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Abstract
Given a large matrix A ∈ Rn×d, we consider the
problem of computing a sketch matrix B ∈ R`×d
which is significantly smaller than but still well
approximates A. We are interested in minimizing
the covariance error ‖ATA−BTB‖2. We con-
sider the problems in the streaming model, where
the algorithm can only make one pass over the
input with limited working space. The popular
Frequent Directions algorithm of (Liberty, 2013)
and its variants achieve optimal space-error trade-
off. However, whether the running time can be
improved remains an unanswered question. In
this paper, we almost settle the time complex-
ity of this problem. In particular, we provide
new space-optimal algorithms with faster running
times. Moreover, we also show that the running
times of our algorithms are near-optimal unless
the state-of-the-art running time of matrix multi-
plication can be improved significantly.

1. Introduction
For large-scale matrix computations, exact algorithms are of-
ten too slow, so a large body of works focus on designing fast
randomized approximation algorithms. To speedup the com-
putation, matrix sketching is a commonly used technique,
e.g. (Sarlos, 2006; Clarkson & Woodruff, 2013; Avron et al.,
2013; Chierichetti et al., 2017). In real-world applications,
the data often arrives in a streaming fashion and it is often
impractical or impossible to store the entire data set in the
main memory.

In this paper, we study online streaming algorithms for main-
taining matrix sketches with small covariance errors. In the
streaming model, the rows of the input matrix arrive one at
a time; the algorithm is only allowed to make one pass over
the stream with severely limited working space, which is re-
quired to maintain a sketch continuously. This problem has
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received lots of attention recently (Liberty, 2013; Ghashami
& Phillips, 2014; Woodruff, 2014; Ghashami et al., 2016;
Wei et al., 2016).

The popular Frequent Directions algorithms (Liberty, 2013;
Ghashami et al., 2016) achieve optimal tradeoff between
space usage and approximation error (Woodruff, 2014),
which have found lots of applications in online learning,
e.g., (Boutsidis et al., 2015; Karnin & Liberty, 2015; Leng
et al., 2015; Huang & Kasiviswanathan, 2015; Luo et al.,
2016; Calandriello et al., 2017), and other problems (Song
et al., 2015; Ye et al., 2016; Kim et al., 2016). However,
it is unclear whether their running times can be improved;
one might hope to get linear (in sparsity) time algorithms,
which is possible for many matrix problems, e.g. (Clark-
son & Woodruff, 2013). This paper is motivated by the
following question:

• Is there an input sparsity time Frequent Directions,
which achieves the same optimal space-error tradeoff ?

1.1. Problem definitions

Given a matrix A ∈ Rn×d, we want to compute a much
smaller matrix B ∈ R`×d, which has low covariance error,
i.e., ‖ATA−BTB‖2.
Definition 1 (Covariance Sketch). For any 0 < α < 1, and
integer 0 ≤ k ≤ rank(A), we will call B an (α, k)-cov-
sketch of A, if the covariance error1

‖ATA−BTB‖2 ≤ α‖A− [A]k‖2F . (1)

Here ‖ · ‖2 and ‖ · ‖F are the spectral norm and Frobenius
norm of matrices; [A]k is the best rank-k approximation to
A. We will use πkB(A) to denote the projection of A on the
top-k singular vectors of B, i.e. πkB(A) = AV V T , where
the columns of V are the top-k right singular vectors of B.
Definition 2 (Projection error). The projection error of B
with respect to A is defined as ‖A− πkB(A)‖2F .

Note πkB(A) is a rank-k matrix, thereby the projection error
is at least ‖A−[A]k‖2F . It is proved in (Ghashami & Phillips,
2014) that one can obtain relative projection error from
small covariance error. We include a proof of the next
lemma in the supplementary material.

1for k = 0, we define [A]0 = 0
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Lemma 1 (covariance error to projection error (Ghashami
& Phillips, 2014) (modified)).

‖A− πkB(A)‖2F ≤ ‖A− [A]k‖2F + 2k · ‖ATA−BTB‖2.

Therefore, any ( ε
2k , k)-cov-sketch B has projection error

‖A− πkB(A)‖2F ≤ (1 + ε)‖A− [A]k‖2F . (2)

We will often refer to such sketches as (ε, k)-proj-sketches.

Modern data matrices are often large and sparse. So we
will always assume n and d are very large, typically d� n,
and nnz(A)� nd, where nnz(A) in the number of nonzero
entries in A. Moreover, we assume that each entry of A is
representable by O(log(nd)) bits. To simplify the analysis,
we assume the entries of A are integers of magnitude at
most poly(nd); the general case can be reduced to this, see
e.g. (Boutsidis et al., 2016).

