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Abstract

There is growing evidence that converting tar-
gets to soft targets in supervised learning can pro-
vide considerable gains in performance. Much
of this work has considered classification, con-
verting hard zero-one values to soft labels—such
as by adding label noise, incorporating label am-
biguity or using distillation. In parallel, there is
some evidence from a regression setting in rein-
forcement learning that learning distributions can
improve performance. In this work, we investi-
gate the reasons for this improvement, in a regres-
sion setting. We introduce a novel distributional
regression loss, and similarly find it significantly
improves prediction accuracy. We investigate sev-
eral common hypotheses, around reducing over-
fitting and improved representations. We instead
find evidence for an alternative hypothesis: this
loss is easier to optimize, with better behaved
gradients, resulting in improved generalization.
We provide theoretical support for this alterna-
tive hypothesis, by characterizing the norm of the
gradients of this loss.

1. Introduction

The choice of problem formulation for regression has a
large impact on prediction performance on new data—
generalization performance. There is an extensive litera-
ture on problem formulations to promote generalization,
including robust losses (Huber, 2011; Ghosh et al., 2017;
Barron, 2017); proxy losses and reductions between prob-
lems (Langford et al., 2006); the addition of regularization
to impose constraints or preferences on the solution; the
addition of label noise (Szegedy et al., 2016); and even en-
suring multiple tasks are learned simultaneously, rather than
separately, as in multi-task learning (Caruana, 1998). There
is typically a goal in mind—such as classification accuracy
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or absolute error for regression—but those losses are not
necessarily directly minimized.

In recent years, there has been a particular focus on learning
representations with neural networks that generalize better.
With fixed representations, the loss or problem formulation
can only have so much impact, because the learned function
is a linear function of inputs. With (deep) neural networks,
however, the performance can vary widely, based even on
simple modifications such as the initialization (Glorot &
Bengio, 2010). Particularly in classification, modifying the
outputs can significantly improve performance. An exten-
sive empirical study on classification and age prediction
(Gao et al., 2017), under label ambiguity, showed that data
augmentation on the label side—putting a distribution over
an ambiguous label—significantly improved test accuracy,
validated also by other work on age estimation (Rothe et al.,
2018). Work on model compression (Ba & Caruana, 2013;
Urban et al., 2016) and distillation (Hinton et al., 2015)
highlight that a smaller student model can be trained to cap-
ture the generalization ability of a larger teacher model. In
general, there is a growing literature on data augmentation
and label smoothing, that advocates for reduced overfitting
and improved generalization from modifying the outputs
(Norouzi et al., 2016; Szegedy et al., 2016; Xie et al., 2016;
Miyato et al., 2016; Pereyra et al., 2017) and in reinforce-
ment learning where learning distributional outputs, rather
than means, improves performance (Bellemare et al., 2017).

There has been some work—though considerably less—
towards understanding the impact of the properties of the
loss that promote effective optimization. There is a recent
insight that minimizing training time increases generaliza-
tion performance (Hardt et al., 2015), motivating the design
of losses that can be more easily optimized. Though not the
focus in data augmentation, there have been some insights
about loss properties. Gao et al. (2017) showed that their
data augmentation approach provided a faster convergence
rate (see their Figure 8). Pereyra et al. (2017) showed that
label smoothing and their regularizer penalizing confident
predictions for classification provided smoother gradient
norms than without regularization. Bellemare et al. (2017)
hypothesized that the properties of the KL-divergence could
have improved learning performance, in a reinforcement
learning setting. These papers hint at something deeper
occurring with the loss, and motivate investigation into not
just the conversion of the problem but into the loss itself.
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In this work, we show that the properties of the loss have a
significant effect, and better explain the resulting increase
in performance than preventing overfitting. We first propose
a new loss for regression, called a Histogram Loss (HL).
The targets are converted to a target distribution, and the
KL-divergence taken between a histogram density and this
target distribution. The choice of histogram density provides
a relatively flexible prediction distribution, that nonetheless
enables the KL-divergence to be computed efficiently. The
prediction is then the expected value of this histogram den-
sity. This modification could be seen as converting the
problem to a more difficult (multi-task) problem—from one
output, to multiple values to represent the distribution—that
promotes generalization in the learner and reduces overfit-
ting. We show that instead of this hypothesis, the (optimiza-
tion) properties of the HL seem to be the key factor in the
resulting improved accuracy. We provide a series of empiri-
cal results to support this hypothesis. We also characterize
the norm of the gradient of the HL which directly relates to
sample complexity (Hardt et al., 2015). The bounds on the
variability of the gradient help explain the positive empirical
performance of the HL,, and further motivate the use of this
loss as an alternative for the standard loss for regression.

2. Distributional Losses for Regression

In this section, we introduce the Histogram Loss (HL),
which generalizes beyond special cases of soft-target losses
used in recent work (Norouzi et al., 2016; Szegedy et al.,
2016; Gao et al., 2017). We first introduce the loss and
how it can be used for regression. We then relate it to other
objectives, including maximum likelihood for regression
and other methods that learn distributions.

