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6. Appendix
6.1. Deep MIL approaches

In Figure 6 we present three deep MIL approaches discussed in the paper.

(a)

(b)

(c)
Figure 6. Deep MIL approaches: (a) the instance-based approach, (b) the embedding-based approach, (c) the proposed approach with the
attention mechanism as the MIL pooling. Red color corresponds to instance scores, blue color depicts a bag vector representation. Best
viewed in color.

6.2. Code

The implementation of our methods is available online at https://github.com/AMLab-Amsterdam/
AttentionDeepMIL. All experiments were run on NVIDIA TITAN X Pascal with a batch size of 1 (= 1 bag) for
all datasets.

6.3. Classical MIL datasets

Additional details In Table 1 a general description of the five benchmark MIL datasets used in the experiments is given.
In Tables 5 and 6 we present architectures of the embedding-based and the instance-based models, respectively. We denote
a fully-connected layer by ’fc’ and the number of output hidden units is provided after a dash. The ReLU non-linearity
was used. In Table 7 the details of the optimization (learning) procedure are given. We provide values of hyperparameters
determined by the model selection procedure for which the highest validation performance was achieved.

https://github.com/AMLab-Amsterdam/AttentionDeepMIL
https://github.com/AMLab-Amsterdam/AttentionDeepMIL
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Table 4. Overview of classical MIL datasets.

Dataset # of bags # of instances # of features
Musk1 92 476 166
Musk2 102 6598 166
Tiger 200 1220 230
Fox 200 1302 230

Elephant 200 1391 230

Table 5. Classical MIL datasets: The embedding-based model archi-
tecture (Wang et al., 2016).

Layer Type
1 fc-256 + ReLU
2 dropout
3 fc-128 + ReLU
4 dropout
5 fc-64 + ReLU
6 dropout
7 mil-max/mil-mean/mil-attention-64
8 fc-1 + sigm

Table 6. Classical MIL datasets: The instance-based model architec-
ture (Wang et al., 2016).

Layer Type
1 fc-256 + ReLU
2 dropout
3 fc-128 + ReLU
4 dropout
5 fc-64 + ReLU
6 dropout
7 fc-1 + sigm
8 mil-max/mil-mean

Table 7. Classical MIL datasets: The optimization procedure details (Wang et al., 2016).

Experiment Optimizer Momentum Learning rate Weight decay Epochs Stopping criteria
Musk1 SGD 0.9 0.0005 0.005 100 lowest validation error and loss
Musk2 SGD 0.9 0.0005 0.03 100 lowest validation error and loss
Tiger SGD 0.9 0.0001 0.01 100 lowest validation error and loss
Fox SGD 0.9 0.0005 0.005 100 lowest validation error and loss

Elephant SGD 0.9 0.0001 0.005 100 lowest validation error and loss

6.4. MNIST-bags

Additional details In Tables 8 and 9 we present architectures of the embedding-based and the instance-based models
for MNIST-BAGS, respectively. We denote a convolutional layer by ’conv’, in brackets we provide kernel size, stride and
padding, and the number of kernels is provided after a dash. The convolutional max-pooling layer is denoted by ’maxpool’
and the pooling size is given in brackets. The ReLU non-linearity was used. In Table 10 the details of the optimization
(learning) procedure for deep MIL approach are given. The details of the SVM are given in Table 11. We provide values of
hyperparameters determined by the model selection procedure for which the highest validation performance was achieved.

Table 8. MNIST-bags: The embedding-based model architecture (Le-
Cun et al., 1998).

Layer Type
1 conv(5,1,0)-20 + ReLU
2 maxpool(2,2)
3 conv(5,1,0)-50 + ReLU
4 maxpool(2,2)
5 fc-500 + ReLU
6 mil-max/mil-mean/mil-attention-128
7 fc-1 + sigm

Table 9. MNIST-bags: The instance-based model architecture (Le-
Cun et al., 1998).

Layer Type
1 conv(5,1,0)-20 + ReLU
2 maxpool(2,2)
3 conv(5,1,0)-50 + ReLU
4 maxpool(2,2)
5 fc-500 + ReLU
6 fc-1 + sigm
7 mil-max/mil-mean
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Table 10. MNIST-bags: The optimization procedure details.

Experiment Optimizer β1, β2 Learning rate Weight decay Epochs Stopping criteria
All Adam 0.9, 0.999 0.0005 0.0001 200 lowest validation error+loss

Table 11. MNIST-bags: SVM configuration.

Model Features Kernel C γ Max iterations
MI-SVM Raw pixel values RBF 5 0.0005 200

Additional results In Tables 12, 13 and 14 we present the test AUC value for 10, 50 and 100 instances on average per a
bag, respectively.