1.2. Previous results

In the row-wise update streaming model, Liberty’s Fre-
quent Direction (FD) algorithm (Liberty, 2013), with an
improved analysis in (Ghashami & Phillips, 2014), main-
tains an (α, k)-cov-sketch B ∈ R`×d at any time, where
` = O(k+α−1). The algorithm uses O(d`) space and runs
inO(nd`) time. For sparse matrices, the running time of FD
is improved to O(nnz(A)` log d+ nnz(A) log n+ n`2) by
Ghashami et al. (Ghashami et al., 2016). Set α = ε/2k
(or ` = O(k/ε)), and by Lemma 1, B is a (ε, k)-proj-
sketch. Now, B contains O(k/ε) rows, the space and
the running time become O(dk/ε) and O(nnz(A)kε−1 ·
log d+ nnz(A) log n+nk2ε−2) respectively. It was shown
by Woodruff (Woodruff, 2014) that the space used by FD
is optimal for both covariance error and projection error. A
natural question is if the running time can be improved. In
particular,

• Is there an input sparsity time algorithm, i.e., in time
O(nnz(A) + (n + d) · poly(kα−1)), which achieves
the same guarantee as FD?

1.3. Our contributions

This paper almost settles the above question. Our main
contributions are summarized as follows.

1. We show that o(nnz(A)k) time is likely very difficult
to achieve, as it will imply a breakthrough in fast matrix
multiplication. In particular, we prove that computing an
(O(1), k)-cov-sketch B ∈ RO(k)×d of A is as hard as left
multiplying A by an arbitrary matrix C ∈ Rk×n.

2. We give a new space-optimal streaming algorithm with
O(ndk) + Õ(dα−3) running time to compute (α, k)-cov-
sketches for dense matrices, which improves the original

FD algorithm for small α. The running time is optimal up
to lower order terms, provided matrix multiplication cannot
be improved significantly.

3. We then give a new space-optimal streaming algorithm
withO(nnz(A)k+nnz(A) log n)+Õ(nk3+dα−3) running
time to compute (α, k)-cov-sketches for sparse matrices.
We separate the dependence of 1/α from nnz(A), which
improves the results of (Ghashami et al., 2016) for small α.
In particular, computing an (ε, k)-proj-sketch, our algorithm
only needs O(nnz(A)k) time (ignoring lower order terms)
as opposed to O(nnz(A)kε−1 · log d) in (Ghashami et al.,
2016) (see Table 1). Even when α is small, our algorithm
improves a log d factor. Moreover, for k = Ω(log n), the
running time of our algorithm matches the lower bound.

1.4. Other related works

The problem of computing (α, k)-cov-sketches was also
studied in the sliding window streaming model (Wei et al.,
2016) and distributed models (Ghashami et al., 2014; Huang
et al., 2017). A closely related problem, namely approxi-
mate PCA, was studied in (Kannan et al., 2014; Liang et al.,
2014; Boutsidis et al., 2016; Zhang et al., 2015). (Clarkson
& Woodruff, 2009) studied other streaming numerical linear
algebra problems.

1.5. Matrix preliminaries and notations
We always use n for the number rows, and d for the dimen-
sion of each row. For a d-dimensional vector x, ‖x‖ is the
`2 norm of x. We use xi to denote the ith entry of x, and
Diag(x) ∈ Rd×d is a diagonal matrix such that the ith diag-
onal entry is xi. Let A ∈ Rn×d with n > d, we use Ai to
denote the ith row of A, and ai,j for the (i, j)-th entry of A.
nnz(A) is the number of non-zero entries in A, and rows(A)
is the number of rows in A. We write the (reduced) singular
value decomposition of A as (U,Σ, V ) = SVD(A). The
computation time of standard SVD algorithms is O(nd2).
We use ‖A‖2 or ‖A‖ to denote the spectral norm of A,
which is the largest singular value of A, and ‖A‖F for the

Frobenius Norm, which is
√∑

i,j a
2
i,j . For k ≤ rank(A),

we use [A]k to denote the best rank k approximation of
A. We define [A]0 = 0. [A;B] is the matrix formed by
concatenating the rows of A and B. We use Õ() to hide
polylog(ndk) factors.

1.6. Tools

Frequent Directions. We will use the Frequent Direc-
tions (FD) algorithm by Liberty (Liberty, 2013), denoted
as FD(A,α, k), and the main result is summarized in the
following theorem.

Theorem 1 ((Liberty, 2013)). Given A ∈ Rn×d, in one
pass, FD(A,α, k) processes A in O(nd(k + α−1)) time
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Time
(α, k)-cov (ε, k)-proj

Lib13, GP13 (Liberty, 2013; Ghashami & Phillips, 2014) O(ndk + nd/α) O(ndk/ε)
New O(ndk) O(ndk)

GLP16 (Ghashami et al., 2016) O(nnz(A)k log d+ nnz(A) log d/α) O(nnz(A)k log d/ε)
New O(nnz(A)k + nnz(A) logn) O(nnz(A)k + nnz(A) logn)

Table 1. Running time for streaming (α, k)-cov-sketch and (ε, k)-proj-sketch algorithms. The low order terms are omitted.

and O(d(k + α−1)) space. It maintains a matrix B ∈
RO(k+α−1)×d such that ‖ATA−BTB‖2 ≤ α‖A−[A]k‖2F .