2.1. Learning means and distributions

In regression, it is common to use the squared-error loss, or
5 loss. This corresponds to assuming that the continuous
target variable Y is Gaussian distributed, conditioned on
inputs x € R%: Y ~ N (u = f(x),0?) for a fixed variance
02 > 0 and some function f : R? — R on the inputs, such
as a linear function f(x) = (x,w) for weights w € RY.
The maximum likelihood function f for n samples {x;, y; },

corresponds to minimizing the /5 loss
n

min » (f(x;) — y;)? (1)

j=1

with prediction f(x) ~ E[Y|x].

Alternatively, one could consider learning a distribution over
Y directly, and then taking the mean of that distribution—or
other statistics—to provide a prediction. This additional
difficulty seems hardly worth the effort, considering only
the mean is required for prediction. However, as motivated
above, the increased difficulty could beneficially prevent

overfitting and promote generalization.

There are many options for learning conditional distribu-
tions, p(y|x) even when only considering those that use neu-
ral networks (Bishop, 1994; Tang & Salakhutdinov, 2013;
Rothe et al., 2015; Bellemare et al., 2017). The goal of this
work, however, is not to provide another method to learn dis-
tributions. Rather, the goal is to benefit from inducing a dis-
tribution over Y, even if that distribution will subsequently
not be used, other than for computing a mean prediction. In
our experiments, we will compare to an approach that learns
distributions, but only to evaluate regression performance.

2.2. The Histogram Loss

Consider predicting a continuous target Y with event space
Y, given inputs x. Instead of directly predicting Y, we
select a rarget distribution on Y'|x. This target distribution
is selected upfront, by us, rather than being learned. Sup-
pose the target distribution has support [a, b], pdf p, and
cdf F. We would like to learn a parameterized prediction
distribution ¢x : Y — [0, 1], conditioned on x, by mini-
mizing a KL-divergence to p. For any p, however, this may
be expensive. Further, depending on the parameterization
of the prediction distribution, this may also be potentially
non-convex in those parameters.

We propose to restrict the prediction distribution g« to be
a histogram density. Assume [a,b] has been uniformly
partitioned into k£ bins, of width w;, and let function
f : X — [0,1]* provide k-dimensional vector f(x) of
the coefficients indicating the probability the target is in that
bin, given x. The density gx corresponds to a (normalized)
histogram, and has density values f;(x)/w; per bin. The
KL-divergence between p and gy is
Drr(pllax) = h(p. gx) — h(p).

The second term is the differential entropy—the extension
of entropy to continuous random variables. Because the
second term only depends on p, the aim is to minimize the
first term: the cross-entropy between p and gx. This loss
simplifies, due to the form on ¢y:

b
By ax) = — / p(y) 108 0 (y)dy

k litw; (%
= —Z/l p(y)log %dy
_—21 F(l; +w;) — F(ly)).

In the minimization, the width itself can be ignored, because
log f‘(x = log f;(x) — log w;, giving the Histogram Loss

L(p, qx) = Zleogfz )
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This loss has several useful properties. One important prop-
erty is that it is convex in f;(x); even if the loss is not
convex in all network parameters, it is at least convex on
the last layer. The other three benefits are due to restricting
the form of the predicted distribution g to be a histogram
density. First, the divergence to the full distribution p can be
efficiently computed. This contrasts previous work, which
samples the KL for a subset of y values (Norouzi et al.,
2016; Szegedy et al., 2016). Second, the choice of p is
flexible, as long as its CDF can be evaluated for each bin.
The weighting p; = F'(I; + w;) — F(l;) can be computed
offline once for each sample, making it inexpensive to query
repeatedly for each sample during training. Third, different
distributional choices simply result in different weightings
in the cross-entropy. This simplicity facilitates interpreting
the impact of changing the distributional assumptions on Y.

2.3. Target distributions and related objectives

Below, we consider some special cases for p that are of
interest and highlight connections to previous work.

Truncated Gaussian on Y |x and HL-Gaussian. Con-
sider a truncated Gaussian distribution, on support [a, b], as
the target distribution. The mean p for this Gaussian is the
datapoint y; itself, with fixed variance 0. The pdf p is

1 (y—m)?
202

where Z = 1 (erf (l\’}T’;) —erf (%)), and the HL has

e () (1))

This distribution enables significant smoothing over Y,
through the variance parameter o2. We call this loss HL-
Gaussian, defined by number of bins k£ and variance a2
Based on positive empirical performance, it will be the main

HL loss that we advocate for and analyze.

Soft Targets and a Histogram Density on Y|x. In
classification, such as multinomial logistic regression, it is
typical to assume Y'|x is a categorical distribution, where
Y is discrete. The goal is still to estimate E[Y'|x] and when
training, hard 0-1 values for Y are used in the cross-entropy.
Soft labels, instead of 0-1 labels, can be used by adding label
noise (Norouzi et al., 2016; Szegedy et al., 2016; Pereyra
et al., 2017). This can be seen as an instance of HL, but
for discrete Y, where a categorical distribution is selected
for the target distribution. Minimizing the cross-entropy
to these soft-labels corresponds to trying to match such a
smoothed target distribution, rather than the original 0-1
categorical distribution.

Such soft targets have also been considered for ordinal re-
gression, again motivated as label smoothing, for age pre-
diction (Gao et al., 2017; Rothe et al., 2018). The outputs

are smoothed using radial basis function similarities to a
set of bin centers. This procedure can be seen as selecting
a histogram density for the target distribution, where the
coefficients for each bin are determined by these radial basis
function similarities. The resulting loss is similar to HL-
Gaussian, with slightly different p;, though introduced as
data augmentation to smooth (ordinal) targets.

