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Abstract

While crowdsourcing has become an important
means to label data, there is great interest in
estimating the ground truth from unreliable la-
bels produced by crowdworkers. The Dawid and
Skene (DS) model is one of the most well-known
models in the study of crowdsourcing. Despite its
practical popularity, theoretical error analysis for
the DS model has been conducted only under re-
strictive assumptions on class priors, confusion
matrices, or the number of labels each worker
provides. In this paper, we derive a minimax er-
ror rate under more practical setting for a broader
class of crowdsourcing models including the DS
model as a special case. We further propose the
worker clustering model, which is more practi-
cal than the DS model under real crowdsourcing
settings. The wide applicability of our theoreti-
cal analysis allows us to immediately investigate
the behavior of this proposed model, which can
not be analyzed by existing studies. Experimen-
tal results showed that there is a strong similarity
between the lower bound of the minimax error
rate derived by our theoretical analysis and the
empirical error of the estimated value.

1. Introduction
Crowdsourcing has become an essential tool for large-
scale data collection in machine learning. While crowd-
sourcing provides a less expensive means of labeling data,
the data annotated by a crowd can be of low quality be-
cause crowd workers are often non-experts and are some-
times even adversarial. Many crowdsourcing services try to
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solve this problem by providing redundancy for labeling,
i.e., by collecting multiple labels from different workers
for each task (Ipeirotis et al., 2010; Welinder et al., 2010;
Snow et al., 2008). This strategy raises the question: how
can the ground truths be estimated from noisy and redun-
dant labels? Estimating the ground truth is difficult in the
laissez-faire crowdsourcing setting in which a large num-
ber of workers in the world can freely label as many tasks
as they want. In this setting, a small number of workers
annotate data a large number of times, while most workers
perform annotation only a few times. That is, the number of
tasks to be labeled per worker typically follows Zipf’s law.
In this paper, we focus on this setting because it is more re-
alistic than the non-laissez-faire crowdsourcing setting, in
which the number of tasks to be labeled per worker is al-
most constant across all workers and which is assumed in
the experiments of many previous works (Welinder et al.,
2010; Snow et al., 2008).

In the context of estimating the ground truth of each task
from noisy and redundant labels, Dawid & Skene (1979)
conducted pioneering research. It is assumed in the Dawid
and Skene (DS) model that each worker has his or her
own confusion matrix. The ground truth of each task
and the confusion matrix of each worker are jointly esti-
mated by the Expectation-Maximization (EM) algorithm
(Dempster et al., 1977).

Although the DS model has had empirical success
(Welinder et al., 2010; Snow et al., 2008), there are two
major problems. First, there are few theoretical error anal-
yses on the performance conducted for the DS model, and
the existing theoretical analyses are only valid under strong
assumptions. For example, Gao et al. (2016) assumed that
the class prior is uniform and Zhang et al. (2014) assumed
that the entries of the confusion matrices are strictly pos-
itive. Second, the experimental validity of the existing
methods is confirmed only when the number of tasks to be
labeled per worker is almost constant on both synthetic and
real-world data (Welinder et al., 2010; Snow et al., 2008).

To alleviate the first problem, we provide a novel theo-
retical error analysis under milder assumptions based on
Fano’s method, which is a useful minimax lower-bounding
technique (Yu, 1997). Our theoretical analysis is applicable
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to all models that use the ground truth of each task and the
confusion matrix of each worker, including the DS model
and its extensions, thanks to the fact that our assumptions
are much weaker than those required in previous work.

To alleviate the second problem, we extend the DS model
to be able to handle worker clusters. Intuitively, by cluster-
ing workers, even when the number of tasks to be labeled
per worker is small, the number of tasks to be labeled per
worker cluster can be increased and thus estimation can be
stabilized. Note that our widely applicable theoretical anal-
ysis explained above allows us to investigate the behavior
of the proposed clustering model, while the existing theo-
retical analysis methods cannot be used due to their restric-
tive assumptions. We experimentally show the usefulness
of our worker clustering (WC) model for reducing the in-
fluence of variations in the number of tasks to be labeled
per worker. We also numerically confirm the validity of
our theoretical error analysis.