Row sampling. We provide a result about row sampling,
which is analogous to a result from (Drineas et al., 2006).
The difference is that they use iid sampling, i.e., each row of
B is an iid sample from the rows ofA. On the other hand, we
use Bernoulli sampling, i.e., sample each Ai independently
with some probability qi, and B is the set of sampled rows.
Bernoulli sampling can easily be combined with FD in the
streaming model. The proof is essentially the same as that
for iid sampling, which can be found in the supplementary
material.
Theorem 2. For any A ∈ Rn×d and F > 0, we sample
each row Ai with probability pi ≥ ‖Ai‖2

α2F ; if it is sampled,
scale it by 1/

√
pi. Let B be the (rescaled) sampled rows,

then w.p. 0.99, ‖ATA − BTB‖2 ≤ 10α
√
F‖A‖F , and

‖B‖F ≤ 10‖A‖F . The expected number of rows sampled
is O(

‖A‖2F
α2F ).

Input-sparsity time lower rank approximation algo-
rithm. There are nnz(A) (omitting lower order terms)
time algorithms (Clarkson & Woodruff, 2013), which out-
put a matrix Z consists of k orthonormal rows such that
‖A − ZTZA‖2F ≤ (1 + ε)‖A − [A]k‖2F . For our appli-
cation, we only need a constant approximation, and only
require Z to contain O(k) rows. For this purpose, we give a
simplified algorithm with slightly better running time than
directly applying the results from (Clarkson & Woodruff,
2013). We require high success probability, which can be
achieved using similar techniques as in (Boutsidis et al.,
2016). The proof of the following theorem can be found in
the supplementary file.
Theorem 3 (weak low rank approximation). For any inte-
gers `, d, given A ∈ R`×d, there is an algorithm that uses
O(nnz(A) log(1/δ)) + Õ(`k3) time and O(`(k2 + log 1

δ ))

space, and outputs a matrix Z ∈ RO(k)×` with orthonormal
rows such that with probability 1 − δ, ‖A − ZTZA‖2F ≤
O(1)‖A− [A]k‖2F .

2. Time lower bound
In this section, we provide a conditional lower bound for
our problem based on the idea of (Musco & Woodruff,

2017). We prove that the existence of algorithms which
compute an (O(1), k)-cov-sketch in time o(nnz(A)k) im-
plies a breakthrough in matrix multiplication, which is likely
very difficult. In fact, the lower bound holds even for offline
algorithms without constraints on working space.

Theorem 4. Assume there is an algorithm A , which, given
any A ∈ Rn×d with polynomially bounded integer entries,
returns B ∈ RO(k)×d in time o(nnz(A)k) such that

‖ATA−BTB‖2 ≤ ∆‖A− [A]k‖2F ,

for some constant error parameter ∆. Then there is an
o(nnz(M)k) + O(dk2) time algorithm for multiplying ar-
bitrary polynomially bounded integer matrices MT ∈
R(d−k)×n, C ∈ Rn×k.

Proof. For any matrices M ∈ Rn×(d−k) and C ∈ Rn×k
with integer entries in [−U,U ], let A ∈ Rn×d be the matrix
which is a concatenation of the columns of M and wC, i.e.,
A = [M,wC] . Here w is large number will be determined
later. We have ‖A− [A]k‖2F ≤ ‖M‖2F ≤ ndU2 and

ATA =

[
MTM wMTC

wCTM w2CTC

]
.

We assume A is an algorithm with running time T , which
can compute a sketch matrix B ∈ RO(k)×d of A such that

‖ATA−BTB‖2 ≤ ∆‖A− [A]k‖2F ≤ ∆U2nd,

for some constant error parameter ∆.

The spectral norm of a matrix N is the largest singu-
lar value, which can be equivalently defined as ‖N‖2 =
maxx,y:‖x‖=‖y‖=1 x

TNy, therebyNi,j = eTi Nej ≤ ‖N‖2
for all i, j. It follows that (ATA − BTB)i,j ≤ ∆U2nd,
meaning the corresponding block of BTB is an entry-wise
approximation to wMTC within additive error ∆U2nd.

Now if w is a large integer, say w = d3∆U2nde, we can
recover MTC from BTB exactly by rounding the numbers
in BTB to their nearest integers (as MTC is an integer
matrix). Note BTB can be computed in time O(dk2) given
B and the rounding can be done in O(dk), so using A, the
exact integer matrix multiplication MTC can be computed
in time O(T + dk2). Therefore, we have proved that if
T = o(nnz(A)k) = o(nnz(M)k + dk2), then MTC can
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be computed in time o(nnz(M)k) +O(dk2), which will be
a breakthrough in fast matrix multiplication. We remark
that all the integers in our reduction are at most poly(nd)
in magnitude, as long as U = poly(nd), so our reduction
works for anyM,C with polynomially bounded entries.

3. Algorithm for dense matrices
Theorem 5 (FFDdense(A,α, k)). Given a matrix A ∈
Rn×d, 0 < α < 1 and 0 ≤ k ≤ d, FFDdense(A,α, k)
processes A in one pass using O(ndk) + Õ(dα−3) time
and O(dk + dα−1)) space, and maintains a matrix B.
With probability 0.99, it holds that ‖ATA − BTB‖2 ≤
α‖A− [A]k‖2F .