Dirac delta on Y'|x. Finally, we consider the relationship
to maximum likelihood. For classification, Norouzi et al.
(2016) and Szegedy et al. (2016) used a combination of
maximum likelihood and a KL-divergence to a (uniform)
distribution. Szegedy et al. (2016) add uniform noise to the
labels and Norouzi et al. (2016) sample from an exponenti-
ated reward distribution, with a temperature parameter, for
structured prediction. Both consider only a finite set for Y,
because they both address classification problems.

The relationship between KL-Divergence and maximum
likelihood can be extended to continuous Y. The connection
is typically in terms of statistical consistency: the maximum
likelihood estimator approaches the minimum of the KL-
divergence to the true distribution, if the distributions are
of the same parametric form (Wasserman, 2004, Theorem
9.13). They can, however, be connected for finite samples
with different distributions. Consider Gaussians centered
around datapoints y;, with arbitrarily small variances %aQ:

1 o
Sa,j(y) = aQﬁeXp (_(y ag.a) ) .

Let the target distribution have p(y) = d,, ;(y) for each
sample. Define function p; ; : [0,00) — [0, 1] as p; ;(a) =
fll:’Jr“” ba,;(y)dy . For each y;, as a — 0, p; j(a) — 1if
yj € [li,l; + w;] and p; j(a) — 0 otherwise. So, for i; s.t.
Y; € [li;, li; +wi],

ii_)n%HL((sa,j, Gx;) = —log fi; (x;).

The sum over samples for the HL to the Dirac delta on Y’
then, corresponds to the negative log-likelihood for gy

X,

n n
argmin — Z log fi,(x;) = argmin — Z log gx; (/;)-
f17-~~:fk j=1 1:~-~7fk

Jj=1
Such a delta distribution on Y |x results in one coefficient
p; being 1, reflecting the distributional assumption that Y is

certainly in a bin. In the experiments, we compare to this
loss, which we call HL-OneBin.

Using a similar analysis to above, p(y) can be considered as
a mixture between d,_;(y) and a uniform distribution. For
a weighting of € on the uniform distribution, the resulting
loss HL-Uniform has p; = ¢ for i # i;, and p;; = 1 — ke.
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3. Optimization properties of the HL

There are at least two motivations for this loss, in terms of
promoting the search for effective solutions. The first is
the stability of gradients, promoting stable gradient descent.
The second is a connection to learning optimal policies in
reinforcement learning. Both provide some insight that the
properties of the HL, during optimization, promote better
generalization performance.

Stable gradients for HL.. Hardt et al. (2015) have shown
that the generalization performance for stochastic gradient
descent is bounded by the number of steps that stochastic
gradient descent takes during training, even for non-convex
losses. The bound is also dependent on the properties of
the loss. In particular, it is beneficial to have a loss function
with small Lipschitz constant L, which bounds the norm of
the gradient. Below, we discuss how the HL with a Gaussian
distribution (HL-Gaussian) in fact promotes an improved
bound on this norm, over both the ¢5 loss and the HL with
all weight in one bin (HL-OneBin).

In the proposition bounding the HL-Gaussian gradient, we
assume

ex x)Tw;

filx) = zlepc(ie(;; (x)T)wj) 3)
for some function ¢ : X — R¥ parameterized by a vector
of parameters 6. For example, ¢4(x) could be the last
hidden layer in a neural network, with parameters 6 for the
entire network up to that layer. The proposition provides a
bound on the gradient norm in terms of the current network
parameters. Our goal is to understand how the gradients
might vary locally for the parameters, as opposed to globally
bounding the norm and characterizing the Lipschitz constant
only in terms of the properties of the function class and loss.

Proposition 1 (Local Lipschitz constant for HL-Gaussian).
Assume X,y are fixed, giving fixed coefficients p; in HL-
Gaussian. Let f;(x) be as in (3), defined by the parameters
w = {w1,..., Wy} and 0, providing the predicted distribu-
tion qx. Assume for all i that w; ¢ (x) is locally I-Lipschitz
continuous w.r.t 0

[Vo(w] ¢g(x))| <1 4)

Then the norm of the gradient for HL-Gaussian, w.r.t. to all
the parameters in the network {0, w}, is bounded by

) Z pi— fi(x)|  ®)

IVo.wHL(p, gx)|| < (14 ¢g(x

Proof. First consider the gradient of the HL, with explicit
details on these computations in Appendix A

k
0y log 1500 = (5 — ()0 (x)
ey

The norm of the gradient of HL in Equation (2), w.r.t. w
which is composed of all the weights w; € R is

0 <& SR
Hﬁiwzpj logfj(X)H < Z: H(“)iwl ij Ingj(X)H
—le x)) ()|

< Z pi = fi(x)|l| e ()]
Similarly, the norm of the gradient w.r.t. 8 is
PR k
g2 108 156 = | S e £y Voo
j=1 i=1
<ZH X)) Vow o (x)|
< Z Ips — Fix)ll
i=1
Together, these bound the norm ||V wHL(p, ¢x)||- O

The results by Hardt et al. (2015) suggest it is beneficial for
the local Lipschitz constant—or the norm of the gradient—
to be small on each step. HL-Gaussian provides exactly
this property. Besides the network architecture—which we
are here assuming is chosen outside of our control—the
HL-Gaussian gradient norm is proportional to |p; — f;(x)].
This number is guaranteed to be less than 1, but generally
is likely to be even smaller, especially if f;(x) reasonably
accurately predicts p;. Further, the gradients should push
the weights to stay within a range specified by p;, rather than
preferring to push some to be very small—close to 0—and
others to be close to 1. For example, if f;(x) starts relatively
uniform, then the objective does not encourage predictions
fi(x) to get smaller than p;. If p; are non-negligible, this
keeps f;(x) away from zero and the loss in a smaller range.

