second main contribution, we address this issue by prov-
ing that the remedies to this problem proposed in (Gal &
Ghahramani, 2016; Gal, 2016) are special cases of a broader

! An earlier version of this work was published in (Hron et al.,
2017).
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class of limiting constructions leading to a unique objective
which we name Quasi-KL (QKL) divergence.

Section 5 provides initial discussion of QKL’s properties,
uses those to suggest an explanation for the empirically ob-
served difficulty in tuning hyperparameters of the true model
(e.g. Gal (2016, p. 119)), and demonstrates the potential of
QKL on an illustrative example where we try to approxi-
mate a full rank Gaussian distribution with a degenerate
one using QKL, only to arrive at the well known Principal
Component Analysis (PCA) algorithm.

2. Background

Assume we have a discriminative probabilistic model
ylz, W ~ P(y|z,W) where (z,y) is a single input-
output pair, and W is the set of model parameters gen-
erated from a prior distribution P(W). In Bayesian
inference, we usually observe a set of data points
(X,Y) = {(xn,yn)}Y_; and aim to infer the posterior
p(W | X,Y) o< p(W)TL, p(yn | 2n, W),? which can be
subsequently used to obtain the posterior predictive density
p(Y’ | X', X, Y) = fp(Yl | X', W)p(W | X,Y)dW.
If p(y | =, W) is a complicated function of W' like a neural
network, both tasks often become computationally infeasi-
ble and thus we need to turn to approximations.

Variational inference approximates the posterior distribution
over a set of latent variables W by maximising the evidence
lower bound (ELBO),

Lg) = B logp(Y | X, W)] - KL(QW)[|P(W)),
with respect to (w.r.t.) an approximate posterior Q(W). If
Q(W) is parametrised by ¢ and the ELBO is differentiable
w.r.t. ¢, VI turns inference into optimisation. We can then
approximate the density of posterior predictive distribution
using ¢(Y' | X', X)Y) = [p(Y'| X' W)g(W)dW,
usually by Monte Carlo integration.

A particular discriminative probabilistic model is a Bayesian
neural network (BNN). BNN differs from a standard NN
by assuming a prior over the weights W. One of the main
advantages of BNNs over standard NNs is that the posterior
predictive distribution can be used to quantify uncertainty
when predicting on previously unseen data (X', Y”). How-
ever, there are at least two challenges in doing so:

1) difficulty of reasoning about choice of the prior P(W);

2) intractability of posterior inference.

For a subset of architectures and priors, Item 1 can be ad-
dressed by studying limit behaviour of increasingly large

>Throughout the paper, P(W) refers to the distribution and
p(W) to its density function. Analogously for other distributions.

networks (see, for example, (Neal, 1996; Matthews et al.,
2018)); in other cases, sensibility of P(W) must be as-
sessed individually. Item 2 necessitates approximate infer-
ence — a particular type of approximation related to dropout,
the topic of this paper, is described below.

Dropout (Srivastava et al., 2014) was originally proposed as
a regularisation technique for NNs. The idea is to multiply
inputs of a particular layer by a random noise variable which
should prevent co-adaptation of individual neurons and thus
provide more robust predictions. This is equivalent to multi-
plying the rows of the subsequent weight matrix by the same
random variable. The two proposed noise distributions were
Bernoulli(p) and Gaussian N'(1, «v).

Bernoulli and Gaussian dropout were later respectively rein-
terpreted by Gal & Ghahramani (2016) and Kingma et al.
(2015) as performing VI in a BNN. In both cases, the appro-
ximate posterior is chosen to factorise either over rows or
individual entries of the weight matrices. The prior usually
factorises in the same way, mostly to simplify calculation
of KL (Q(W)|| P(W)). It is the choice of the prior and its
interaction with the approximating posterior family that is
studied in the rest of this paper.