2. Related Work
A large number of studies on the quality assur-
ance of data collected by crowdsourcing have been
conducted (Karger et al., 2011; Bachrach et al., 2012;
Zhou et al., 2012; Chen et al., 2013; Karger et al., 2013;
Parisi et al., 2014; Venanzi et al., 2014; Karger et al., 2014;
Tian & Zhu, 2015). One of the most practical and pio-
neering studies in this field is the Dawid and Skene (DS)
model (Dawid & Skene, 1979). The DS model is based
on an estimation paradigm that uses the ground truths
of all tasks and the confusion matrices of all workers;
their inference algorithm is based on the EM algorithm
(Dempster et al., 1977). Application research using their
method has been actively carried out (Hui & Walter, 1980;
Smyth et al., 1995; Albert & Dodd, 2004). As many exper-
iments on synthetic and real-world data have demonstrated,
the DS model is practical for estimating the ground truth of
each task from noisy and redundant labels.

There is also many studies that uses the EM al-
gorithm (Whitehill et al., 2009; Welinder et al., 2010;
Raykar et al., 2010; Welinder & Perona, 2010; Liu et al.,
2012; Liu & Wang, 2012; Zhang et al., 2014). Liu & Wang
(2012) assume priors over the class prior of the ground
truths of tasks and the confusion matrices of workers.
Zhang et al. (2014) devised an effective way to initialize
the EM algorithm. Specifically, the initial values of the
confusion matrices of all workers were estimated using the
method of moments. Karger et al. (2011) proposed an iter-
ative algorithm for binary labeling problems which is not
based on the DS model, and gave a theoretical analysis un-
der strong assumptions.

The idea of clustering worker was already proposed by

Venanzi et al. (2015) and Moreno et al. (2015). The prob-
lem setting of Venanzi et al. (2015) supposed that the in-
puts of the model are not labels but real-valued vectors,
which is different from our problem setting. Moreno et al.
(2015) solved the same problem as ours, but assumed a
complex generation process for confusion matrices and la-
bels given by workers. To give the worker clustering struc-
ture, their model becomes complex, and difficult to analyze
theoretically.

As a number of algorithms have been proposed, statisti-
cal understanding of crowdsourcing has been actively re-
searched, such as (Ghosh et al., 2011; Dalvi et al., 2013;
Karger et al., 2014; Zhang et al., 2014; Gao et al., 2016;
Bonald & Combes, 2017). These studies are divided into
two types. One is a theoretical analysis of the estimation
paradigm that uses the ground truths and confusion ma-
trices (Zhang et al., 2014; Gao et al., 2016). The other is
a theoretical analysis of their own models and algorithms
(Ghosh et al., 2011; Dalvi et al., 2013; Karger et al., 2014;
Bonald & Combes, 2017). Our theoretical analysis is of the
former category.

Zhang et al. (2014) initialized the confusion matrices of all
workers using the method of moments and showed conver-
gence of the EM algorithm initialized with their method.
However, they assumed that the minimum value of the en-
tries of the confusion matrices is greater than a positive
constant. Gao et al. (2016) derived the minimax optimal
convergence rate for the DS model, but they assumed that
the class prior is uniform.

Bonald & Combes (2017) gave a probabilistic concentra-
tion inequality for the estimation error between the ground
truth and estimated truth without using the confusion ma-
trices of workers. While their result cannot be calculated
empirically, our theoretical result can be calculated using
the estimated confusion matrices and the class prior. We
describe the usefulness of calculating the bound in Sec-
tion 6.3 Because of our weaker assumptions, our theoretical
analysis is applicable to all methods that use the estimation
paradigm based on the ground truths of all tasks and con-
fusion matrices of all workers.

3. Dawid and Skene Model
In this section, we formulate the problem of estimating the
ground truths of tasks based on noisy and redundant la-
bels provided by workers and their confusion matrices. The
model formulated in this section is the basis of all models
to be theoretically analyzed in the next section.

Suppose we have n tasks labeled by m workers on K pos-
sible labels. Let Xi, j be the label of the i-th task given by
the j-th worker. Denote by Xi, j = k that the j-th worker
labels k ∈ {1, 2, . . . ,K} to the i-th task. Denote by Xi, j = 0
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Table 1. Relationship between existing work and this work. DS stands for Dawid and Skene, while WC stands for worker clustering.