This contrasts both the norm of the gradient for the
¢5 loss and HL-OneBin. For the ¢ loss, (f(x) —

y) [ve‘(’; (d")’ (x) ] is the gradient, giving gradient norm bound

I+l dg(x)I)If () — y|. The constant | f(x) — y], as op-
posed to 21:1 |pi — fi(x)|, can be much larger, even if y is
normalized between [0, 1], and can vary significantly more.
HL-OneBin, on the other hand, shares the same constant as
HL-Gaussian, but suffers from another problem. The Lips-
chitz constant £ in Equation (4) will likely be larger, because
p; is frequently zero and so pushes f;(x) towards zero. This
results in larger objective values and pushes w;, ¢ (x) to
get larger, to enable f;(x) to get close to 1.
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Connection to reinforcement learning. The HL can
also be motivated through a connection to maximum entropy
reinforcement learning. In reinforcement learning, an agent
iteratively selects actions and transitions between states, to
maximize (long-term) reward. The agent’s goal is to find
an optimal policy, in as few interactions as possible. To do
so, the agent begins by exploring more, to then enable more
efficient convergence to optimal. Supervised learning can
be expressed as a reinforcement learning problem (Norouzi
et al., 2016), where action selection conditioned on a state
corresponds to making a prediction conditioned on a feature
vector. An alternative view to minimizing prediction error
is to search for a policy to make accurate predictions.

One strategy to efficiently find an optimal policy is through
a maximum entropy objective. The policy balances between
selecting the action it believes to be optimal-—make its
current best prediction—and acting more randomly—with
high-entropy. For continuous action set )/, the goal is to
minimize the following objective

[, pe00 = hiw) - [ axrtmas]ax©

where 7 > 0; p, is a distribution over states x; gy is the
policy or distribution over actions for a given x; and r(y, y;)
is the reward function, such as the negative of the objective
r(y,yi) = —%(y—y;)?. Minimizing (6) corresponds to min-
imizing the KL-divergence across x between ¢x and the ex-
ponentiated payoff distribution p(y) = + exp(r(y, y;)/7)
where Z = [ exp(r(y,y;)/T), because

Dict(axllp) = —h(gx) — / 4x(y) log p(y)dy

~h(gx) — 7" /qx(y)?“(y,yz-)dy +log Z.

The connection between the HL and maximum-entropy re-
inforcement learning is that both are minimizing a diver-
gence to this exponentiated distribution p. The HL, how-
ever, is minimizing D (p||gx) instead of Dxr.(gx||p)-
For example, Gaussian target distribution with variance
o2 corresponds to minimizing D1, (p||gx) with r(y, y;) =
—1(y — y:)* and 7 = o2, These two KL-divergences are
not the same, but a similar argument to Norouzi et al. (2016)
could be extended for continuous y, showing Dxr.(gx||p)
is upper-bounded by D, (p||gx) plus variance terms. The
intuition, then, is that minimizing the HL is promoting an
efficient search for an optimal (prediction) policy.

4. Experiments

In this section, we investigate the utility of the HL-Gaussian
for regression, compared to using an /5 loss. We particularly
investigate why the modification to this distributional loss
improves performance, designing experiments to test if it is
due to (a) the utility of learning distributions or smoothed

targets, (b) a bias-variance trade-off from bin size or vari-
ance in the HL-Gaussian, (c) an improved representation,
(d) nonlinearity introduced by the HL and (e) improved
optimization properties of the loss.

Datasets and pre-processing. All features are trans-
formed to have zero mean and unit variance. We randomly
split the data into train and test sets in each run.

The CT Position dataset is from CT images of patients
(Graf et al., 2011), with 385 features and the target set to
the relative location of the image.

The Song Year dataset is a subset of The Million Song
Dataset (Bertin-Mahieux et al., 2011), with 90 audio fea-
tures for a song and target corresponding to the release year.
The Bike Sharing dataset (Fanaee-T & Gama, 2014), about
hourly bike rentals for two years, has 16 features and target
set to the number of rented bikes.

Root mean squared error (RMSE) and mean absolute error
(MAE) are reported over 5 runs, with standard errors. We
include both errors and objective values, on train and test, to
provide a more complete picture of the causes of differences
between the losses. For space, we only include in-depth
results on CT Position in the main body. We summarize the
overall conclusions on all three datasets below, and include
the tables for Song Year and Bike Sharing in Appendix C
and more dataset information in Appendix B.