3. Improper and pathological posteriors

Both Gal & Ghahramani (2016) and Kingma et al. (2015)
propose using a prior distribution factorised over individ-
ual weights w € W. While the former opts for a zero
mean Gaussian distribution, Kingma et al. (2015) choose to
construct a prior for which KL (Q(W)|| P(W)) is indepen-
dent of the mean parameters 6 of their approximate posterior
q(w) = ¢g a2 (w), w € W, 0 € 6, where ¢, , is the den-
sity function of N (u,0?). The decision to pursue such
independence is motivated by the desire to obtain an algo-
rithm that has no weight shrinkage — that is to say one where
Gaussian dropout is the sole regularisation method. Indeed,
the authors show that the log uniform prior p(w) := C/|w|
is the only one where KL (Q(W)|| P(W)) has this mean
parameter independence property. The log uniform prior is
equivalent to a uniform prior on log|w|. It is an improper
prior (Kingma et al., 2015, p. 12) which means that there is
no C € R for which p(w) is a valid probability density.

Improper priors can sometimes lead to proper posteriors (e.g.
normal Jeffreys prior for Gaussian likelihood with unknown
mean and variance parameters) if C is treated as a positive
finite constant and the usual formula for computation of
posterior density is applied. We show this is generally not
the case for the log uniform prior, and that any remedies
in the form of proper priors that are in some sense close to
the log uniform (such as uniform priors over floating point
numbers) will lead to severely pathological inferences.
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Figure 1. Illustration of Proposition 1. Blue is the prior, orange
the likelihood, and green shows a particular neighbourhood of w =
0 where the likelihood is greater than r > 0 (such neighbourhood
exists by the continuity). Integral of the likelihood over (-4, §)
w.r.t. P(w) diverges because the likelihood can be lower bounded
by r > 0 and the prior assigns infinite mass to this neighbourhood.

3.1. Pathologies of the log uniform prior

For any proper posterior density, the normaliser Z =
Jeo p(Y | X, W)p(W)dW has to be finite (D denotes
the total number of weights). We will now show that this
requirement is generally not satisfied for the log uniform
prior combined with commonly used likelihood functions.

Proposition 1. Assume the log uniform prior is used and
that there exists some w € W such that the likelihood
function at w = 0 is continuous in w and non-zero. Then
the posterior is improper.

All proofs can be found in the appendix. Notice that stan-
dard architectures with activations like rectified linear or
sigmoid, and Gaussian or Categorical likelihood satisfy
the above assumptions, and thus the posterior distribution
for non-degenerate datasets will generally be improper. See
Figure 1 for a visualisation of this case.

Furthermore, the pathologies are not limited to the region
near w = 0, but can also arise in the tails (Figure 2). As an
example, we will consider a single variable Bayesian logistic
regression problem p(y |z, w) = 1/(1 + exp(—zw)), and
again use the log uniform prior for w. For simplicity, assume
that we have observed (zr = 1,y = 1) and wish to infer
the posterior distribution. To show that the right tail has
infinite mass, we integrate over [k, 00), k > 0,

C 1
p(w)p(y x,wdw:/ —————dw
fo otz = [
>/ C 1 d :C~(ooflogk)zoo
[k,00) W] 1+ exp(—Fk) 1+ exp(—k)

Equivalently, we could have obtained infinite mass in
the left tail, for example by taking the observation to be

(1+e)!

Figure 2. Visualisation of the infinite tail mass example. Blue is
the prior, orange the sigmoid likelihood, and green shows the lower
bound of the [k, co) interval. The sigmoid function is greater than
zero for any k > 0. The integral of the likelihood over [k, 00) w.r.t.
P(w) can thus again be lower bounded by a diverging integral.

(z = —1,y = 1). Because the sigmoid function is continu-
ous and equal to 1/2 at w = 0, the posterior also has infinite
mass around the origin, exemplifying both of the discussed
degeneracies. The normalising constant is of course still
infinite and thus the posterior is again improper.

The practical implication of these pathologies is that even
tasks as simple as MAP estimation (Proposition 1 implies
unbounded posterior density) or posterior mean estimation
will fail as the target is undefined. In general, improper pos-
teriors lead to undefined or incoherent inferences. The above
shows that this is the case for the log uniform prior com-
bined with BNNs and related models, making Bayesian
inference, exact and approximate, ill-posed.