In Figure 7 a negative bag is presented. In Figure 8 a positive bag with a single ’9’ is given. In Figure 9 a positive bag
with multiple ’9’s is presented. In all figures attention weights are provided and in the case of positive bags a red rectangle
highlights positive instances.

Table 12. The test AUC for MNIST-BAGS with on average 10 instances per bag for different numbers of training bags.

# of training bags 50 100 150 200 300 400 500
Instance+max 0.553 ± 0.053 0.745 ± 0.100 0.960 ± 0.004 0.979 ± 0.001 0.984 ± 0.001 0.986 ± 0.001 0.986 ± 0.001
Instance+mean 0.663 ± 0.014 0.676 ± 0.012 0.694 ± 0.010 0.694 ± 0.017 0.709 ± 0.020 0.693 ± 0.023 0.712 ± 0.018

MI-SVM 0.697 ± 0.054 0.851 ± 0.009 0.862 ± 0.008 0.898 ± 0.014 0.926 ± 0.004 0.942 ± 0.002 0.948 ± 0.002
Embedded+max 0.713 ± 0.016 0.914 ± 0.011 0.954 ± 0.005 0.968 ± 0.001 0.980 ± 0.001 0.981 ± 0.003 0.986 ± 0.002
Embedded+mean 0.695 ± 0.026 0.841 ± 0.027 0.926 ± 0.004 0.953 ± 0.004 0.974 ± 0.002 0.980 ± 0.001 0.984 ± 0.002

Attention 0.768 ± 0.054 0.948 ± 0.007 0.949 ± 0.006 0.970 ± 0.003 0.980 ± 0.000 0.982 ± 0.001 0.986 ± 0.001
Gated Attention 0.753 ± 0.054 0.916 ± 0.013 0.955 ± 0.003 0.974 ± 0.002 0.980 ± 0.004 0.983 ± 0.002 0.987 ± 0.001

Table 13. The test AUC for MNIST-BAGS with on average 50 instances per bag for different numbers of training bags.

# of training bags 50 100 150 200 300 400 500
Instance+max 0.576 ± 0.059 0.715 ± 0.096 0.937 ± 0.045 0.992 ± 0.002 0.994 ± 0.001 0.997 ± 0.001 0.997 ± 0.001
Instance+mean 0.737 ± 0.014 0.744 ± 0.029 0.824 ± 0.012 0.813 ± 0.030 0.722 ± 0.021 0.728 ± 0.017 0.798 ± 0.011

MI-SVM 0.824 ± 0.067 0.946 ± 0.004 0.959 ± 0.002 0.967 ± 0.002 0.975 ± 0.001 0.976 ± 0.001 0.979 ± 0.001
Embedded+max 0.872 ± 0.039 0.984 ± 0.005 0.992 ± 0.001 0.996 ± 0.001 0.996 ± 0.001 0.997 ± 0.001 0.997 ± 0.001
Embedded+mean 0.841 ± 0.013 0.906 ± 0.046 0.983 ± 0.005 0.992 ± 0.001 0.996 ± 0.001 0.997 ± 0.001 0.997 ± 0.001

Attention 0.967 ± 0.010 0.982 ± 0.003 0.990 ± 0.002 0.993 ± 0.002 0.989 ± 0.003 0.994 ± 0.001 0.995 ± 0.001
Gated Attention 0.920 ± 0.042 0.977 ± 0.006 0.993 ± 0.003 0.991 ± 0.002 0.994 ± 0.002 0.995 ± 0.001 0.996 ± 0.001

Table 14. The test AUC for MNIST-BAGS with on average 100 instances per bag for different numbers of training bags.

# of training bags 50 100 150 200 300 400 500
Instance+max 0.543 ± 0.054 0.804 ± 0.107 0.899 ± 0.086 0.999 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
Instance+mean 0.842 ± 0.023 0.855 ± 0.025 0.824 ± 0.014 0.896 ± 0.037 0.859 ± 0.029 0.899 ± 0.012 0.868 ± 0.016

MI-SVM 0.871 ± 0.060 0.991 ± 0.002 0.994 ± 0.002 0.996 ± 0.001 0.997 ± 0.001 0.998 ± 0.001 0.998 ± 0.001
Embedded+max 0.977 ± 0.009 0.999 ± 0.001 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
Embedded+mean 0.959 ± 0.010 0.990 ± 0.003 0.998 ± 0.001 0.900 ± 0.089 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