Algorithms. We compared several regression strategies,
distribution learning approaches and several variants of HL.
All the approaches—except for Linear Regression—use the
same neural network, with differences only in the output
layer. The architecture for Song Year is 90-45-45-45-45-1
(4 hidden layers of size 45), for Bike Sharing is 16-64-64-
64-64 and for CT Position is 385-192-192-192-192-1. All
units employ ReL.U activation, except the last layer with
linear activations. Unless specified otherwise, all networks
using HL have 100 bins. Meta-parameters for comparison
algorithms are chosen according to best Test MAE. Network
architectures were chosen according to best Test MAE for
{5, with depth and width varied across 7 different values
with final choices being neither biggest nor smallest.

Linear Regression is included as a baseline, using ordinary
least squares with the inputs.

Squared-error /5 is the neural network trained using the
5 loss. The targets are normalized to range [0, 1], which
was needed to improve stability and accuracy.
Absolute-error /; is the neural network using the ¢; loss.
{o+Noise is the same as ¢, except Gaussian noise
is added to the targets as a form of augmentation.
The standard deviation of the noise is selected from
{107°,1074,1073,1072,1071}.

£2+Clipping is the same as /5, but with gradient norm
clipping during training. The threshold for clipping is
selected from {0.01,0.1, 1, 10}.
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Method Train objective

Train MAE

Train RMSE

Test objective

Test MAE

Test RMSE

Linear Reg. 6738.719 (+10.024) 607.277 (+0.706) 820.896 (+0.610) 6957.086 (+41.419) 616.992 (+2.461) 834.077 (+2.485)

15.624 (+3.353)
5.266 (£0.155)

20.774 (+4.713)
7.097 (+0.169)

0.001 (+0.000)
147.300 (+0.102)

19.110 (£3.034)
8.992 (40.235)

29.512 (£3.622)
19.980 (+2.169)

2 0.002 (£0.001)
HL-Gaussian 146.521 (+0.045)
2 0.152 (4+0.002)
f>+Noise 0.000 (+0.000)

£o+Clipping 0.000 (£0.000)

12.084 (+0.665)
11.398 (£1.108)
11.090 (+0.382)

16.369 (+0.651)
15.184 (+1.466)
14.331 (+0.450)

0.161 (+0.006)
0.001 (+0.001)
0.001 (+0.000)

16.180 (+0.606)
15.233 (£1.038)
14.795 (+0.362)

38.884 (+3.760)
31.077 (+7.616)
23.052 (+0.614)

HL-OneBin 7.387 (+0.185)
HL-Uniform 7.525 (+0.169)
MDN
fo+Softmax 0.000 (+0.000)

24.623 (40.055)
24.603 (+0.016)

—366.062 (+0.225) 14.398 (+1.604)

9.183 (£3.784)

33.732 (+3.072)
31.257 (+1.600)
22.977 (£3.759)
12.969 (+5.313)

59.141 (+1.653)
58.553 (£1.356)

28.001 (+0.322)
28.012 (+0.392)

—365.004 (+0.543) 17.950 (£1.514)

0.001 (+0.000)

12.720 (+3.609)

63.290 (+5.249)
71.088 (+7.304)
28.355 (£2.781)
22.383 (+4.525)

Table 1. Performance on CT Position dataset. All the numbers are multiplied by 102,

HL-OneBin is the HL, with Dirac delta target distribution.
HL-Uniform is the HL, with a target distribution that mixes
between a delta distribution and the uniform distribution,
with a weighting of € on the uniform and 1 — € on the delta,
where € € {107°,1074,1073,1072,1071}.
HL-Gaussian is the HL, with a truncated Gaussian
distribution as the target distribution. The variance o is set
to the radius of the bins.

MDN is a Mixture Density Network (Bishop, 1994) that
models the target distribution as a mixture of Gaussian
distributions. The original model uses an exponential acti-
vation to model the standard deviations. However, inspired
by (Lakshminarayanan et al., 2017), we used softplus
activation plus a small constant (10~2) to avoid numerical
instability. We selected the number of components from
{2,4,8,16,32}. Predictions are made by taking the mean
of the mixture model given by the MDN.

l2+Softmax wuse a softmax-layer with /5 loss,
Zle (fi(xj)e; — y;)* for bin centers ¢;, with other-
wise the same settings as HL-Gaussian.

We used Scikit-learn (Pedregosa et al., 2011) for the imple-
mentations of Linear Regression, and Keras (Chollet et al.,
2015) for the neural network models. All neural network
models are trained with mini-batch size 256 using the Adam
optimizer (Kingma & Ba, 2014) with a learning rate le-3
and the parameters are initialized according to the method
suggested by LeCun et al. (1998). Dropout (Srivastava et al.,
2014) with rate 0.05 is added to the input layer of all neural
networks to avoid overfitting. We trained the networks for
1000 epochs on CT Position, 150 epochs on Song Year and
500 epochs on Bike Sharing.

Overall performance and conclusions (Tables 1, 4, 6).
We first report the relative performance of all these models,
on the CT Position dataset (Table 1) and, in Appendix C,
the Song Year dataset (Table 4) and Bike Sharing dataset
(Table 6). The overall conclusions are that the HL-Gaussian
never harms performance—slightly improving performance
on the Song Year dataset—and otherwise can significantly
improve performance over alternatives—on both the CT
Position and Bike Sharing datasets. We only report the

full set of algorithms for CT Position, and more in-depth
experiments understanding the result on that domain.

