Supplementary Material of Analysis of Minimax Error Rate for Crowdsourcing
and Its Application to Worker Cluster Model
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A. Appendix: Proof of Lemma 1

Lemma 1 (Fano’s inequality Fano (1949)).
For any Markov chain V — X — V, we have

WPV £ V) + P(V £ V)(log(|¥] - 1) > H(V|V),
where

h(p) = —plog p — (1 - p)log(1 - p),

¥ is the set of possible value of V, and H(V|V) is the en-
tropy of V conditioned on V.

Proof of Lemma 1.

This inequality follows by expanding the entropy in two
different ways. Let E be the indicator random variable for
the event that V # V, thatis, E = 1if V # V and is 0
otherwise. Then we have

H(V,E|V) H(VIE, V) + H(E|V)
= P(E=DHWVIE=1V)
+P(E = 0)H(V|E = 0,V) + H(E|V)

= P(E=1DHWVIE =1,V)+ H(E|V),

where the last equation follows because there is no error,
and V has no variability given V if E = 0. Expanding the
entropy by the chain rule in a different order, we have

H(V|V)+ HEIV,V)
HV|V),

H(V,E|V)

because E is perfectly determined by V and V. Combining
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these two equations, we have

H(VIV) = P(E=1HVIE =1,V)+ H(E|V)
= P(V+V)HVIE =1,V)+ H(E|V)
< P(V#V)log(¥| - 1)+ H(EV)
< P(V#V)log(|¥| - 1)+ PV # V)),

where the first inequality follows because V can take on
at most |#| — 1 values when there is an error, and the last
inequality follows by H(E|V) < H(E) = h(P(V # V)). The
proof is complete. O

B. Appendix: Detailed Derivation of
Inference Algorithm

In this section, we show the detailed derivation of an infer-
ence algorithm for the proposed WC model.

B.1. Empirical Variational Inference

To estimate latent variables and parameters, we adopt the
strategy of empirical variational inference.

We want to maximize a following marginal log likelihood
or model evidence.

log p(Xla, B, A) = 10gfp(X,G,7r|p,T,A)de7r.

However it is impossible to optimize the RHS’s integral
analytically. Therefore, we will instead maximize the fol-
lowing evidence lower bound (ELBO).

logfp(X, G, nlp, T, A)dGdn

q(G, )

= ELBO.

We make an assumption of the mean field approximation
for q(G, ), that is,

9(G,m) =

{lj CI(G,-)}

ﬁ q(nf‘)l :
j=1
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On the basis on the variational method, maximizing ELBO
yields the following expression.

q(Gy) Mutinomial(G,|6;),
g’y = Mutinomial(fy' (x')|d,),

where § = {é[}:?zl,gfb = {gﬁ j};."zl are variational parameters.
They satisfy the following eqautions.
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We can calculate ELBO analytically as follows.

n

i=1 k=1 j=1 =1

We want to maximize ELBO with respect to 0, q§ A, p, and
7. Deriving the stationary condition for {6, #}, we get equa-
tions (1) and (2). Deriving the stationary condition for
{A, p, T}, we get the following equations.

1 & .
P = ;Zlei,k, e
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Using (1), (2) and (4)~(6) iteratively, we can get a local
optimal solution of ELBO. We refer to the estimated values
of G,r as G, #. From the above, it is possible to calculate
the G, 7 as follows.

S
I

arg max 6, ;, )
k

o= A (8)

where the group to which the j-th worker belong is written
as ¢; and calculated as {; = arg max ¢ ;.
!

Finally, we have derived Algorithm 1.

B.2. Initialization Process

In this section, we discuss the initialization process of step
[1] in Algorithm 1. We need to initialize 6, ¢A§, p, T, and A.

The initialization process of p and 7 is simple. We use the
equations (4) and (5) to initialize p and 7. However, to ini-
tialize p and 7, we need § and q3 Thus, we need to initialize
6 and ¢ first.

m K K L
Z Z Z Z Ai,kéj,lé(Xi,j =k)log Asjx

K m L
+ 3> budlogpe —loghi) + > " diulog T — logdo).

Algorithm 1 Empirical Variational Inference for Worker

Clustering Model

Input: X

Output: G. 7

1 Initialize 9, &, P, T, A appropriately (discussed later).

2 Update variational parameters by using (1) and (2)

3 Update hyper parameters by using (4)~(6)

4 Calculate ELBO (3), then compare it with previous
ELBO value. If the inclement is smaller than the thresh-
old, go to the step [5], otherwise repeat from step [2]

5 Calculate estimated values G, # by using (7) and (8)

The initialization process of # is the same as that
ofDawid & Skene (1979) given by

. 2L 0(Xij = k)
O i

3) TR e = k)

The initialization process of ¢ and A is a bit more compli-
cated. First, we approximately calculate confusion matri-

ces = {r/ };”:1 of each worker j as done by Dawid & Skene
(1979) as follows.

o i 06X, = k)
L Zllc(':l Z::l:] éi,ké(Xi,j =k’

We want to separate all m workers into L groups. The abil-
ity of each group / € {1,2, ..., L} is measured by A;. The
bigger the diagonal components of each A; are, the higher
the accuracy of group / is. Thus, we first calculate the trace
norm of each 71/, namely ||7/||, and then rearrange all work-
ers in descending order according to {||7/]|, };’.1:1 to obtain the

1 2 ... m
o(l) o2) o(m) )
, where o(j') = j means that the trace norm of the worker
Jj is the j’-th largest. Second, we separate {o( j’)}??:1 into L

groups. In other words, let J; = {0(@ + 1), o-(mfl)}

Using this set, the initial values of A and ¢ are below.

permutation of workers o = (

L ,
A = =N 7ie
LK - Z g
JeJ
dii = O(je ).
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