MODEL THEORETICAL ANALYSIS LAISSEZ-FAIRE SETTING CLASS PRIOR

DAWID & SKENE (1979) DS - - NOT UNIFORM
KARGER ET AL. (2011) OTHER ✓ - NO CLASS PRIOR
LIU & WANG (2012) DS - - NOT UNIFORM
GAO ET AL. (2016) DS ✓ - UNIFORM
THIS WORK DS & WC ✓ ✓ NOT UNIFORM

that the j-th worker does not label the i-th task. We use
Gi ∈ {1, 2, . . . ,K} to denote the ground truth of the i-th
task. Here, SK×K is the set of right stochastic matrices, that
is,

∀P ∈ SK×K ,∀k ∈ {1, 2, . . . ,K},
K∑

k′=1

Pk,k′ = 1,

∀P ∈ SK×K ,∀k ∈ {1, 2, . . . ,K},∀k′ ∈ {1, 2, . . . ,K}, Pk,k′ ≥ 0.

The ability of the j-th worker is measured by a confusion
matrix π j ∈ SK×K with its (k, k′)-element π j

k,k′ being the
probability that the j-th worker labels k′ when the true label
is k. For simplicity, we define

X = {Xi, j}n,mi=1, j=1,G = {Gi}ni=1, π = {π j}mj=1.

We suppose that when Gi = k is the ground truth of the
i-th task, the label given by the j-th worker is sampled
from a multinomial distribution parametrized by the k-th
row of the confusion matrix of the j-th worker, namely,
π

j
k. We assume that the ground truth of each task, Gi, is

sampled from a multinomial distribution parametrized by
ρ = (ρ1, ρ2, . . . , ρK), where ρk ≥ 0 for any k ∈ {1, . . . ,K}
and

∑K
k=1 ρk = 1. We call ρ the class prior of all tasks. We

have observed variables X, latent variables G, and parame-
ters {π, ρ}. The graphical model is plotted in Figure 1-(a).

Then, the joint distribution of this model is expressed as
follows.

p(X,G|ρ, π) =
 n∏

i=1

m∏
j=1

p(Xi. j|Gi, π
j)


 n∏

i=1

p(Gi|ρ)
 ,

where each probability distribution is given as follows.

p(Xi, j|Gi, π
j) =

K∏
k′=1

(
π

j
Gi,k′

)δ(Xi, j=k′)
,

p(Gi|ρ) =

K∏
k=1

ρδ(Gi=k)
k .

The aim is to predict the ground truths of all tasks, G, from
observed labels X. Dawid & Skene (1979) used the EM
algorithm to infer the ground truths. However, when we
conduct theoretical analysis in the next section, we take an
approach that does not depend on a specific inference algo-
rithm.

4. Minimax Error Analysis
We give a lower bound on the minimax error for a class
of models that use the ground truths of tasks and confu-
sion matrices of workers. Let us define some concepts and
formulas for analysis.

We focus on the model described in Section 3. Note that the
model may optionally contain additional structures, such as
a prior for the class prior (Liu & Wang, 2012). Moreover,
we can use any inference algorithm to estimate the ground
truths and class prior of tasks and the confusion matrices
of workers. Let Ĝ be estimated truths of all tasks; let Ĝi

be an estimate of the ground truth of the i-th task. The set
of {1, . . . ,K} is denoted by [K]. A loss is measured by the
error rate given by

L (Ĝ,G) =
1
n

n∑
i=1

δ(Ĝi , Gi),

where δ(·) is the indicator function. Let P be the joint prob-
ability distribution of the data {Xi, j} given π, ρ and G. Let E
be the associated expectation operator. Denote by H(ρ) the
entropy of the ground truth of each task with respect to the
class prior:

H(ρ) = −
K∑

k=1

ρk log ρk.

Let KL(π j
g∗||π j

g′∗) be the Kullback-Leibler divergence from
one row of the confusion matrix to the other:

KL(π j
g∗||π j

g′∗) =

K∑
k=1

π
j
gk log

π
j
gk

π
j
g′k

.

We assume the following.
Assumption 1. Given ρ and π, the labels of tasks given
by workers are in accordance with the models that use the
ground truths of tasks and confusion matrices of workers
such as the DS model.

We bound the minimax error rate as follows.
Theorem 1. Under Assumption 1, the minimax error rate
is lower bounded as follows.

inf
Ĝ

sup
G∈[K]n

E[L (Ĝ,G)] ≥ 1
n log K

(
R(ρ, π) − log 2

n

)
,
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(a) The DS model. (b) The WC model.
Figure 1. Graphical models.

where

R(ρ, π) = H(ρ) −
m∑

j=1

K∑
g=1

K∑
g′=1

ρgρg′KL(π j
g∗||π j

g′∗).

