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Supplementary Material
The underlying probability space for the sampling index ik is denoted by (Ω,F ,P). We denote by Fk the σ-algebra
generated by (i0, i1, . . . , ik). Clearly, ik is Fk-adapted and we obtain a filtered probability space (Ω,F , {Fk},P) on
which the stochastic optimization method is defined.

A. Proof of Lemma 4
The proof is straightforward and included here only for completeness. Note that xk does not depend on ik, so we have
E
[
(xk − x?)T∇fik(xk)

∣∣ Fk−1

]
= (xk − x?)T∇g(xk). If g is σ-strongly convex, we directly have

E

[[
xk − x?
∇fik(xk)

]T([
2σ −1
−1 0

]
⊗ Ip

)[
xk − x?
∇fik(xk)

]]
= E

[[
xk − x?
∇g(xk)

]T([
2σ −1
−1 0

]
⊗ Ip

)[
xk − x?
∇g(xk)

]]
≤ 0.

Next, if fi is convex and L-smooth, the co-coercivity property implies[
xk − x?

∇fi(xk)−∇fi(x?)

]T([
0 −L
−L 2

]
⊗ Ip

)[
xk − x?

∇fi(xk)−∇fi(x?)

]
≤ 0.

Therefore, we have

E

([
xk − x?
∇fik(xk)

]T([
0 −L
−L 1

]
⊗ Ip

)[
xk − x?
∇fik(xk)

] ∣∣∣∣∣ Fk−1

)

=
1

n

n∑
i=1

[
xk − x?
∇fi(xk)

]T([
0 −L
−L 0

]
⊗ Ip

)[
xk − x?
∇fi(xk)

]
+

1

n

n∑
i=1

‖∇fi(xk)‖2

≤ − 2

n

n∑
i=1

‖∇fi(xk)−∇fi(x?)‖2 +
1

n

n∑
i=1

‖∇fi(xk)‖2

≤ 2

n

n∑
i=1

‖∇fi(x?)‖2.

Taking the expectation of the above inequality leads to the desired conclusion.

B. Proof of Lemma 5 and Lemma 8
We summarize some existing function inequalities that can be used to directly show Lemma 5 and Lemma 8.

Lemma S1 Assume ∇g(x?) = 0. Suppose ik is uniformly sampled from {1, . . . , n} in an i.i.d. manner. Let {xk :
k = 0, 1, . . .} be an Fn- predictable process whose sample path satisfies xk ∈ Rp almost surely. In addition, rk =
∇fik(xk)−∇fik(x?) and uk = ∇fik(x?)−∇fik(x̃) +∇g(x̃), where x̃ is F0-measurable.

1. The following always holds due to the uniform sampling strategy:

E
[
(xk − x?)T(∇fik(x?)−∇fik(x̃) +∇g(x̃))

]
= 0. (S1)

2. If fi is L-smooth, then

E‖∇fik(x?)−∇fik(x̃) +∇g(x̃)‖2 ≤ L2E‖x̃− x?‖2. (S2)

3. If fi is convex and L-smooth, then

E‖∇fik(xk)−∇fik(x?)‖2 ≤ 2L(Eg(xk)− g(x?)), (S3)

E‖∇fik(x?)−∇fik(x̃) +∇g(x̃)‖2 ≤ 2L(Eg(x̃)− g(x?)). (S4)
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4. The following inequality holds

E

[[
xk − x?
rk

]T
(M ⊗ Ip)

[
xk − x?
rk

]]
≤ 0, (S5)

where M is computed according to the assumption on fi as follows

M :=



[
2σL −(σ + L)

−(σ + L) 2

]
if fiis L-smooth and σ-strongly convex,[

0 −L
−L 2

]
if fiis L-smooth and convex,[

−2L2 0
0 2

]
if fi is L-smooth.

(S6)

5. If g is σ-strongly convex, we have

E

[[
xk − x?
rk

]T([
2σ −1
−1 0

]
⊗ Ip

)[
xk − x?
rk

]]
≤ 0. (S7)

6. If g is convex, then

E
[
(xk − x?)T(∇fik(xk)−∇fik(x̃) +∇g(x̃))

]
≥ Eg(xk)− g(x?). (S8)

7. If g is σ-strongly convex, then

E‖x̃− x?‖2 ≤
2

σ
(Eg(x̃)− g(x?)) . (S9)

Proof. The proof is standard and based on the fact that ik and xk are independent. For example, we have

E
[
(xk − x?)T(∇fik(x?)−∇fik(x̃) +∇g(x̃))

∣∣ Fk−1

]
= (xk − x?)T∇g(x?) = 0,

which directly leads to Statement 1. Note that E [∇fik(x?)−∇fik(x̃)] = −E∇g(x̃). Hence, we have

E‖∇fik(x?)−∇fik(x̃) +∇g(x̃)‖2 ≤ E‖∇fik(x?)−∇fik(x̃)‖2 ≤ L2E‖x̃− x?‖2,

which proves Statement 2. The other statements follow from taking expectations of well known function inequalities.