3.2. Pathologies of the truncated log uniform prior

Neklyudov et al. (2017) proposed to swap the log uniform
prior on (—o0, 00) for a distribution that is uniform on a suf-
ficiently wide bounded interval in the log|w| space (will be
referred to as the log space from now on), i.e. p(loglw|) =
1/(b — a)ljq ) (w),a < b where I4 is the indicator func-
tion of the set A. This prior can be used in place of the log
uniform if the induced posteriors in some sense converge to
a well-defined limit for any dataset as [a, b] gets wider. If
this is not the case, choice of [a, b] becomes a prior assump-
tion and must be justified as such because different choices
will lead to sometimes considerably different inferences.
We now show that posteriors generally do not converge
for the truncated log uniform prior and discuss some of
the related pathologies of the induced exact posterior.

To illustrate the considerable effect the choice of [a, b] might
have, we return to the example of posterior inference in
a logistic regression model p(y | x,w) = 1/(1 + e~ *™) af-
ter observing (z = 1,y = 1), using the prior p,(w) =
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Figure 3. A truncated log uniform prior transformed to the original
space. Notice that the support gap around the origin narrows as
an — —00, and the tail support expands as b, — oo which yields
the more pathological inferences the wider [an, b, ] gets.

I;, (w)C,/|w| where I, = [—ebr, —e®] U [e,e"]
(i.e. the appropriate transformation of the closed interval
[an, by] from the log space — see Figure 3). We exemplify
the sensitivity of the posterior distribution to the choice of
the (I,,)nen sequence by studying the limiting behaviour
of the posterior mean and variance. Using the definition of
I;, (w) and symmetry, the normaliser of the posterior is,

—efn Cbn

1 1 1 1
Lp = R R |
" /_cbn |lw| 14+ e-w w+/c@n |lw| 14+ e-w v
bn
€71 146
= ———dw =b, —a,.
/ean |w| 14 e® W= o T an

Similar ideas can be used to derive the first two moments,

eb” —_e%n

o fean H%dw - ffebn 1_"_%du)
E (w) =
P, bn — an,
Bleb) + h(—eb) = h(e®) — h(—e®)
= ; )
n — An
" w 20 2a
]. + e e<Yn — @%dn
pty = [l Lwer g
Pn(w ) /ea,n bn — Gy 1 + ew w 2(bn . an) 9
2

where h(x) = log(1 + e%), and P,, stands for P, (w | z,y).
To understand sensitivity of the posterior mean to the choice
of (I,)nen, We now construct sequences which respectively
lead to convergence of the mean to zero, an arbitrary positive
constant, and infinity.> To emphasise this is not specific to
the posterior mean, we show that the variance might equally
well be zero, infinite, or undefined.

To get lim,,,oc Ep, (w) = 0, notice that for a fixed b,,,
the second term in Equation (1) tends to log(4)/co = 0.

31t would be equally possible to get convergence to an arbitrary
negative constant, and negative infinity if the observation was
(r=-1y=1).

Hence we can make the posterior mean converge to zero
by making the first term also tend to zero; a way to achieve
this is setting b,, = log(log|a,,|), which tends to infinity as
a, — oo. The limit of Equation (2) for the same sequence,
and thus the variance, tends to zero as well.

For lim,, o, Ep_ (w) = ¢ > 0, we again focus on the first
term in Equation (1) as the second term tends to zero for any
increasing sequence I, * R. Simple algebra shows that for
any diverging sequence b,, — oo, taking a,, = b, — e’ /c
yields the desired result. The same sequence leads to infinite
second moment and thus to infinite variance.

Finally, a choice which results in infinite mean and thus
undefined variance is setting a,, = —b,,, for which the mean
grows as e’ /b,,. We would like to point out that this sym-
metric growth of a,, with b, is of particular interest as it
corresponds to changing between different precisions of
the float format representation on the computer as consid-
ered in Kingma et al. (2015, Appendix A).

3.3. Variational Gaussian dropout as penalised
maximum likelihood

We have established that optimisation of the ELBO im-
plied by a BNN with log uniform prior over its weights
cannot generally be interpreted as a form of approximate
Bayesian inference. Nevertheless, the reported empirical
results suggest that the objective might possess reasonable
properties. We thus investigate if and how the pathologies
of the true posterior translate into the variational objective
as used in (Kingma et al., 2015; Molchanov et al., 2017).

