Deep Density Destructors

David I. Inouye

Abstract

We propose a unified framework for deep density
models by formally defining density destructors.
A density destructor is an invertible function
that transforms a given density to the uniform
density—essentially destroying any structure in
the original density. This destructive transfor-
mation generalizes Gaussianization via ICA and
more recent autoregressive models such as MAF
and Real NVP. Informally, this transformation
can be seen as a generalized whitening procedure
or a multivariate generalization of the univariate
CDF function. Unlike Gaussianization, our de-
structive transformation has the elegant property
that the density function is equal to the absolute
value of the Jacobian determinant. Thus, each
layer of a deep density can be seen as a shallow
density—uncovering a fundamental connection
between shallow and deep densities. In addition,
our framework provides a common interface for
all previous methods enabling them to be sys-
tematically combined, evaluated and improved.
Leveraging the connection to shallow densities,
we also propose a novel tree destructor based
on tree densities and an image-specific destructor
based on pixel locality. We illustrate our frame-
work on a 2D dataset, MNIST, and CIFAR-10.
Code is available on first author’s website.

1. Introduction

Creating a complex model can be viewed from two per-
spectives: one constructive and one destructive. As an il-
lustration, suppose someone is trying to build a replica of a
Lego model with a set of the same pieces. From a construc-
tive perspective, the person could build an entire replica,
compare it to the original model, rebuild the replica based
on the comparison, and repeat until the replica is similar

"Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania, USA. Correspondence to: David I. In-
ouye <dinouye@cs.cmu.edu>.

Proceedings of the 35" International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

Pradeep Ravikumar

1

to the original model. From a destructive perspective, the
person could remove one piece at a time from the origi-
nal model and record where each piece was removed; then,
the person could easily construct a replica by reversing the
recorded destructive process.

Analogous to building a replica given an original model,
estimating a complex distribution via deep networks given
samples from the true distribution can be viewed from the
constructive or destructive perspective. Deep generative
models such as VAEs (Kingma & Welling, 2014; Rezende
et al., 2014), GANs (Goodfellow et al., 2014) and variants
estimate a constructive transformation from samples of a
simple base distribution to samples from a complex distri-
bution (e.g. distribution of real images).! Formally, this
amounts to the following approximation:

z ~ BaseDistribution

(D

Z = G4(z) ~ GenerativeDistribution ,

where z is a latent variable, ¢ are the parameters of the gen-
erative network, and Z approximates x, the true observed
variable. As a mirror of the constructive process, we pro-
pose estimating an invertible destructive transformation, or
destructive flow, from the input distribution to the base dis-
tribution:

x ~ DataDistribution )
z = Dy(x) ~ ApproximateBaseDistribution ,

where x is from the true data distribution and Z is an ap-
proximation to the base distribution of z. The destructive
transformation Dy is similar to the inference network in
VAEs (Kingma & Welling, 2014; Rezende et al., 2014)
but while VAEs only use an (non-invertible) inference net-
work for learning the generative model G, the destructive
perspective implicitly estimates a generative transformation
via the inverse of Dy, namely Gy = De_l in Eq. 1. Thus,
learning simplifies to only estimating a single deep network
Dy rather than two. Note that if the destructive model is
flexible enough so that Z = z, then £ = x because the
network is invertible. The beauty of density estimation via
invertible transformations is that not only can the model be
sampled from, but the likelihood values can be computed

!"The transformation can be stochastic as in VAEs or determin-
istic as in GANs.



Deep Density Destructors

exactly unlike in VAEs or GANS; the likelihood of invert-
ible models can be computed based simply on the following
change of variables formula:

Pz(x) = P.(Dy(x)) |det Jp,| , 3)

where Jp, is the Jacobian of Dy

Estimating deep invertible transformations is not a new
idea as evidenced by the Gaussianization line of work
(Chen & Gopinath, 2000; Lin et al., 2000; Lyu & Simon-
celli, 2009; Laparra et al., 2011; Ballé et al., 2016); the core
idea can even be traced back to the seminal exploratory
projection pursuit paper (Friedman, 1987). In these pa-
pers, some form of multivariate transformation was used to
make the resulting distribution more and more Gaussian.
Then, by sampling from a Gaussian and computing the in-
verse transformation, a sample from the original density
could be obtained. Tabak & Vanden-Eijnden (2010); Tabak
& Turner (2013) propose several specific types of invertible
transformations to slowly move the density towards Gaus-
sianity including linear and radial flows. Tabak & Vanden-
Eijnden (2010); Tabak & Turner (2013) directly optimize
the parameters of the transformations but do not propose an
underlying connection to shallow densities as we propose
in this paper. More recently, there has been a line of work
that carefully constructs a neural network model to param-
eterize a valid autoregressive distribution (Germain et al.,
2015; Dinh et al., 2015; Graves, 2016; Dinh et al., 2017;
Papamakarios et al., 2017). These models compute a linear
transformation of the inputs but the shift and scale parame-
ters are functions of deep neural networks; thus, these more
recent models can be seen as a hybrid between neural net-
works and linear transformations. Graves (2016) considers
the case where the conditionals are mixtures of Gaussians
instead of Gaussian as in VAE and proposes a backpropaga-
tion algorithm for this case. Papamakarios et al. (2017) pro-
pose compositions of these autoregressive models to form
deep autoregressive models. One drawback of these recent
models is that they are restricted to a particular type of in-
vertible transformation and engineering or combining new
types of transformations is not obvious.