Learning other distributions is not effective (Table 1).

HL-Gaussian improves performance, but the other
distribution-learning approaches appear to have little advan-
tages, as shown in Table 1. HL-OneBin and HL-Uniform
can actually do worse than Regression. MDN provides
only minor gains over Regression. Interestingly, it has been
shown MDN suffers from numerical instabilities, making
training difficult (Oord et al., 2016; Rupprecht et al., 2016).

A related idea to learning the distribution explicitly is to use
data augmentation, through label smoothing. We therefore
also compared to directly modifying the labels and gradients,
with £5-Noise and ¢>-Clipping. These models do perform
slightly better than Regression for some settings, but do not
achieve the same gains as HL-Gaussian.

The bias-variance trade-off in the loss definition is not
significantly impacting performance (Figure 1).

If one fixes the possible range of the output variable, the dis-
tribution becomes more and more expressive as the number
of bins increases. The model could have a higher chance
of overfitting in this situation. Reducing the number of
bins, on the other hand, introduces discretization error and
increases the bias. Further, the entropy parameter o2 intro-
duces a bias-variance trade-off, making the target distribu-
tion more uniform as entropy increases—likely resulting in
lower variance—but also washing out the signal—incurring
high bias. The selection of these parameters, therefore, may
provide a opportunity to influence this bias-variance trade-
off, and improve performance by essentially optimizing the
loss for a problem. The ability for the user to select these
parameters could explain some of the performance gains
in recent results (Gao et al., 2017; Bellemare et al., 2017),
compared to standard losses that cannot be tuned.

We tested the impact of varying the number of bins, and
the entropy o2 for HL-Gaussian. We found that these pa-
rameters, especially the entropy, can have an impact on
performance, but that the results were much more robust to
changing these parameters than might be expected (reported
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Figure 1. Investigating the bias-variance trade-offs for HL-Gaussian, on the CT Position dataset. Both training and testing performance are
reported, with Regression included as a baseline, which does not vary with bins or o. For a wide range of both bins and o, HL-Gaussian
improves performance over Regression, emphasizing that this performance improvement is not due to carefully setting these additional
parameters in the loss. For MAE, for both bins and o, the training and testing error have similar shapes, suggesting that there is no
significant effect of overfitting. An interesting point is that according to the RMSE, however, there does appear to be some overfitting.
Overfitting is typically stated agnostic to the loss, but here MAE and RMSE show different trends. We hypothesize that this result occurs
because RMSE is magnifying errors that are slightly larger, even though in terms of absolute error, the performance only slightly degrades.

in more depth in Figure 1). It does not seem to be the case,
therefore, that the tuning of these hyperparameters is the
primary explanation for the improved performance.

The learned representation is not better (Table 2).
Learning a distribution, as opposed to a single statistic,
provides a more difficult target—one that could require
a better representation. The hypothesis is that amongst
the functions f in your function class F, there is a set of
functions that can predict the targets almost equally well.
To distinguish amongst these functions, a wider range of
tasks can make it more likely to select the true function, or
at least one that generalizes better.

We conducted three experiments to test the hypothesis than
an improved representation is learned. We first trained with
HL-Gaussian and /5, to obtain their representations. We
tested (a) swapping the representations and re-learning only
the last layer, (b) initializing with the other’s representa-
tion, (c) and using the same fixed random representation for
both. For (a) and (c), the optimizations for both are convex,
since the representation is fixed. The results in Table 2,
are surprisingly conclusive: using the representation from
HL-Gaussian does not improve performance of £, and even
under a random representation, HL-Gaussian performs sig-
nificantly better than ¢5. This suggests that HL-Gaussian is
not causing a more useful or more general representation to
be learned, as otherwise /5 should be able to take advantage
of that representation.

The softmax nonlinearity is not the main cause (Table
1). The HL-Gaussian can be seen as a generalized linear
model, where a small amount of non-linearity is introduced
from the transfer. The level of nonlinearity is similar to
that in the cross-entropy loss, and the effect should be small
because each transformed output w;" ¢(x) has to predict a
probability value. This contrasts with an alternative way to

use a softmax layer—which we call ¢5+Softmax—which
gets to tune the softmax layer to directly predict y given x.
Such a layer has additional parameters to predict one target
(100 additional parameters, for 100 bins). This contrast the
HL-Gaussian, which has also 100 bins but has to predict
100 targets instead of just one target.!

Despite the differences between the role of the softmax in
HL-Gaussian and /o+Softmax, we provide this comparison
to provide some insight into potential nonlinearities intro-
duced by the loss. The result in Table 1 shows that this
softmax layer can improve performance (to 12.720), but
not as significant as HL-Gaussian (8.992). This is particu-
larly intriguing, because as mentioned above, ¢5+Softmax
can much more flexibly tune the nonlinear softmax layer.
The ability to outperform ¢s+softmax-layer emphasizes that
there are properties of the HL causing improvements beyond
the use of the softmax.

HL-Gaussian trains fast (Figure 4).

We trained /5, HL-OneBin, and HL-Gaussian on the CT
Position dataset with no dropout to find the role of the loss
function on the rate of convergence. We also computed
the norm the gradient w.r.t. the parameters of the last layer
after each epoch, and normalized the gradient norms of
each model by their median to compare their variability. As
shown in Figure 4, HL-Gaussian has significantly better
behaved gradients, than ¢». Correspondingly, it converges
significantly faster and more smoothly. The other two meth-
ods that more carefully controlled gradients—/5-Noise and
£5-Clip—provided the next best gains to HL-Gaussian.