Firstly, we derive a new expression for KL (Q(w)|| P(w)),
and for its derivative w.r.t. the variational parameters, which
will help us with further analysis.

Proposition 2. Let q(w) = ¢, ,2(w), and p(w) = C/|w|.
Denote u := 12 /(202). Then,

KL (Q(w)[| P(w))

1 Cu = uf
:const.+2<log2+e kz_oklw(lﬂ—i-k)) (3)

= const. — 1 —aM(a; 1/2 —u)
Oa

. “4)

a=0

where () denotes the digamma function, and M(a; b; z)
the Kummer’s function of the first kind.

We can obtain gradients w.r.t. ji and o using,

1 u=20

VLKL (Q(w) | P(w)) = § p,(va) w>0" %)

NG

and the chain rule; D, (z) is the Dawson integral.
The derivative is continuous in u on [0, 00).
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Before proceeding, we note that Equation (5) is sufficient to
implement first order gradient-based optimisation, and thus
can be used to replace the approximations used in (Kingma
et al., 2015; Molchanov et al., 2017). Note that numeri-
cally accurate implementations of the D (z) exist in many
programming languages (e.g. (Johnson, 2012)).

In VI literature, the term KL (Q(w)]|| P(w)) is often inter-
preted as a regulariser, constraining Q(w) from concentrat-
ing at the maximum likelihood estimate which would be
optimal w.r.t. the other term Eqw[logp(Y | X, W)] in
the ELBO. It is thus natural to ask what effect this term
has on the variational parameters. Noticing that only the in-
finite sum in Equation (3) depends on these parameters,
and that the first summand is always equal to ¢)(1/2), we
can focus on terms corresponding to £ > 1. Because
¥(1/2 4+ k) > 0,VEk > 1, all summands are non-negative.
Hence the penalty will be minimised if p2?/(202) = 0, i.e.
when 1 = 0 and/or 02 — oo; Corollary 3 is sufficient to
establish that this minimum is unique.

Corollary 3. Under assumptions of Proposition 2,
KL (Q(w)|| P(w)) is strictly increasing for u € [0, 00).

Sections 3.1 and 3.2 suggests the pathological behaviour is
non-trivial to remove unless we replace the (truncated) log
uniform prior.* An alternative route is to interpret optimi-
sation of the variational objective from above as a type of
penalised maximum likelihood estimation.

Proposition 2 and Corollary 3 suggest that the variational
formulation cancels the pathologies of the true posterior
distribution which both invalidates the Bayesian interpreta-
tion, but also means that the algorithm may perform well
in terms of accuracy and other metrics of interest. Since
the KL (Q(W)||P(W)) regulariser will force the mean
parameters to be small, and the variances to be large, and
the Eqw[logp(Y | X, W)] will generally push the pa-
rameters towards the maximum likelihood solution, the re-
sulting fit might have desirable properties if the right balance
between the two is struck. As the Bayesian interpretation
no longer applies, the balance can be freely manipulated by
reweighing the KL by any positive constant. The strict page
limit and desire to discuss the singularity issue lead us to
leave exploration of this direction to future work.

4. Approximating distribution singularities

Both the Bernoulli and Gaussian dropout can be seen as
members of a larger family of algorithms where individual
layer inputs are perturbed by elementwise i.i.d. random
noise. This is equivalent to multiplying the corresponding
row w; of the subsequent weight matrix by the same noise
variable. One could thus define w; = s;0;, s; ~ Q(s;),

*Louizos et al. (2017) made promising progress there.

Figure 4. Illustration of approximating distribution singularities.
On the left, blue is the standard and orange a correlated Gaussian
density. Null sets, are (Borel) sets with zero measure under a
distribution. Since both distributions have the same null sets, they
are absolutely continuous w.r.t. each other. On the right, orange
now represents a degenerate Gaussian supported on a line. Blue
assigns zero probability to the line whereas orange assigns all of its
mass; orange assigns probability zero to any set excluding the line
but blue does not. Hence neither is absolutely continuous w.r.t.
the other, and thus KL-divergence is undefined.