The details of the proof are given in Appendix A. The proof
of this theorem is based on Fano’s method by Yu (1997),
which is a well-known minimax lower bounding technique.

Assumption 1 is weaker than that of many previous works
such as Gao et al. (2016) and Zhang et al. (2014). As we
mentioned in the introduction, their approaches make more
restrictive assumptions to conduct theoretical analysis. For
example, Gao et al. (2016) assumed that class prior ρ is
uniform, that is, ρk =

1
K for any k ∈ {1, . . . ,K}. Zhang et al.

(2014) assumed that all entries π j
g,k of the confusion matrix

is strictly positive. In contrast, thanks to the weak assump-
tions, our lower bound is applicable to the DS mode and
other models that use the ground truths of tasks and con-
fusion matrices of workers such as Zhang et al. (2014) and
Liu & Wang (2012).

Our lower bound can be used to measure the performance
of each model. Specifically, the performance of each model
can be measured by the value of R(ρ, π), which is the main
part of the lower bound of the minimax error rate. We con-
ducted numerical experiments to measure the performance
of each model, the results of which are given in the experi-
ment section.

In this paper, we provided the lower bound of the mini-
max error rate but did not give an upper bound. The the-
oretical analysis of the previous work such as Gao et al.
(2016) easily derived an upper bound under mild as-
sumptions. However, the derivation depends not only on
the model, but also on an inference algorithm, because
infĜ supG∈[K]n E[L (Ĝ,G)] includes the infimum over esti-
mate Ĝ. Therefore, it is not appropriate to use such an up-
per bound when analyzing the behavior of the model itself.

5. Worker Clustering Model
We propose a model that is more practical than the DS
model in the laissez-faire crowdsourcing setting, where

workers can label as many tasks as they want. The main
idea behind our model is simple: divide all workers into
several disjoint clusters. Intuitively, by clustering workers,
even if the number of labels provided by each worker is
small, the number of labels per worker cluster can be in-
creased to stabilize inference.

The definition of the labels given by workers X, the ground
truths of all tasks G, the class prior ρ, and the confusion
matrices of all workers π are the same as that of the DS
model. The proposed model can actually be regarded as
an extension of the DS model and the HybridConfusion
model (Liu & Wang, 2012). The biggest difference from
the previous models is that the proposed model limits the
possible values of confusion matrices π to a maximum of L
values Λ = {Λ1,Λ2, . . . ,ΛL}, where L ≤ m. This means
that we are clustering m workers into a maximum of L
groups. We also suppose that the confusion matrix π j is
determined by a multinomial distribution parametrized by
τ = (τ1, τ2, . . . , τL), that is, π j is equal to Λl with probabil-
ity τl. This means that the j-th worker belongs to the l-th
cluster with probability τl. We have observed variables X,
latent variables {G, π} and parameters {Λ, ρ, τ}. The graph-
ical model is shown in Figure 1-(b).

The joint distribution of this model is expressed as follows.

p(X,G, π|ρ, τ,Λ)

=

 n∏
i=1

m∏
j=1

p(Xi. j|Gi, π
j)


 n∏

i=1

p(Gi|ρ)

 m∏

j=1

p(π j|τ,Λ)

 ,
where each probability distribution is given as follows.

p(Xi, j|Gi, π
j) =

K∏
k′=1

(
π

j
Gi,k′

)δ(Xi, j=k′)
,

p(Gi|ρ) =

K∏
k=1

ρδ(Gi=k)
k ,

p(π j|τ,Λ) =

L∏
l=1

τδ(π
j=Λl)

l .

Note that our theoretical analysis given in Section 4 is also
applicable to our proposed WC model. To apply the lower
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bound to our model, we use Λ instead of the confusion ma-
trices as follows. We assume that Λ, class prior ρ, and a
group ℓ j which each worker belongs to are known. Un-
der this assumption, ϕ̂ j,l = 1 when l = ℓ j and otherwise
ϕ̂ j,l = 0. Our lower bound of the minimax error rate is then
established with Λℓ j instead of a confusion matrix π j.

To estimate latent variables and optimize parameters,
we adopt the strategy of empirical variational inference
(Robbins, 1956). The details of the derivations are in Ap-
pendix B in the supplementary material.