Overview of the algorithm. To speed up FD, we will use
the idea of adaptive random sampling. Let us first review
the standard FD algorithm. Given an integer parameter
` ≤ d, the algorithm always maintains a matrix B with at
most 2` rows at any time. When a new row v arrives, it
processes the row using FDShrink(B, v, `) (Algorithm 3).
In this procedure, we first append a after B; if B has no
more than 2` rows we do nothing, and otherwise we do a
DenseShrink operation (Algorithm 1) on B, which halves
the number of rows in B (after removing zero rows). It was
proved in (Liberty, 2013) and (Ghashami & Phillips, 2014)
that for ` = k + α−1, we have

‖ATA−BTB‖2 ≤ α‖A− [A]k‖2F .

Since each SVD computation in DenseShrink takes O(d`2)
time, and there are totally n/` SVD computations (SVD
is applied every ` rows), the running time is O(nd`) =
O(nd(k + α−1)). Our goal is to separate nd from α−1 in
the running time.

Algorithm 1 DenseShrink

Input: B ∈ R2`×d.
1: Compute [U,Σ, V ] = SVD(B), and σ = Σ`,`.
2: Σ̂ =

√
max(Σ2 − σ2I`, 0) I ReLu(x) = max(x, 0)

3: return B = Σ̂V T

Algorithm 2 DenseShrinkR

Input: B ∈ R2`×d.
1: Compute [U,Σ, V ] = SVD(B), and σ = Σ`,`.
2: Σ̂ =

√
max(Σ2 − σ2I`, 0)

3: Σ̄ =
√

Σ2 − Σ̂2 I Σ2 = Σ̄2 + Σ̂2

4: return B = Σ̂V T , Σ̄ and V T

To achieve this, we first compute a coarse approximation
using FD by invoking B = FD(A, k, 1

2k ), which takes

Algorithm 3 FDShrink

Input: B ∈ R`′×d, v ∈ Rd, and an integer `
I it always holds that `′ < 2`.

1: B = [B;v]
2: If `′ + 1 = 2`, then B = DenseShrink(B, `).
3: return B

O(ndk) time. The key idea here is that in each DenseShrink
operation, after shrinking B, we also return the residual; we
call this modified shrinking operation DenseShrinkR (see
Algorithm 2). Let C be the matrix which is the concate-
nation of all residuals return from DenseShrinkR. We will
showATA = BTB+CTC and ‖C‖2F ≤ ‖A−[A]k‖2F . We
then refine the answer by computing an approximation to C.
Since the norm of C is small, random sampling suffices. To
save space, the sampled rows will be fed to a standard FD
algorithm. See Algorithm 4 for detailed description of the
algorithm.

Algorithm 4 FFDdense

Input: A ∈ Rn×d, 0 < α < 1, and integer k ≤ d.
1: F = 0, ` = 3k, Q = empty
2: for i = 1 to n do
3: Append Ai after B
4: if rows(B) = 2` then
5: [B,Σ, V ] = DenseShrinkR(B)

I Here ` = 3k, thus B = FD(A, 1
2k , k)

6: F = F + ‖Σ‖2F ,
I ### Next: subsample C := ΣV , and then

compressed the sampled rows using standard FD
7: for j = 1 to 2` do
8: pj =

Σ2
j

α2F
9: Sample Cj with probability pj .

10: if Cj is sampled then
11: Set v =

Cj√
pj

.

12: Q = FDShrink([Q : v], 1
α )

I Invoking FD with k = 0
13: end if
14: end for
15: end if
16: end for
17: return [B;Q]

Correctness. We note that, at the end of Algorithm 4, B =
FD(A, 1

2k , k), so ‖ATA−BTB‖2 ≤ ‖A− [A]k‖2F /2k, or
equivalently

max
x:‖x‖=1

| ‖Ax‖2 − ‖Bx‖2 | ≤ ‖A− [A]k‖2F /2k. (3)

Let Σ(i), V (i), and B(i) be the value of Σ, V , and B respec-
tively returned by ith DenseShrinkR operation (line 5). Let
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C(i) = Σ(i)V (i). We use B′(i) to denote the value of B
right before the ith DenseShrinkR operation (or the input of
the ith DenseShrinkR operation) . From Algorithm 2, we
have that

B′(i)TB′(i) = B(i)TB(i) + V (i)TΣ(i)2V (i)

= B(i)TB(i) + C(i)TC(i).

Let A(i) be the rows of A arrived between the (i − 1)th
and the ith DenseShrinkR operation, which means B′(i) =
[B(i−1);A(i)], and thus

B′(i)TB′(i) = B(i−1)TB(i−1) +A(i)TA(i).

Combined with the previous equality, we get

A(i)TA(i) +B(i−1)TB(i−1) −B(i)TB(i) = C(i)TC(i).