Q(s;) being an arbitrary distribution, and treat the induced
distribution over w; as an approximate posterior Q(w;).

An issue with this approach is that it leads to unde-
fined KL (Q(W)||P(W | X,Y)) whenever the prior as-
signs zero mass to the individual directions defined by 6.
To understand why, note that KL (Q(W)||P(W | X,Y))
is defined only if Q(W) is absolutely continuous w.r.t.
P(W | X,Y) which means that whenever P(W | X,Y")
assigns probability zero to a particular set, Q(W') does so
too. The right-hand side plot in Figure 4 shows a simple
example of the case where neither distribution is absolutely
continuous w.r.t. the other: the blue Gaussian assigns zero
mass to any set with Lebesgue measure zero, such as the line
along which the orange distribution places all its mass, and
thus the orange Gaussian distribution is not absolutely con-
tinuous w.r.t. the blue one. This example is relevant to our
problem from above, where Q(w;) always assigns all its
mass to along the direction defined by the vector 8;. For
more details, see for example (Matthews, 2016, Section 2.1).
When a measure is not absolutely continuous w.r.t. another
measure, it can be shown to have a so called singular com-
ponent relative to that measure, which we use as a shorthand
for referring to this issue. Consequences for variational
Bayesian interpretations of dropout are discussed next.

4.1. Implications for Bayesian dropout interpretations

Section 3.2 in (Kingma et al., 2015) proposes to use a shared
Gaussian random variable for whole rows of the posterior
weight matrices. Specifically s; ~ N (1, ) is substituted
for Q(s;) in the generic algorithm described in the previous
section. We call such behaviour in the context of varia-
tional inference an approximating distribution singularity.
The singularity has two possible negative consequences.
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First, if only the s; scalars are treated as random variables,
0 become parameters of the discriminative model instead of
the variational distribution. Optimisation of the ELBO will
yield a valid Bayesian posterior approximation for the s;.
The lack of regularisation of 8 might lead to significant
overfitting though, as 6 represent all weights in the BNN.

Second, if the fully factorised log uniform prior is used as
before, then the directions defined by @ constitute a measure
zero subspace of RP, and thus the KL (Q(W)|| P(W)) and
consequently KL (Q(W)||P(W | X,Y)) are undefined
for any configuration of 6. This is an instance of the is-
sue described in the previous section. As a consequence,
standard variational inference with this approximating fam-
ily and target posterior is impossible.

A similar problem is encountered in (Gal & Ghahramani,
2016; Gal, 2016). The approximate posterior is defined as
Q(w;) = pdo + (1 — p) g, for each row in every weight
matrix. The assumed prior is a product of independent
non-degenerate Gaussian distributions which by definition
assigns non-zero mass only to sets of positive Lebesgue
measure. Again, the approximate posterior is not absolutely
continuous w.r.t. the prior and thus the KL is undefined.

To address this issue, Gal & Ghahramani (2016) propose to
replace the Dirac deltas in Q(w;) by Gaussian distributions
with small but non-zero noise (we call this the convolutional
approach). As an alternative, Gal (2016) proposes to instead
discretise the Gaussian prior and the approximate posterior
so both assign positive mass only to a shared finite set of
values. Because the discretised Gaussian assigns non-zero
mass to all points in the set, the approximate posterior is
absolutely continuous w.r.t. this prior (we refer to this as
the discretisation approach).

Strictly speaking, the two approaches cannot be equivalent
because the corresponding random variables take values
in distinct measurable spaces (RP and a discrete grid re-
spectively). Notwithstanding, both approaches are claimed
to lead to the same optima for the variational parameters.’
The suggested method for addressing this discrepancy is
to introduce a continuous relaxation (Gal, 2016, p. 119) of
the optimisation problem for the discrete case. The precise
details of this relaxation are not given. One could define it as
the relaxation that satisfied the required KL-condition (Gal,
2016, Appendix A), but there is of course then a risk of a
circular argument. Putting these intuitive arguments on a
firmer footing is one motivation for what follows here.