The proofs of Lemma 5 and Lemma 8 directly follow from the lemma above.

C. Further Discussion on SVRG
One can automate the convergence analysis for SVRG under various assumptions on fi. For example, consider the analysis
of SVRG with Option I. If fi is assumed only to be L-smooth, we can modify X̄3 in Lemma 5 as

X̄3 =

−2L2 0 0
0 2 0
0 0 0

 .
We still assume that g is L-smooth and σ-strongly convex, so we choose X̄1, X̄2, and X̄4 as in Lemma 5. For these choices,
it is still true that ES1 ≤ L2E‖x̃− x?‖2, ES2 ≤ 0, ES3 ≤ 0, and ES4 = 0. The usual analysis route leads to the following
bound:

E‖xm − x?‖2 ≤
(

(1− 2ση + 2L2η2)m +
ηL2

σ − ηL2

)
E‖x0 − x?‖2.

This example demonstrates that one can modify the supply rate functions to reflect various assumptions on the cost func-
tions. For SVRG with Option II, one can perform similar LMI analysis when the assumptions on fi are changed.
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D. Proof of Lemma 11
We first set

qk =
[
τ1 1− τ1 − τ2 τ2

] zkyk
x̃

 . (S10)

From the definition of Katyusha, we have Evk = E∇f(qk). Since f is L-smooth and convex, it is straightforward to verify
the following:

Ef(qk)− Ef(yk) ≤ E∇f(qk)T(qk − yk) = E
[
E[vTk (qk − yk)|Fik−1

]
]

= EvTk (qk − yk), (S11)

Ef(qk)− Ef(x?) ≤ E∇f(qk)T(qk − x?) = EvTk (qk − x?), (S12)

Ef(yk+1)− Ef(qk) ≤ E
[
∇f(qk)T(yk+1 − qk) +

L

2
‖yk+1 − qk‖2

]
= E

[
(∇f(qk)− vk)T(yk+1 − qk) + vTk (yk+1 − qk) +

L

2
‖yk+1 − qk‖2

]
≤ τ2

2L
E‖vk −∇f(qk)‖2 +

L

2

(
1 +

1

τ2

)
E‖yk+1 − qk‖2 + EvTk (yk+1 − qk)

≤ τ2(Ef(x̃)− Ef(qk)− EvTk (x̃− qk)) +
L

2

(
1 +

1

τ2

)
E‖yk+1 − qk‖2 + EvTk (yk+1 − qk),

(S13)

where the second-last inequality follows from the identity aT b ≤ 1
2‖a‖

2 + 1
2‖b‖

2, and the final step follows from the
so-called variance upper bound in the literature (Lemma 3.4 of (Allen-Zhu, 2016)).

To prove Lemma 11, we need to show that

(EF (yk+1)− F (x?))− (1− τ1 − τ2)(EF (yk)− F (x?))− τ2(EF (x̃)− F (x?)) ≤ −ES1(ξk, wk). (S14)

For brevity, define τ̃ := 1− τ1 − τ2. The left side of (S14) can be rewritten as

(EF (yk+1)− F (x?))− (1− τ1 − τ2)(EF (yk)− F (x?))− τ2(EF (x̃)− F (x?))

= Ef(yk+1) + Eψ(yk+1)− τ̃Ef(yk)− τ̃Eψ(yk)− τ1f(x?)− τ1ψ(x?)− τ2Ef(x̃)− τ2Eψ(x̃)

=
(
Ef(yk+1)− τ̃Ef(yk)− τ1f(x?)− τ2Ef(x̃)

)
+
(
Eψ(yk+1)− τ̃Eψ(yk)− τ1ψ(x?)− τ2Eψ(x̃)

)
. (S15)

We have decoupled the left side of (S14) into the sum of two terms, the first involving only f , and the second involving
only ψ. We will use the properties of f and ψ to provide upper bounds in the quadratic forms for the first and second terms,
respectively.

Bounding the first term in (S15), we obtain

Ef(yk+1)− τ̃Ef(yk)− τ1f(x?)− τ2Ef(x̃)

= E [f(yk+1)− f(qk) + τ2(f(qk)− f(x̃)) + τ1(f(qk)− f(x?)) + τ̃(f(qk)− f(yk))]

≤ L

2

(
1 +

1

τ2

)
E‖yk+1 − qk‖2 + EvTk (yk+1 − qk) + τ2EvTk (qk − x̃) + τ1EvTk (qk − x?) + τ̃EvTk (qk − yk), (S16)

where the last step follows from the three bounds (S11), (S12), and (S13). Next, strong convexity of ψ leads to an upper
bound for the second term in (S15):

Eψ(yk+1)− τ̃Eψ(yk)− τ1ψ(x?)− τ2Eψ(x̃)