Let t be the total number of iterations. We define B(0) = 0,
and C = [C(1); · · · ;C(t)]. Summing the above equality
over i = 1, · · · , t, we have

CTC =
∑
i

C(i)TC(i)

=
∑
i

(
A(i)TA(i) +B(i−1)TB(i−1) −B(i)TB(i)

)
= ATA−BTB.

It follows that

‖C‖2F = trace(CTC) = trace(ATA)− trace(BTB)

= ‖A‖2F − ‖B‖2F .

Now we bound ‖A‖2F − ‖B‖2F using similar ideas as
in (Ghashami & Phillips, 2014). Let wj be the jth singular
vector of A, we have
‖C‖2F = ‖A‖2F − ‖B‖2F

=

k∑
j=1

‖Awj‖2 +

d∑
j=k+1

‖Awj‖2 − ‖B‖2F

≤
k∑
j=1

‖Awj‖2 + ‖A− [A]k‖2F −
k∑
j=1

‖Bwj‖2

because
k∑
j=1

‖Bwj‖2 ≤ ‖B‖2F

≤ ‖A− [A]k‖2F + k · ‖A− [A]k‖2F /2k by Eq (3)

= 1.5‖A− [A]k‖2F . (4)

In the algorithm, each row of C is sampled with probability
‖Cj‖2
α2F , where F is the current squared F-norm of C. Let
Cs be the sampled rows. Given Eq (4), we can prove the
following using Theorem 2

‖CTC − CTs Cs‖2 ≤ α‖A− [A]k‖2F , and

‖Cs‖2F = O(1) · ‖A− [A]k‖2F .

At the end of the algorithm, Q = FD(Cs, α, 0), then

‖CTs Cs −QTQ‖2 ≤ α‖Cs‖2F ≤ O(α) · ‖A− [A]k‖2F .

Applying triangle inequality, we have ‖CTC −QTQ‖2 ≤
O(α) · ‖A− [A]k‖2F , and thus

‖ATA−BTB −QTQ‖2 = ‖CTC −QTQ‖2
≤ O(α) · ‖A− [A]k‖2F ,

which proves the correctness.

Space and running time. The space is dominated by main-
tainingB = FD(A, 1/2k, k) andQ = FD(Cs, α, 0), which
is O(dk + d/α) in total.

The running time of computing B is O(ndk), and the run-
ning time for Q is O(rows(Cs)d/α). To bound rows(Cs),
we divide the stream into epochs, where F roughly doubles
in each epoch. This means the total number of epochs is
bounded by O(log(nd)), since we assume each real num-
ber in the input can be represented by O(log(nd)) bits2.
Applying Theorem 2 on the submatrix in each epoch, it
is easy to check the expected number of rows sampled in
each epoch is O(1/α2), so rows(Cs) = O( log(nd)

α2 ). Thus
the total running time is O(ndk) + Õ(dα−3). We remark
that the residual return by DenseShrinkR is in the form of
C = ΣV T , where Σ is diagonal and V has orthonormal
columns. Therefore, the row norms of C are simply the
diagonals of Σ.

4. Algorithm for sparse matrices
4.1. Overview of our algorithm
Our approach is quite different from (Ghashami et al., 2016).
Their main idea is to use fast approximate SVD (Musco &
Musco, 2015) in the original FD, which leads to suboptimal
time. Our approach is summarized as follows.

1. Decompose ATA = A′TA′ +RTR, such that A′ con-
tains small number of rows and ‖A′−[A′]k‖2F = O(1)·
‖A− [A]k‖2F . Moreover, ‖R‖2F = O(1) ·‖A− [A]k‖2F .

2. Compute a sketch B of A′ using fast FD algorithm
for dense matrices (Theorem 5), which satisfies that
‖A′TA′ − BTB‖2 ≤ α‖A′ − [A′]k‖2F ≤ α‖A −
[A]k‖2F .

3. Compute a sketch matrix C of R such that ‖RTR −
CTC‖2 ≤ α‖R‖2F ≤ O(α) · ‖A− [A]k‖2F , which can
be done via random sampling (Theorem 2) combined
with FD.

2A rigorous analysis on this will be more subtle; see discussions
in the proof of Lemma 6 below.
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4. The final sketch is S = [B;C].

Note that S = [B;C] approximate [A′;R] in the sense that

‖A′TA′ +RTR−BTB − CTC‖2
≤ ‖A′TA′ −BTB‖2 + ‖RTR− CTC‖2
≤ O(α) · ‖A− [A]k‖2F .

From step (1), we have ATA = A′TA′ + RTR, and thus
[B;C] is a good approximation of A. Next we briefly de-
scribe how to implement this in one pass and small space.

To achieve (1), we use the following new idea. Let
Z ∈ RO(k)×d be an orthonormal matrix satisfying ‖A −
ZTZA‖2F ≤ O(1)‖A − [A]k‖2F . Let A′ = ZA and
R = (I − ZTZ)A. It is easy to check that A′ and R
satisfy the requirement of (1). In the streaming model, we
divide A into blocks, each of which contains roughly dk
non-zero entries, and thus there are at most t = nnz(A)

dk
blocks. We use the above idea for each of the blocks and
concatenate the results together. More precisely, for each
block A(i) ∈ R`i×d, we use an input-sparsity time algo-
rithm (Theorem 3) to compute a matrix Z(i) ∈ RO(k)×`i

such that

‖A(i) − Z(i)TZ(i)A(i)‖2F ≤ 4‖A(i) − [A(i)]k‖2F .