The behavior of the WC model when L gradually increases
is as follows. Since L is the maximum number of worker
clusters, even if L = m, not all m workers belong to dif-
ferent clusters. Some clusters may include many workers,
but others may not include any workers. The actual number
of clusters is adaptively determined for each target dataset.
Therefore, it is not good to increase the value of L, but there
should be an appropriate value of L. The method of deter-
mining the value of L using our theoretical analysis given
in Section 4 is described in Section 6.3.

6. Experiments
We empirically analyzed the proposed method on synthetic
and real-world data. First, we analyzed that the WC model
proposed in Section 5 performs better than the existing
method in the laissez-faire crowdsourcing setting where the
number of labels per worker is in accordance with Zipf’s
law. Second, we investigated that there is a strong simi-
larity between the lower bound of the minimax error rate
derived by our theoretical analysis in Section 4 and the em-
pirical error of the estimated value.

We compared our proposed method, the WC model, with
the classical Majority Voting (MV) scheme and the DS
model. The experiments were conducted on four synthetic
and three real-world datasets.

6.1. Synthetic Data

For synthetic data, we generated m = 100 workers and n =
1000 binary annotation tasks. The ground truth of each task
was sampled from the binomial distribution with the class
prior ρ = (0.3, 0.7). For each worker, a confusion matrix
was generated as follows. Workers were divided into two
types: honest and adversarial. Each row of each confusion
matrix was sampled from the Dirichlet distribution. The
concentration parameter of the Dirichlet distribution for the
k-th row was

α = (10, . . . , 10︸      ︷︷      ︸
k−1

, 100, 10, . . . , 10︸      ︷︷      ︸
K−k

)

for honest workers and
α = (10, . . . , 10︸      ︷︷      ︸

k−1

, 1, 10, . . . , 10︸      ︷︷      ︸
K−k

)

for adversarial workers. To simulate the labeling pro-
cess of a crowd, we consider two settings: The first set-
ting is the “Constant Labeling Number (CLN)” setting , in
which we determine the number N of tasks that all work-
ers commonly annotate, and then each worker is given N
tasks randomly and label those tasks in acordance with
his or her own confusion matrix. The second setting is
the “Zipf Labeling Number (ZLN)” setting, in which, for
any j ∈ {1, . . . ,m}, we determines the number N j of tasks
that the j-th worker annotates in accordance with Zipf’s
law, and then the j-th worker is randomly given N j tasks
and labels those tasks according to his or her own confu-
sion matrix. The CLN setting was assumed in the experi-
ments of many existing studies (e.g. Welinder et al., 2010;
Snow et al., 2008). The ZLN setting is suitable for the
laissez-faire crowdsourcing setting.

The input of each model was a set of triplets (task, worker,
and label) generated by this procedure. The outputs of the
WC and DS models were estimated values of the ground
truths and class prior of all tasks and the confusion matrices
of all workers. In order to measure how robust each method
is to the proportion of adversaries, we showed the change
in accuracy as a function of the proportion of adversaries
(see Figure 2). We changed the proportion of adversaries
from 0 to 50%.

The accuracy of MV monotonically decreases as the pro-
portion of adversaries increases in all cases. In the CLN
setting, when the number of times each worker labels is
sufficiently large (N = 100), the accuracies of DS and WC
remain high even if the proportion of adversaries is high
(nearly 0.5) (see Figure 2-(c)). In contrast, when the num-
ber of times each worker labels is small (N = 2, 10), the
accuracy of DS is low (almost the chance level), but that
of WC remains high (see Figure 2-(a), (b)). Intuitively,
the reason for this phenomenon is that WC effectively in-
creased the number of labeled tasks per cluster by cluster-
ing workers and thus the estimation became more reliable.
In particular, this phenomenon is noticeable when the num-
ber of tasks to be labeled per worker follows Zipf’s law, i.e.,
in the ZLN setting (see Figure 2-(d)). Even if the average
or the maximum value of the number of tasks to be labeled
per worker is large, when most workers only label a small
number, the accuracy of DS is not high. When the number
of times most workers label is small, the proposed method
WC is more effective than MV and DS.

6.2. Real-World Data

In the real-world data experiments, we compared crowd-
sourcing algorithms on three datasets: two binary tasks
and one multi-class task. The two binary tasks were label-
ing bird species (Welinder et al., 2010) (the Bird dataset)
and recognizing textual entailment (Snow et al., 2008) (the
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Table 2. Statistics of real-world datasets.