In the light of Section 3.2, it is natural to ask whether either
of the proposed approaches will tend to a stable objective
as the added noise shrinks to zero, and the discretisation
becomes increasingly refined, respectively for the convolu-

SModulo the Euclidean distance to a closest point in the finite
set for the discretisation approach.

tional and discretisation approaches. Theorem 4 provides
an affirmative answer by proving that both approaches lead
to the same limit under reasonable assumptions.®

Theorem 4. Let Q,P be Borel probability measures on
RP, P with a continuous density p w.r.t. the D-dimensional
Lebesgue measure, and Q supported on an at most count-
able measurable set S C QP, with density q w.r.t. the count-
ing measure on QP. If S is infinite, further assume that
diam(S) < oo, i.e. sup, ,eg |7 — yll2 < oo

Then there exists a sequence (s(")) C R independent of Q
and P s.t. the limit for both the sequences of convolved and
discretised distributions {(Q(”), P(”))}neN,7

nlgr;o {KL (Q(n)H P(n)) _ S(n)} = Ic% (10g %) ,  (6)
given the perturbation noise is Gaussian and eventually
shrinks to zero, and that the discretisation creates ever finer
grid with equally sized cells as n — oco. The sequence
(s(™) tends to 0 if Q < P and to infinity otherwise.

The right-hand side (r.h.s.) of Equation (6) satisfies Gal’s KL
condition, i.e. it leads to the same optimisation problem and
thus unifies the convolutional and discretisation approach.

Unlike in (Gal, 2016, Appendix A), our derivation does not
make an extraneous assumption on the distribution over any
function of the @ parameters nor does it require that the ex-
pectation of||0; ||§ grows without bounds with dim(8,). Nei-
ther of these two assumptions is sure to hold in practice as
0 are being optimised, and 8; in any modern (B)NN is ini-
tially scaled by /dim(S) exactly to achieve approximately
constant Euclidean norm irrespective of the dimension.

We explored whether Equation (6) holds more generally.
Theorem 5 extends the convolutional approach to a consid-
erably larger class of approximating distributions.

Theorem 5. Let Q, P be Borel probability measures on RP,
P with a bounded continuous density p w.r.t. the Lebesgue
measure on RP, and Q supported on a measurable linear
manifold S C RP of (Hamel) dimension K g. Assume Q has
a continuous bounded density q w.r.t. the Lebesgue measure
on S, where the continuity is w.r.t. the trace topology.

Then there exists a sequence (s(”)) C R dependent only on
Kg s.t. the following holds for the convolutional approach,

n—oo

lim {KL (Q<”>|\P<n>)—s§§2} =E(logd).

given the perturbation noise is Gaussian and eventually

shrinks to zero. The sequence (s%?s)) tends to 0 if Q < P
and to infinity otherwise.

SWe state only the most important assumptions in Theorems 4
and 5. Please see the appendix for the full set of assumptions.
P(™ = P, V¥n € N, in the convolutional case.
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A result related to Theorem 5 for the discretisation approach
can be derived under assumptions similar to Theorem 4 with
one important difference: (s%?s)), if it exists, is affected not
only by Kg, but also by the orientation of S in RP. This
is because the dominating Lebesgue measure is different
for each affine subspace .S and thus, unlike in the countable
support case, g cannot be defined w.r.t. a single dominating
measure. Implicit in Theorems 4 and 5 is that the same
constant can be subtracted from KL (Q(| P(™) for all
distributions Q with the same type of support. Hence if
we are optimising over a family of singular approximating
distributions, the sequence (s(™)) (resp. (5%5))) does not
need to change between updates to obtain the desired limit.

Before moving to Section 5 which discusses some of
the merits of using Equations (6) and (7) as an objective for
approximate Bayesian inference, let us make two comments.

First, taking the limit makes the decision about size of per-
turbation or coarseness of the discretisation unnecessary.
The sequences used do not cause the same instability prob-
lems discussed in Section 3.2 because the true posterior is
well-defined even in the limit, which we assume in saying
that P is a probability measure. The main open question is
thus whether optimisation of the r.h.s. of Equation (6) will
yield a sensible approximation of this posterior.