Let A′(i) = Z(i)A(i), and R(i) = (I − Z(i)TZ(i))A(i). We
then set A′ = [A′(1); · · · ;A′(t)] and R = [R(1); · · · ;R(t)],
and prove that A′ and R satisfy the requirement of (1),
where A′ only has t×O(k) = O( nnz(A)

d ) rows (since each
block of A′ has O(k) rows). Here we do not compute R
explicitly, as we will sample a subset of the rows from
R. Note that the running time of this step is dominated
by computing Z(i)A(i), which is O(nnz(A(i))k), and thus
O(nnz(A)k) in total.

To compute B of step (2), we may use the standard
FD(A′, α, k) (Theorem 1). Since A′ has at most O( nnz(A)

d )
rows, B can be computed in O(nnz(A)(k + α−1)) time.
However, it still has an nnz(A)α−1 term. So we apply our
faster FD algorithm for dense matrices (Theorem 5) on A′,
which only takes O(nnz(A)k) + Õ(dα−3) time.

In order to compute a sketch C of R in step (3), we first
subsample the rows of R using streaming Bernoulli sam-
pling. One difficulty is that R could be dense, and it may
take nd time to compute the norms of the rows. Fortunately,
constant approximations of the norms are good enough,
and thus we can use Johnson-Lindenstrauss (JL) (John-
son & Lindenstrauss, 1984) transform to reduce the dimen-
sionality of R from d to O(log n). Let Φ ∈ RO(logn)×d

be a JL transform, then RΦT can be computed in time
O(nnz(A) log n+nk log n). Now we only need to compute
the norms of the rows in RΦT , which are constant approxi-
mations to the row norms inR (by JL Lemma). LetQ be the

sampled rows, with rows(Q) = Õ(1/α2), and each row of
Q can be computed in time O(kd) as Z(i)A(i) has already
been computed in step (1). We finally use FD(Q,α, 0) to
compute a sketch matrix C of Q in time Õ(dα−3).

In all, the running time is roughly O(nnz(A)(k + log n)) +
Õ(dα−3 + dkα−2).

4.2. Our algorithm

Algorithm 5 FFDsparse

Input: A ∈ Rn×d, α ∈ (0, 1), and integers k ≤ d.
1: F = η, F ′ = 0, B = 0, Q = 0

I η will be determined in Lemma 6
2: Divide the rows of A into continuous blocks
A(1), · · · , A(t): we will put new rows into the current
block until: a) the number of non-zero entries exceeds
dk, or b) the number of rows is d

k log(nd) . When either
a) or b) happens, we start a new block. Note that the
total number of blocks t ≤ nnz(A)

dk + nk log(nd)
d .

3: for i = 1 to t do
4: Use Theorem 3 to compute Z(i) such that ‖A(i) −

Z(i)TZ(i)A(i)‖2F ≤ O(1)‖A(i) − [A(i)]k‖2F with
probability 1− 1/n2. Let `i = rows(A(i)).

5: Compute A′(i) = ZA(i).
6: Compute W = (I − Z(i)TZ(i))A(i)Φ, where Φ ∈

Rd×O(logn) is a dense JL transform (each entry is an
iid Gaussian). Compute all the rows norms of W ,
and let w ∈ R`i be the vector of these norms.

7: F ′ = F ′ + ‖w‖2, and if F ′ ≥ 2F , F = F ′.
I F = O(1) ·

∑
i(I − Z(i)TZ(i))A(i) by JL

8: Let p ∈ R`i such that pj =
w2

i

α2F for j = 1, · · · , `i.
Let x ∈ R`i be a random vector with iid entries. For
each j, xj = 1/pj w.p. pj , and xj = 0 w.p. 1− pj .

9: Let R(i) = (I − Z(i)TZ(i))A(i) and Q(i) =
Diag(x) ·R(i) (no need to compute R(i) explicitly).

10: B = FFDdense([B;A′(i)], α, k).
I Sketching A′ = [A′(1); · · · ;A′(t)] using

Theorem 5
11: C = FD([C;Q(i)], α, 0).

I Sketching Q = [Q(1); · · · ;Q(t)] using FD.
12: end for
13: return [B;C]

Theorem 6 (FFDsparse). Given any matrix A ∈ Rn×d,
0 < α < 1 and 0 ≤ k ≤ d, FFDsparse(A,α, k) (Algo-
rithm 5) maintains a matrix S in a streaming fashion, such
that

‖ATA− STS‖2 ≤ α‖A− [A]k‖2F .

The algorithm uses O(d(k + α−1)) space and runs in
O(nnz(A)k + nnz(A) log n) + Õ(nk3 + d · poly(kα−1)).