"t is possible that having 100 extra parameters in the last layer
makes it possible to benefit from randomness, over the /2. We ran
experiments enabling the /5 to have 100 outputs, each predicting
the target but with different initial weights. Even selecting the
best of the 100 outputs on the test data only slightly improved
performance, with a test MAE of 18.421.
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Default Fixed Initialized
Regression  15.624 (+3.353) 288.667 (+13.344) 24.814 (£5.917)
HL-Gaussian 5.266 (+0.155) 16.890 (+2.026) 5.971 (+0.103)
Regression  20.774 (+4.713) 399.664 (+£17.364) 34.185 (+8.868)
HL-Gaussian 7.097 (+0.169) 24.744 (+2.470) 7.834 (+0.130)

Random

923.335 (£15.665)
247.851 (+9.686)
1224.689 (+17.199)
555.212 (£22.567)

Loss

Train MAE

Train RMSE

Test MAE Regression  19.110 (£3.034) 291.980 (+13.587) 28.310 (+6.018) 930.481 (£19.094)
HL-Gaussian 8.992 (+0.235) 20.296 (+1.832) 10.089 (+0.087) 260.863 (+10.751)
Test RMSE Regression  29.512 (+3.622) 403.070 (£17.237) 44.418 (+12.183) 1231.502 (+21.574)

HL-Gaussian 19.980 (+2.169) 31.288 (+2.145)  23.161 (+3.682) 589.087 (+22.525)

Table 2. Representation experiment results on CT Position dataset. All the numbers are multiplied by 10%. We tested (a) swapping the
representations and re-learning on the last layer (Fixed), (b) initializing with the other’s representation (Initialized), (c) and using the
same fixed random representation for both (Random) and only learning the last layer. We highlight the Test MAE, though the other rows
have similar trends. Using the HL-Gaussian representation for Regression (first column, Fixed) causes a sudden spike in error, even though
the last layer in Regression is re-trained. This suggests the representation is tuned to HL-Gaussian. The representation does not even seem
to give a boost in performance, as an initialization (second column, Initialization). Finally, even with the same random representation,
where HL-Gaussian cannot be said to improve the representation, HL-Gaussian still obtains significantly better performance, solely from

optimizing the last layer with a different loss than Regression.
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Figure 2. The norm of the gradient and error values for the training on the CT Position dataset, for three training objectives. The behaviour
for the testing error is similar to the training error, and so is included in Appendix C.1. The gradient norms are normalized by the median
value, where the median norms are 0.0014 for Regression, 0.0640 for HL-OneBin, and 0.0305 for HL-Gaussian. The median norm for
HL-OneBin is an order of magnitude larger than HL-Gaussian, so though it is not variable, it is consistently larger. Because targets are
normalized, the median norm for /5 is actually lower, but it has significantly more variability.

5. Conclusion The introduction of the HL provides several avenues to im-
prove our choice of loss function. One direction is to more
explicitly take advantage of the specification of the target
distribution. In this work, we considered this loss only for
a fixed set of bins, widths and variance parameter o for the
target distribution. To be more agnostic to these choices,
we demonstrated performance across possible parameter
settings. However, these parameters could be determined
using meta-parameter optimization strategies, such as cross
validation, or even learning strategies with particular objec-
tives for these parameters. The key property to make the
HL easy to specify and optimize was the use of a histogram
to predict the target; the derivation does not prevent also
optimizing the bins centers, widths and variances.

We introduced a novel loss for regression, called the His-
togram Loss (HL), that explicitly constructs a distribution
over targets to predict, rather than directly estimating the
mean of the target conditioned on inputs. The loss involves
minimizing the KL-divergence between a predicted distribu-
tion and this target distribution. To make this loss efficient
to compute, without significantly reducing modeling power,
we restrict the class of approximation densities to histogram
densities. We highlight that for a particular setting of the
HL—with a target Gaussian distribution—the norm of the
gradient does not grow large or vary widely. Combined with
recent results that show reducing training steps for stochas-
tic gradient results in improved generalization provide some

theoretical justification for why we observe such strong per-
formance of HL-Gaussian in practice. We conduct a series
of experiments to identify this gain, with evidence that the
main role is not due to overfitting or an improved representa-
tion, but rather due to the fact that the HL can be optimized
in a smaller number of steps, with smoother gradients.

Overall, this work provides some unification of recent re-
sults using soft targets, through the introduction of the HL.
We hope for it to facilitate discussion and development on
the design of losses that promote learning, and direct fur-
ther investigation into the importance of the optimization
properties of these losses.
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A. Explicit gradient computations

Let b; = ¢g(x) w; and e; = exp(b;).
fi(x) = sty for j #

Then, since

0 0 e; e;
afi®) = - =~ —gei
8bi abl Zle el (Zf:1 el)Q

= —f;(x) fi(x)
For 7 = 7, we get
0 e; e;
7fj(x) = ‘ - : 564
ob; Zle e (2221 el)

= fix)[1 = fi(x)]

Consider now the gradient of the HL, w.r.t b;

0 & Lo
%, ;pj log f;(x) = ;pjmfxx)uizj — fi(x))

k
= pi(liz; — filx))
j=1

k

=pi— [:(x))_pi

i=1
=pi — fi(x)
Then

0

awi

k
Zpi log fi(x) = (pi — fi(x)) Pg(x)

K
% > pilog fi(x) =Y (pi — fi(x) VW, ¢p(x)

j=1 i=1

where J g (x) is the Jacobian of ¢y.