= E [τ̃(ψ(yk+1)− ψ(yk)) + τ1(ψ(yk+1)− ψ(zk+1)) + τ1(ψ(zk+1)− ψ(x?)) + τ2(ψ(yk+1)− ψ(x̃))]

≤ E
[
τ̃ hTk (yk+1 − yk) + τ1 h

T
k (yk+1 − zk+1) + τ1

(
gTk (zk+1 − x?)−

σ

2
‖zk+1 − x?‖2

)
+ τ2 h

T
k (yk+1 − x̃)

]
. (S17)
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Combining (S16)–(S17), we see that the left side of (S14) is bounded above by the expected value of the following sum:

L

2

(
1 +

1

τ2

)
‖yk+1 − qk‖2 + vTk (yk+1 − qk) + τ2 v

T
k (qk − x̃) + τ1 v

T
k (qk − x?) + τ̃ vTk (qk − yk)

+ τ̃ hTk (yk+1 − yk) + τ1 h
T
k (yk+1 − zk+1) + τ1

(
gTk (zk+1 − x?)−

σ

2
‖zk+1 − x?‖2

)
+ τ2 h

T
k (yk+1 − x̃). (S18)

All terms in (S18) are actually quadratic forms, due to the state-space model:

zk+1 − x?
yk+1 − x?
x̃− x?

 =

 1 0 0
τ1 τ̃ τ2
0 0 1

zk − x?yk − x?
x̃− x?

+

−α −α 0
−ζ 0 −ζ
0 0 0

vkgk
hk

 ,
qk − x? =

[
τ1 τ̃ τ2

] zk − x?yk − x?
x̃− x?

 ,
where we recall the definition τ̃ := 1− τ1 − τ2. For example, the term vTk (yk+1 − qk) is equivalent to the quadratic form:

zk − x?
yk − x?
x̃− x?
vk
gk
hk



T



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 −ζ 0 − ζ2
0 0 0 0 0 0

0 0 0 − ζ2 0 0

⊗ Ip



zk − x?
yk − x?
x̃− x?
vk
gk
hk

 .

Summing all the these quadratic forms directly yields the desired supply rate.

E. Guidelines for Constructing and Choosing Supply Rates
In most cases, supply rates may be constructed by manipulating well-known quadratic inequalities. One can see this in the
proof of Lemma 5 and Lemma 8. For momentum methods, the supply rate construction is more involved. One typically
needs to regroup terms carefully after adding and subtracting f(qk), where qk is the input to the stochastic gradient. See
(S16) for such an example. We note that it is possible for different supply rate functions to yield the same iteration
complexity bound. It is also possible to construct other supply rate functions that yield a constant-factor improvement for
the convergence guarantees of Katyusha. In the present work, we only provide one supply rate for the analysis of Katyusha.

The selections of supply rate functions for a particular algorithm can be guided by the numerical solutions of the proposed
LMIs. For example, one could include several candidate supply rates with associated multipliers λj in the LMI to identify
which supply rate functions are needed to obtain the desired rate bound.

F. Telescoping Trick and Further Discussion on Katyusha
The telescoping trick in Allen-Zhu (2016, Section 3.2) provides a routine for converting the one-iteration analysis result

into a complexity bound. We first fix ζ = 1
3L . Given 1

5 ≤ τ2 < 1, we choose τ1 = min

{√
(5τ2−1)mσ

9τ2L
, 1− τ2

}
and

α = 5τ2−1
9τ1τ2L

. Then the telescoping argument in (Allen-Zhu, 2016, Section 3.2) leads to the following discussion of the

resultant iteration complexity O
((√

Ln
σ + n

)
log( 1

ε )
)

.

Case 1. Suppose mσ
L ≤ 9τ2(1−τ2)2

5τ2−1 . We have α =
√

5τ2−1
9Lmστ2

, and τ1 = mσα ≤ 1 − τ2. Hence ασ ≤ 1−τ2
m . This

guarantees the following inequality,

(1 + σα)
m−1 ≤ 1 +

1

τ2
(m− 1)ασ.
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Then the argument in Case 1 of (Allen-Zhu, 2016, Section 3.2) can be modified to show

E[F (x̃s)− F (x?)] ≤ O

1 +

√
(5τ2 − 1)σ

9τ2Lm

−sm (F (x0)− F (x?)) .

Case 2. Suppose mσ
L > 9τ2(1−τ2)2

5τ2−1 . We have τ1 = 1 − τ2 and α = 5τ2−1
9(1−τ2)τ2L . Tailoring the argument in Case 2 of

(Allen-Zhu, 2016, Section 3.2), we can easily show

E[F (x̃s)− F (x?)] ≤ O
(
min{1/τ2, 2− τ2}−s

)
(F (x0)− F (x?)) = O

(
(2− τ2)−s

)
(F (x0)− F (x?)) .
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