By Lemma 1, we also have the following result.
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Theorem 7. Given any matrix A ∈ Rn×d, 0 < ε < 1
and 0 < k ≤ d, there is a streaming algorithm which
maintains a strong (ε, k)-proj-sketch S ∈ RO(k/ε)×d. The
algorithm uses O(dk/ε) space and runs in O(nnz(A)k +
nnz(A) log n) + Õ(nk3 + d · poly(kε−1)).

4.3. Proof of Theorem 6

Proof of Theorem 6. The detail of our fast algorithm for
sparse matrix is described in Algorithm 5.

We let A′ = [A′(1); · · · ;A′(t)], R = [R(1); · · · ;R(t)], and
Q = [Q(1); · · · ;Q(t)]. We use w(i) to denote the vector w
in ith iteration. We need some technical lemmas.

Lemma 2. With probability at least 1 − 1/n, (1) ‖A′ −
[A′]k‖F ≤ ‖A− [A]k‖F ; (2) ‖R‖2F ≤ O(1) ·‖A− [A]k‖2F .

Proof. We divide A and A′ into blocks as defined in
Algorithm 5, i.e. A = [A(1); · · · ;A(t)] and A′ =
[A′(1); · · · ;A(t)]. For each i, we have A′(i) = Z(i)A(i)

for some matrix Z(i) with O(k) orthonormal rows such that,
with probability at least 1− 1/n2,

‖A(i)−Z(i)TZ(i)A(i)‖2F ≤ O(1) ·‖A(i)− [A(i)]k‖2F . (5)

By union bound, with probability at least 1− 1/n, eqn (5)
holds for all i simultaneously. Let P be the projection
matrix onto the subspace spanned by the top-k right singular
vectors of A. So we have

‖A′ − [A′]k‖2F ≤ ‖A′ −A′P‖2F

=

t∑
i=1

‖A′(i) −A′(i)P‖2F P has rank k

=

t∑
i=1

‖Z(i)A(i) − Z(i)A(i)P‖2F

≤
t∑
i=1

‖A(i) −A(i)P‖2F Z(i) is a orthogonal

= ‖A−AP‖2F = ‖A− [A]k‖2F , by definition of P

which proves (1).

As defined in Algorithm 5, R(i) = (I − Z(i)TZ(i))A(i),
where Z(i) satisfies (5). Therefore,

‖R‖2F =

t∑
i=1

‖(I − Z(i)TZ(i))A(i)‖2F

≤ O(1) ·
t∑
i=1

‖A(i) − [A(i)]k‖2F

= O(1) · ‖A− [A]k‖2F

which proves (2).

Lemma 3. ATA = RTR+A′TA′; with probability 1−1/n
it holds that ‖ATA−A′TA′‖F ≤ O(1) · ‖A− [A]k‖2F .

Proof. To prove the first part, we only need to prove
A(i)TA(i) = R(i)TR(i) +A′(i)TA′(i) holds for all i. Recall
that A′(i) = Z(i)A(i). For each i, we have

R(i)TR(i) = A(i)T (I − Z(i)TZ(i)) · (I − Z(i)TZ(i))A(i)

= A(i)T (I − Z(i)TZ(i))A(i)

= A(i)TA(i) −A′(i)TA′(i).

This proves the first part, from which, we also get

‖ATA−A′TA′‖F = ‖RTR‖F ≤ ‖R‖2F ,

where the inequality is from the submultiplicative of matrix
norms. Then the second part follows from Lemma 2.

Lemma 4. If the entries of A are integers bounded in
magnitude by poly(nd) and rank(A) ≥ 1.1k, then ‖A −
[A]k‖2F ≥ 1/poly(nd).

Proof. The lemma directly follows from a result of (Clark-
son & Woodruff, 2009), and here we use the restated version
from (Boutsidis et al., 2016).

Lemma 5 (Lemma 37 of (Boutsidis et al., 2016)). If an
n× d matrix A has integer entries bounded in magnitude
by γ, and has rank ρ, then the k-th largest singular value of
A satisfies

σk ≥ (ndγ2)−k/2(ρ−k).

Lemma 6. We set η = poly−1(nd), then with probability
at least 0.99, it holds that

‖Q‖2F = O(‖R‖2F ), ‖RTR−QTQ‖2 = O(α)·‖A−[A]k‖2F ,

and rows(Q) = O(log(nd)/α2).

Proof. Let us first assume rank(A) ≥ 1.1k. Each row Ri

ofR is sampled with probability Θ(‖Ri‖2
α2F ) (by JL property),

with F initialized to be η. We have η ≤ ‖A− [A]k‖2F (by
Lemma 4). When ‖R‖2F ≥ η, the probability is at least
Ω( ‖Ri‖2

α2‖R‖2F
) (since F will be a constant approximation of

‖R‖2F by JL), so the first two parts directly follow from
Theorem 2 and Lemma 2. Otherwise if ‖R‖2F ≤ η, then the
probability is Ω(‖Ri‖2

α2η ) = Ω( ‖Ri‖2
α2‖A−[A]k‖2F

) the first two
parts follow by Theorem 2.