Second, if there is a family of approximate posterior distri-
butions Q parametrised by ¢ € U, the equality,

argmin E (log %) = lim argmin KL Q(n) p ,
wgexp Qw( & p) n—00 feqz ( v | )
3)

need not hold unless stricter conditions are assumed. Equa-
tion (8) is of interest in cases when KL (Qg”) | P(™) has
some desirable properties (e.g. good predictive performance)
which we would like to preserve. However, this is not
the case for variational Bernoulli dropout as the objective
being used by Gal & Ghahramani (2016) is, in terms of gra-
dients w.r.t. the variational parameters, identical to the limit.

Furthermore, we can view both the discretisation and con-
volutional approaches as mere alternative vehicles to derive
the same quasi discrepancy measure (cf. Section 5). If this
quasi discrepancy possesses favourable properties, the pre-
cise details of optima attained along the sequence might
be less important. One benefit of this view is in avoiding
arguments like the previously mentioned continuous relax-
ation (Gal, 2016, p. 119).

5. Quasi-KL divergence

The r.h.s. of Equations (6) and (7) is markedly similar to
the formula for standard KL divergence. We now make
this link explicit. If Zp, = fspdms < 00, mg being
either the counting or the Lebesgue measure dominating

measure for ¢, we can the probability density ps := p/Zpg,
and denote the corresponding distribution on (S, Bg) by Ps.
We term Equation (9) the Quasi-KL (QKL) divergence,

QKL (Q||P) :=E (log 2) = KL (Q|| Ps) — log Zp, -
©)

Taking Equation (9) as a loss function says that we would
like to find such a @) for which the KL divergence between
Q and Pg is as small as possible, while making sure that
the corresponding set S runs through high density regions
of P, preventing QQ from collapsing to subspaces where p is
easily approximated by ¢ but takes low values. Since p is
continuous (c.f. Theorem 4), values of p roughly indicate
how much mass P assigns to the region where S is placed.

Standard KL divergence and QKL are equivalent when
Q < P and the two distributions have the same support.
QKL is not a proper statistical divergence though, as it
is lower bounded by —log Zp instead of zero. The non-
negativity could have been satisfied by defining QKL as
KL (Ql| Ps), dropping the log Zp, term. However, this
would mean losing the above discussed effect of forcing
S to lie in a relatively high density region of P, and also
the motivation of being a limit of the two sequences consid-
ered in Theorem 4.

Nevertheless, QKL inherits some of the attractive properties
of KL divergence: the density p need only be known up to
a constant, the reparameterisation trick (Kingma & Welling,
2014) and analogical approaches for discrete random vari-
ables (Maddison et al., 2017; Jang et al., 2017; Tucker et al.,
2017) still apply, and stochastic optimisation and integral
approximation techniques can be deployed if desired.

On a more cautionary note, we emphasise that Eq (log %) is
upper bounded by log Zp and not the log marginal likeli-
hood as is the case for standard KL use in VI. Hence optimi-
sation of this objective w.r.t. hyperparameters of P need not
work very well, since the resulting estimates could be biased
towards regions where the variational family performs best.®
This might explain why prior hyperparameters usually have
to be found by validation error based grid search (Gal, 2016,
e.g. p. 119) instead of ELBO optimisation as is common in
the sparse Gaussian Process literature (Titsias, 2009).

Whether and when is QKL an attractive alternative to
the more computationally expensive but proper statistical
discrepancy measures which are capable of handling sin-
gular distributions (e.g. Wasserstein distances) is beyond
the scope of this paper. To provide basic intuition of whether
QKL might be a sensible objective for inference, Section 5.1
focuses on a simple practical example that yields a well
known algorithm as the optimal solution to QKL optimisa-
tion, and exemplifies some of the above discussed behaviour.

8 A similar issue for KL was observed by Turner et al. (2010).



Variational Bayesian dropout: pitfalls and fixes

5.1. QKL and Principal Component Analysis

Proposition 6 is an application of Theorem 5:

Proposition 6. Assume P = N(0,X), X a (strictly) posi-
tive definite matrix of rank D, with a degenerate Gaussian
Q = N(0,AVA"Y), where A is a D x K matrix with or-
thonormal columns, and 'V is a K x K (strictly) positive
definite diagonal matrix. Then,

K
_ L 1 Tt
QKL (Q||P) =c 2kz_:llogvkk+2Tr<A ) Av)

where c is constant w.r.t. A, V. The optimal solution A,V
is to set columns of A to the top K eigenvectors of 3 and
the diagonal of V' to the corresponding eigenvalues.’