Attention 0.996 ± 0.001 0.998 ± 0.001 0.999 ± 0.000 0.998 ± 0.001 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
Gated Attention 0.998 ± 0.001 0.999 ± 0.000 0.998 ± 0.001 0.998 ± 0.001 0.999 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
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a1=0.08884 a2=0.09065 a3=0.11254 a4=0.07189 a5=0.05136 a6=0.03091 a7=0.07404

a8=0.07412 a9=0.16541 a10=0.02777 a11=0.11683 a12=0.04244 a13=0.0532

Figure 7. Example of attention weights for a negative bag.

a1=0.00019 a2=0.00011 a3=0.00055 a4=0.00032

a5=0.00041 a6=0.9981 a7=0.00017 a8=0.00017

Figure 8. Example of attention weights for a positive bag containing a single ’9’.

a1=0.00002 a2=0.22608 a3=0.00001 a4=0.00008 a5=0.00001 a6=0.24766 a7=0.00008

a8=0.00002 a9=0.28002 a10=0.00006 a11=0.00006 a12=0.00009 a13=0.24581

Figure 9. Example of attention weights for a positive bag containing multiple ’9’s.
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6.5. Histopathology datasets

Data augmentation We randomly adjust the amount of H&E by decomposing the RGB color of the tissue into the H&E
color space (Ruifrok & Johnston, 2001), followed by multiplying the magnitude of H&E for a pixel by two i.i.d. Gaussian
random variables with expectation equal to one. We randomly rotate and mirror every patch. Lastly, we perform color
normalization on every patch.

Additional details In Tables 15 and 16 we present architectures of the embedding-based and the instance-based models
for histopathology datasets, respectively. In Table 17 the details of the optimization (learning) procedure for deep MIL
approach are given. We provide values of hyperparameters determined by the model selection procedure for which the
highest validation performance was achieved.

Table 15. Histopathology: The embedding-based model architecture
(Sirinukunwattana et al., 2016).

Layer Type
1 conv(4,1,0)-36 + ReLU
2 maxpool(2,2)
3 conv(3,1,0)-48 + ReLU
4 maxpool(2,2)
5 fc-512 + ReLU
6 dropout
7 fc-512 + ReLU
8 dropout
9 mil-max/mil-mean/mil-attention-128
10 fc-1 + sigm

Table 16. Histopathology: The instance-based model architecture
(Sirinukunwattana et al., 2016).

Layer Type
1 conv(4,1,0)-36 + ReLU
2 maxpool(2,2)
3 conv(3,1,0)-48 + ReLU
4 maxpool(2,2)
5 fc-512 + ReLU
6 dropout
7 fc-512 + ReLU
8 dropout
9 fc-1 + sigm

10 mil-max/mil-mean

Table 17. Histopathology: The optimization procedure details.

Experiment Optimizer β1, β2 Learning rate Weight decay Epochs Stopping criteria
All Adam 0.9, 0.999 0.0001 0.0005 100 lowest validation error+loss

Additional results In Figures 10, 11 and 12 five images are presented: (a) a full H&E image, (b) all patches containing
cells, (c) positive patches, (d) a heatmap given by the attention mechanism, (e) a heatmap given by the Instance+max. We
rescaled the attention weights and instance scores using a′k = (ak −min(a))/(max(a)−min(a)).

(a) (b) (c) (d) (e)

Figure 10. Colon cancer example 1: (a) H&E stained histology image. (b) 27×27 patches centered around all marked nuclei. (c) Ground
truth: Patches that belong to the class epithelial. (d) Attention heatmap: Every patch from (b) multiplied by its attention weight. (e)
Instance+max heatmap: Every patch from (b) multiplied by its score from the INSTANCE+max model. We rescaled the attention weights
and instance scores using a′

k = (ak −min(a))/(max(a)−min(a)).
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(a) (b) (c) (d) (e)

Figure 11. Colon cancer example 2: (a) H&E stained histology image. (b) 27×27 patches centered around all marked nuclei. (c) Ground
truth: Patches that belong to the class epithelial. (d) Attention heatmap: Every patch from (b) multiplied by its attention weight. (e)
Instance+max heatmap: Every patch from (b) multiplied by its score from the INSTANCE+max model. We rescaled the attention weights
and instance scores using a′

k = (ak −min(a))/(max(a)−min(a)).

(a) (b) (c) (d) (e)

Figure 12. Colon cancer example 3: (a) H&E stained histology image. (b) 27×27 patches centered around all marked nuclei. (c) Ground
truth: Patches that belong to the class epithelial. (d) Attention heatmap: Every patch from (b) multiplied by its attention weight. (e)
Instance+max heatmap: Every patch from (b) multiplied by its score from the INSTANCE+max model. We rescaled the attention weights
and instance scores using a′

k = (ak −min(a))/(max(a)−min(a)).


