
Deep Density Destructors

A. Tree Destructor Details
We give more details on how to compute the tree destructor
transformation based on a density tree. Note that the tree
destructor transformation is simply a piecewise indepen-
dent linear transformation that depends on the leaf node of
the sample.

A.1. Base case: One dimension and one split

The base case of density tree transformation is only acting
on one dimension while leaving all the others fixed. Thus,
we can simply consider a tree in one dimension with only
one split. We denote [a, b] to be the domain of a node,
t ∈ [a, b] is the splitting threshold, and p ∈ [0, 1] is the
relative probability of the left child (the relative probability
of the right child is just (1− p)). Thus, the parameters of a
node are simply (a, b, t, p).

The transformation for the left T`(·) and right Tr(·) of the
split is as follows:

tout ≡ (b− a)p+ a (9)

T`(x) =
tout − a
t− a

(x− a) + a (10)

Tr(x) =
b− tout

b− t
(x− t) + tout , (11)

where tout can be viewed as the “output threshold” (i.e.
where the threshold in the output domain for this node
should be to yield a uniform density). This yields the fol-
lowing scales α and shifts β:

α` =
tout − a
t− a

(12)

β` = a− aα` (13)

αr =
b− tout

b− t
(14)

βr = tout − tαr . (15)

A.2. Inductive Case

The full recursive details for a deeper tree is straightfor-
ward. We merely accumulate the linear transformation as
we traverse the tree but only apply the transformation at
the leaves. Composing any two linear operations can be
simplified to a single linear operation:

T1(T2(x)) = α2(α1x+ β1) + β2 (16)

T̃12(x) = α2α1x+ α2β1 + β2 (17)

= α̃x+ β̃ (18)

Thus accumulating transformations when traversing the
tree only requires computing shift and scale values (as
needed) for each node based on previous nodes and the cur-
rent node.

B. Enlarged Figures
See next pages for enlarged figures.
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Figure 5. The transformed samples (top) and implicit density (bottom) at different layers of the DensityTree (100) model described in
Sec. 4. While the initial layers do not provide a good estimate of the underlying density, after many layers, the underlying density begins
to model the true underlying patterns.

Figure 6. Deep models clearly outperform baseline models, and random trees seem to perform the best in terms of test likelihood. As
expected, the selected number of layers increases as the amount of regularization on each layer increases.
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Figure 7. Each deep model transforms the data differently with DensityTree seeming to be the most regular. Notice that while the train
data may be evenly spaced on the unit square, this does not mean the test data is also uniform. This is why highly regularized destructors
are required to build usable deep models via a greedy algorithm.