DATASET ♯CLASSES ♯TASKS ♯WORKERS ♯LABELS

BIRD 2 108 39 4212
RTE 2 800 164 8000
DOG 4 807 52 7354

Table 3. Error rate (%) of estimating the ground truths of tasks on
real-world datasets. MV, DS, and WC stand for majority voting,
Dawid and Skene, and worker clustering, respectively.

MODEL \DATASET RTE BIRD DOG

MV 8.12 24.07 18.46
DS 7.62 15.74 16.60
WC (L = 1) 11.37 19.44 18.71
WC (L = 2) 7.00 17.59 18.59
WC (L = 10) 6.75 11.11 16.98
WC (minR(ρ, π)) 6.75 11.11 16.36

RTE dataset). The multi-class task was labeling the breed
of dogs (Zhou et al., 2012) (the Dog dataset). The statistics
for the datasets were summarized in Table 2.

We calculated the error rate of the WC model by changing
the value of parameter L. In Table 3, we reported the values
for L = 1, 2, 10 and the value of the error rate when R(ρ, π)
attains its minimum. Table 3 also shows the error rate cal-
culated by MV and DS as baselines. It can be seen that the
error rate decreases as the value of L increases in the WC
model. For the RTE dataset, the WC model is superior to
both MV and DS when L ≥ 2. For the Bird dataset, the
WC model outperforms MV for all L and DS when L ≥ 10.
For the Dog dataset, the WC model does not outperform
DS even when L = 10; as the value of L is increased, the
WC model outperforms DS when R(ρ, π) is minimum.

As expected, the performance of the WC model depends
heavily on the choice of L. However, the experimental re-
sults show that larger L always yields better performance.
We will investigate this issue more systematically in Sec-
tion 6.3.

6.3. Similarity between Lower Bound of Minimax
Error Rate and Empirical Error

We experimentally investigated the similarity between the
lower bound of the minimax error rate and the empirical
error of the ground truths of tasks estimated by the WC
model.

It is important to note that the lower bound of the minimax
error rate derived by our theoretical analysis can be approx-
imately calculated from the class prior and confusion ma-
trices estimated by each method, but the empirical error of
the ground truths of tasks estimated by each method can
not be calculated without the ground truths of those tasks.
In practice, we want to adopt a model that makes the empir-
ical error as small as possible, but its calculation is impos-

sible because of the necessity of the ground truths of tasks.
If there is some similarity between the empirical error and
lower bound of the minimax error rate, we can estimate the
behavior of each model by the theoretical lower bound even
in a more realistic situation in which we do not know the
ground truths of tasks.

Here we experimentally investigate the behavior of R(ρ, π)
and L (Ĝ,G) against the change in the value of the max-
imum number of worker clusters, L for the WC model.
R(ρ, π) is the main part of the lower bound of the minimax
error rate derived by our theoretical analysis introduced in
Section 4, while L (Ĝ,G) is the empirical error of the esti-
mated truths of tasks by the WC model.

The experiment was conducted on three synthetic datasets
and three real-world datasets. For each dataset, we plotted
in Figure 3 the change in R(ρ, π) and L (Ĝ,G) as a function
of the parameter L. The value of L was changed from 1
to m. In Figure 3, the results of L (Ĝ,G) and R(ρ, π) are
shown in the left and right columns, respectively.

For all cases, we see that increasing the value of L tends to
decrease the values of R(ρ, π) and L (Ĝ,G) similarly. This
means that the behavior of L (Ĝ,G) can be well predicted
by R(ρ, π). Looking at the change in L (Ĝ,G), to achieve
better performance, we can see that it is sufficient to set
the value of L to be large to some extent. This behavior
can be well captured by looking at the change in R(ρ, π)
which can be computed in practice. Thus, our theoretical
lower bound may be useful to investigate the behavior of
different models.

7. Conclusions
In this paper, we gave a novel theoretical error analysis by
using Fano’s method for any models based on the ground
truths of tasks and the confusion matrices of workers. We
have considered a realistic laissez-faire crowdsourcing set-
ting and proposed clustering workers to reduce the effect
of the bias in the number of tasks to be labeled per worker.
Our theoretical analysis is applicable to all models that
use the ground truths of tasks and the confusion matri-
ces of workers, including Dawid & Skene (1979) and its
variations, thanks to the weak assumptions required in our
analysis. Through experiments on synthetic and real-world
data, we have found that there is a strong similarity between
the lower bound of the minimax error rate derived by our
theoretical analysis and the empirical error of the estimated
value. Thus, our theoretical lower bound, which can be ap-
proximately calculated from an established class prior and
estimated confusion matrices, can be useful to investigate
the behavior of different models in practice.
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A. Proof of Theorem 1
Fano’s method (Yu, 1997) uses Fano’s inequality (Fano,
1949) to give a lower bound for the minimax error rate.
In the method, the uniformity of a class prior is assumed.
However, it is not realistic for crowdsourcing. Therefore,
we do not use Fano’s method directly but improve the
method to be suitable for crowdsourcing. We use the fol-
lowing inequality between the error probability and a con-
ditional entropy.