To bound the number of rows sampled, we divide the stream
into epochs, where F roughly doubles in each epoch. So the
total number of epochs is bounded by O(log ‖R‖Fη ), as the
final value of F is at most O(‖R‖2F ). As we assume each
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entry of A is integer bounded in magnitude by poly(nd),
which implies the number of epochs is

O(log
‖R‖2F
η

) ≤ O
(
log
(
‖A‖2F · poly(nd)

))
= O(log(nd)).

The number of rows sampled in each epoch is at most
O(1/α2): let a1, · · · , at be the rows of R in the epoch,
and thus

∑
j ‖aj‖2 ≤ O(F ) (otherwise the epoch ends);

each row aj is sampled with probability Θ(
‖aj‖2
α2F ), which

implies the total number of rows sampled is O(1/α2). This
proves the third part.

The case rank(A) ≤ 1.1k is easier: we can set the rank
parameter k a little larger (say k′ = 2k) in our algorithm so
that R is always 0 by Lemma 2, and thus rows(Q) = 0. In
this case, our algorithm is essentially exact.

Correctness. By union bound, with probability 0.9 all the
above lemmas hold simultaneously, and we will assume
this happens. Since C = FD(Q,α, 0), by Theorem 1 and
Lemma 6, we have

‖QTQ− CTC‖2 ≤ α‖Q‖2F ≤ O(α) · ‖R‖2F . (6)

Since B is a matrix such that B = FFDdense(A′, α, k), by
Theorem 5, we have

‖A′TA′ −BTB‖2 ≤ α‖A′ − [A′]k‖2F ≤ α‖A− [A]k‖2F ,
(7)

where the last inequality is from Lemma 2. Let S = [B;C],

‖ATA− STS‖2 = ‖ATA−BTB − CTC‖2
≤ ‖ATA−A′TA′ − CTC‖2 + ‖A′TA′ −BTB‖2
≤ ‖ATA−A′TA′ − CTC‖2 + α‖A− [A]k‖2F by (7)

= ‖RTR− CTC‖2 + α‖A− [A]k‖2F
≤ ‖RTR−QTQ‖2 + ‖QTQ− CTC‖2 + α‖A− [A]k‖2F

triangle inequality

≤ O(α) · ‖A− [A]k‖2F +O(α) · ‖R‖2F + α‖A− [A]k‖2F
by (6) and Lemma 6

≤ O(α) · ‖A− [A]k‖2F , by Lemma 2

which proves the error bound after adjusting α by a constant.

Space and running time. For space, we need a buffer to
store a new block ofA, the size of which is at most dk+d, as
the nnz(A(i)) is at most dk+ d. When applying Theorem 3,
we set δ = 1/n2, and the input matrix has at most d

k log(nd)

rows, so we need O(dk) space to compute and store Z.
A′(i) is of dimension O(k)× d, which needs O(dk) space
to compute and store. To naively compute W = (I −
ZTZ)A(i)Φ, we need O(dk + d log n) space. However,

observe that we do not have to compute W explicitly, we
only need to know its row norms, i.e. the vector w. To
save space, we compute one column of W at a time, i.e.,
generate columns of Φ one by one, and update w iteratively,
and thus the extra space used is O(d). From Theorem 5,
the space used by FFDdense(A′, α, k) is O(d(k + α−1)).
Note that, in line 11 of Algorithm 5, the rows of Q(i) can be
computed one by one, and thus compute C = FD(Q,α, 0)
uses O(d/α) space by theorem 1. So the total space usage
is bounded by O(d(k + α−1)).

Let `i be the number of rows in ith block A(i). The time
to compute Z using Theorem 3 is O(nnz(A(i) log n) +
Õ(`ik

3). Hence the total time used on this step is∑
i

O(nnz(A(i) log n) + Õ(`ik
3) =

O(nnz(A) log n) + Õ(nk3).

The step to compute the matrix multiplicationA′(i) = ZA(i)

takes O(nnz(A(i))k) time, since Z has O(k) rows. So the
total time spent on this step is O(nnz(A)k). By the defi-
nition of blocks, there are at most O( nnz(A)

dk + nk log(nd)
d )

blocks. After left multiplying Z, each block contributes
O(k) rows to A′, and thus the total number of rows in A′

is at most O( nnz(A)
d + nk2 log(nd)

d ). Computing B by in-
voking B = FFDdense(A′, α, k) needs O(rows(A′)dk) +
Õ(d/α3) = O(nnz(A)k) + Õ(nk3 + d/α3) time. Fi-
nally, each row of Q can be computed in time O(dk) given
A′ (which has been computed in line 5). Invoking C =
FD(Q,α, 0) needs Õ(d/α3 + dk/α2) since rows(Q) =
Õ(1/α2) by Lemma 6. The total time is thus O(nnz(A)k +
nnz(A) log n) + Õ(nk3 + dα−3 + dkα−2).

5. Conclusion
In this paper, we study covariance sketches for matrices
in the streaming model. We provide new space-optimal
algorithms with improved running time. We also prove that
our running times cannot be significantly improved unless
the state-of-the-art matrix multiplication algorithms can.
Thus, we almost settle the time complexity of this problem.
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