Proposition 6 shows that the QKL-optimal way to appro-
ximate a full rank Gaussian with a degenerate one is to
perform PCA on the covariance matrix. The result is intu-
itively satisfying as PCA preserves the directions of highest
variance; S was thus indeed forced to align with the high-
est density regions under P as suggested in Section 5. See
Figure 5 for a visualisation of this behaviour. Proposition 7
presents a variation of the result of Tipping & Bishop (1999),
showing that Equation (8) can hold in practice.

Proposition 7. Assume similar conditions as in Propo-
sition 6, except Q will now be replaced with a series
of distributions convolved with Gaussian noise: Q™) =
N(@©, AWV (AMNT 4 21 Given 7™ | 0 as
n — 0 and the obvious constraints on A™ V™ Equa-
tion (8) holds in the sense of shrinking Euclidean/Frobenius
norm between { A" V") and the PCA solution.

It is necessary to mention that both the QKL from Propo-
sition 6 and any of the yet unconverged KL divergences
in Proposition 7 have (E) local optima for any combination
of the eigenvectors which might lead to potentially problem-
atic behaviour of gradient based optimisation.

6. Conclusion

The original intent behind dropout was to provide a sim-
ple yet effective regulariser for neural networks. The main
value of the subsequent reinterpretation as a form of appro-
ximate Bayesian VI thus arguably lies in providing a prin-
cipled theoretical framework which can explain the empi-
rical behaviour, and guide extensions to the method. We
have shown the current theory behind variational Bayesian
dropout to have issues stemming from two main sources: 1)
use of improper or pathological priors; 2) singular approxi-
mating distributions relative to the true posterior.

“We have assumed both Gaussians are zero mean to simplify
the notation. Analogical results holds in the more general case.

Figure 5. Visualisation of the relationship between QKL minimisa-
tion and PCA. The target in this example is the blue two dimen-
sional Gaussian distribution. The approximating family is the set
of all Gaussian distributions concentrated on a line, which would
be problematic with conventional VI (c.f. Section 4). For all of
the linear subspaces shown by the coloured lines the KL term on
the right hand side of Equation (9) can be made zero by a suitable
choice of the normal mean and variance. The remaining term
—log Zp 4 therefore dictates the choice of subspace. The orange
line is optimal aligning with the largest eigenvalue PCA solution.

The former issue pertains to the improper log uniform prior
in variational Gaussian dropout. We proved its use leads to
irremediably pathological behaviour of the true posterior,
and consequently studied properties of the optimisation ob-
jective from a non-Bayesian perspective, arguing it is set up
in such a way that cancels some of the pathologies and can
thus still provide good empirical results, albeit not because
of the Bayesian or the related MDL arguments.

The singular approximating distribution issue is relevant to
both the Bernoulli and Gaussian dropout by making stan-
dard VI impossible due to an undefined objective. We have
shown that the proposed remedies in (Gal & Ghahramani,
2016; Gal, 2016) can be made rigorous and are special
cases of a broader class of limiting constructions leading to
a unique objective which we termed quasi-KL divergence.
We presented initial observations about QKL’s properties,
suggested an explanation for the empirical difficulty of ob-
taining hyperparameter estimates in dropout-based approxi-
mate inference, and motivated future exploration of QKL by
showing it naturally yields PCA when approximating a full
rank Gaussian with a degenerate one.

As use of improper priors and singular distributions is not
isolated to the variational Bayesian dropout literature, we
hope our work will contribute to avoiding similar pitfalls
in future. Since it relaxes the standard KL assumptions,
QKL will need further careful study in subsequent work.
Nevertheless, based on our observations from Section 5
and the previously reported empirical results of variational
Bayesian dropout, we believe QKL inspires a promising
future research direction with potential to obtain a gen-
eral framework for the design of computationally cheap
optimisation-based approximate inference algorithms.
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