Lemma 2 (Fano’s inequality Fano (1949)).
For any Markov chain V → X → V̂, we have

h(P(V̂ , V)) + P(V̂ , V)(log(|V | − 1) ≥ H(V |V̂),

where h(p) = −p log p − (1 − p) log(1 − p), V is the set of
possible value of V, and H(V |V̂) is the entropy of V condi-
tioned on V̂.

The details of the proof are given in Appendix A in supple-
mentary material. Using this inequality, we prove Theorem
1 as follows.

Proof of Theorem 1.
First, using Markov’s inequality, we have

inf
Ĝ

sup
G∈[K]n

E[L (Ĝ,G)] ≥ inf
Ĝ

sup
G∈[K]n

1
n
P

[(
L (Ĝ,G) ≥ 1

n

)]
= inf

Ĝ

[
1
n

sup
G∈[K]n

P

(
L (Ĝ,G) ≥ 1

n

)]

Since Ĝ , G and L (Ĝ,G) = 1
n
∑n

i=1 δ(Ĝi , Gi) ≥ 1
n are

equivalent, we have

inf
Ĝ

sup
G∈[K]n

E[L (Ĝ,G)] ≥ inf
Ĝ

[
1
n

sup
G∈[K]n

P

(
L (Ĝ,G) ≥ 1

n

)]
= inf

Ĝ

[
1
n

sup
G∈[K]n

P
(
Ĝ , G

)]
. (1)

Second, we evaluate P
(
Ĝ , G

)
by using Lemma (2), i.e.,

P
(
Ĝ , G

)
≥ P

(
Ĝ , G

) log(Kn − 1)
log Kn

≥
P
(
Ĝ , G

)
log(Kn − 1) + h(P(Ĝ , G)) − log 2

log Kn

≥ H(G|Ĝ) − log 2
n log K

. (2)

Third, we evaluate H(G|Ĝ) by using the relationship be-
tween conditional entropy and mutual information, and the

data processing inequality, i.e.,

H(G|Ĝ) = H(G) − I(G; Ĝ)
≥ H(G) − I(G; X).

Since the elements of G = (G1, . . . ,Gn) are independent
and identically distributed, we have

H(G|Ĝ) ≥ nH(ρ) − I(G; X) (3)

Then the mutual information of G and X is evaluated as
follows.

I(G; X)
= KL(P(G, X) ∥P(G)P(X))
= KL(P(X|G)P(G)||P(G)P(X))

=
∑

G∈[K]n,X∈[K]mn

P(G)P(X|G) log
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=
∑
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P(X|G′)P(G′)
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≤

∑
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P(G)
∑
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P(G′)KL
(
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(by convexity of − log)

=
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i=1

m∑
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(
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(by independence of X)
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P(Gi = g)P(G′i = g′)KL(π j
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= n
m∑
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g=1

K∑
g′=1

ρgρg′KL(π j
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Combining this inequality and Inequality (3), we have

H(G|Ĝ) ≥ n

H(ρ) −
m∑

j=1

K∑
g=1

K∑
g′=1

ρgρg′KL(π j
g∗||π j

g′∗)


= nR(ρ, π). (4)

Finally, using Inequality (1), (2), and (4), we get

inf
Ĝ

sup
G∈[K]n

E[L (Ĝ,G)] ≥ inf
Ĝ

[
1
n

sup
G∈[K]n

1
log K

(
R(ρ, π) − log 2

n
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=

1
n log K

(
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n

)
This completes the proof. □
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Figure 2. Change of accuracy as a function of the proportion of adversaries. MV, DS, and WC stand for majority voting, Dawid and
Skene, and worker clustering, respectively.
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Figure 3. Change in the empirical error L (Ĝ,G) and the main part of the lower bound of the minimax error rate R(ρ, π) for the maximum
number of worker clusters L.
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