] Dataset #train  #test # feats Y range ‘
Song Year 463715 51630 90 [1922,2011]
CT Position 42800 10700 385 [0,100]
Bike Sharing 13911 3478 16 [0,1000]

Table 3. Overview of the datasets used in the experiments.

B. Dataset details.

We include an overview of the datasets in Table 3. We
additionally show a histogram of their targets, in Figure 3.

C. Additional experiments

We provide overall performance results for the two other
datasets. We include the learning curves on test data for CT
Position, corresponding to Figure 4 in the main text.
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Figure 3. Histogram of the target values for the three datasets.

C.1. Test Learning Curves for CT Position dataset

We include additional graphs for the variability in the
RMSE and MAE, for the three objectives HL-Gaussian,
HL-OneBin and /5, for test data in Figure 4.

C.2. Experiments on Song Year dataset

For the Song Year dataset, we include results both for ran-
dom train-test splits and report results for the fixed train/test
split recommended by the authors of the dataset to avoid the
effect of an artist having songs in both the train and test sets.

For this dataset, both HL-Gaussian and HL-OneBin outper-
form /5 only slightly, and perform similarly to each other.
The ¢5 loss with a nonlinear softmax layer also performs
about the same, suggesting the main (small) gain for this
dataset is from this nonlinearity. This further suggests that
the /5 is likely a suitable loss for this problem, and there
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Method Train objective  Train MAE

Train RMSE

Test objective Test MAE Test RMSE

Linear Reg. 9114.456 (£6.524) 679.285 (£0.264) 954.696 (40.342) 9129.131 (+26.215) 679.646 (+0.741) 955.461 (+1.370)

Uy 0.900 (+0.001)

575.997 (+2.171) 813.868 (+0.825) 0.955 (+£0.004)
HL-Gaussian 320.475 (+0.039) 580.305 (+0.723) 846.072 (+0.282) 320.260 (£0.052)

602.393 (£2.026) 869.569 (+1.923)
591.304 (+1.413) 862.656 (+1.683)

HL-OneBin 304.411 (+0.063) 581.230 (+0.967) 848.745 (+0.284) 304.827 (+0.091)
569.797 (£3.613)809.113 (+1.679) 0.962 (+£0.003)

lo+Softmax 0.895 (+0.003)

590.823 (+1.589) 863.475 (+1.621)
600.607 (£3.064) 872.765 (+1.477)

Table 4. Performance on the Song Year dataset. All the numbers are multiplied by 107,

Method Train objective  Train MAE Train RMSE Test objective Test MAE Test RMSE
Linear Reg. 9125.643 679.557 955.282 9044.316 680.050 951.016
Uy 0.904 574.110 817.002 0.997 610.344 888.808
HL-Gaussian 320.334 576.914 844.565 322.028 598.490 875.857
HL-OneBin 304.389 581.066 848.344 307.988 601.927 879.877
Table 5. Performance on the Song Year dataset with the authors’ suggested train and test splits. All the numbers are multiplied by 102
Method Train objective Train MAE Train RMSE Test objective Test MAE Test RMSE
2 0.04 (£0.00)  1343.51 (+41.46) 1865.55 (+60.99) 0.22 (+0.00) 2899.84 (+£52.44)4601.21 (+80.54)

HL-Gaussian212.43 (+1.12) 1667.68 (+30.12) 2645.08 (+41.10) 254.60 (£1.01) 2495.21 (+13.28)4182.06 (+57.35)

HL-OneBin 169.62 (+3.53) 1768.68 (+£39.17) 2871.14 (+56.85) 287.13 (£5.80) 2607.38 (£15.94) 4373.20 (+53.96)

fo+Softmax 0.07 (+0.01)

1750.31 (+127.58) 2463.93 (+150.76) 0.22 (£0.00)

2886.93 (+70.80) 4544.68 (+41.25)

Table 6. Performance on the Bike Sharing dataset. All the numbers are multiplied by 102.
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Figure 4. The error values for the testing data on the CT Position
dataset, for three training objectives.

is little to gain for switching to the HL. There is a slightly
larger gain for HL-Gaussian in Table 5 for the training/test
split suggested by the authors of this data, but still not nearly
as large as CT Position or Bike Sharing.

C.3. Experiments on Bike Sharing dataset

We provide a comparison of performance on the Bike Shar-
ing dataset in Table 6. We used early stopping to avoid
overfitting, because on this dataset, dropout was ineffective.

The network for Bike Sharing uses four hidden layers of
width 64, but we additionally tested a network architecture
with four hidden layers of width 512. For this wider net-
work, /5 was able to get better final TEST MAE and Test
RMSE performance of 2402.67 and 4014.31 respectively.
However, performance was quite a bit more variable during
learning—Ilikely due to the overparameterization. Future
work is to better understand the effect of different network
architectures on the performance of the different losses.