We generalize the ideas behind the previous work on invert-
ible transformations and make a fundamental connection
to shallow density models. Our framework can leverage
the power of both deep and shallow density estimators to
form a deep density model. This makes the framework very
modular and any advancement in one component, such as a
better shallow density estimator, could improve the model

2This exact likelihood computation assumes that determinant
of the Jacobian of the transformation can be efficiently computed.

3While the goal in (Friedman, 1987) was only to find a few
interesting directions, the core algorithm of structure removal by
univariate Gaussianization was already suggested by (Friedman,
1987).

as a whole. We will define the few key properties of invert-
ible density destructors and show that the absolute value
of the Jacobian determinant is exactly the likelihood. Our
destructor definition provides a common interface for all
previous methods (with trivial modifications as discussed
in future sections) enabling them to be systematically com-
bined, evaluated and improved. In addition, our destructive
framework can directly incorporate any invertible prepro-
cessing of the input data into the deep model itself rather
than requiring independent preprocessing steps such as a
logit transformation (Papamakarios et al., 2017) or feature
normalization. Given these new definitions, we introduce
a novel invertible transformation for tree densities (Ram &
Gray, 2011). In addition, we propose an image-specific
destructive transformation based on pixel locality to show-
case the flexibility of our framework. Merely using shallow
density estimates, we train deep density models in a greedy
fashion similar to previous work on Gaussianization (e.g.
(Tabak & Turner, 2013; Chen & Gopinath, 2000; Laparra
et al., 2011)). We believe this abstract framework lays the
groundwork for developing modular invertible transforma-
tions that can be composed, evaluated, and improved sepa-
rately or together.

We summarize our key contributions as follows:

1. Deep density destructor framework - We define the re-
quired key properties of a transformation class corre-
sponding to a class of densities. With this definition,
we give an elegant group-theoretic characterization of
deep networks in terms of destructors. We show that
many previous density models fall under this frame-
work. We propose a greedy and non-parametric layer-
wise training algorithm for deep density destructors
by leveraging shallow learning algorithms.

2. Novel destructors enabled by framework - Given the
insights from our framework, we propose a novel tree
density destructor based on shallow density estimation
trees (DET) (Ram & Gray, 2011), which are density
versions of decision trees. In addition, we build reg-
ularized linear and Gaussian mixture destructors that
implement our destructor interface similar to the pre-
vious Gaussianization work and Gaussian mixture dis-
tributions (Graves, 2016).* In our 2D experiments,
we show that regularization of each shallow destruc-
tor is critical for good performance on test data. To
show that our framework can incorporate prior knowl-
edge, we give an example of an image-specific den-
sity destructor based on pixel locality that leverages
the smoothness property of images. We implement
a greedy and non-parametric layer-wise training algo-

*Note that (Graves, 2016) focused on computing backpropa-
gation gradients for mixture weights rather than leveraging a shal-
low Gaussian mixture estimator directly as we consider in this

paper.



Deep Density Destructors

rithm similar to previous Gaussianization work to con-
struct deep density destructors leveraging only shal-
low learning algorithms from the Python sci-kit
learn library (Pedregosa et al., 2011) and mlpack
(Curtin et al., 2013).

Notation Let d be the number of features, n be the num-
ber of samples, and k£ be the number of deep layers. Let
F and F~! denote the CDF and inverse CDF of a uni-
variate distribution, where ® and ! are the CDF and in-
verse CDF of the standard univariate normal. Let boldface
CDF functions, e.g. F', denote independent application of
d CDFs: Fy(x) = [Fy, (z1), Fo,(x2), -+ , Fp,(x4)], note
that each dimension can have a different Fy_; let &(x) =
[@(z1), ®(x2), -, P(zq)] and similarly for @~ (z). We
denote subvectors using subscripts with MATLAB-like in-
dex ranges; for example, 1.3 € R? designates the subvec-
tor of the first 3 dimensions of .

2. Deep Density Destructors

To develop our unified framework, we seek a method
for composing transformations® corresponding to estimated
densities, which could include both classical shallow densi-
ties and more recent deep densities. In order to accomplish
this composition, we propose the following definition for a
density destructor class based on a class of densities.

Definition 1 (Density Destructor Class). A transformation
class {Dg: 0 € ©} is said to destroy a class of densities
{Py: ¢ € U} if the following properties hold:

1. Uniformability

Vi, ifz ~ Py,

. d “)
then 30 s.t. Dy(x) ~ Uniform([0, 1])

2. Invertibility
VDy,3D, " s.t. Dy (Dy(x)) = 5)

Remark 1 on Uniformability Eq. 4 One elegant key
property of our destructor definition is that the absolute
value of the Jacobian determinant is exactly the likelihood
of the corresponding density. This can be easily seen if we
let z ~ Uniform in Eq. 3:

Pz(x) = P,(Dg(x)) |det Jp,| = |det Jp,| .  (6)

Thus, if a fast method for computing the likelihood exists,
the Jacobian matrix can be easily computed—this general-
izes the idea from Real NVP (Dinh et al., 2017) and MAF

SNote that combining functions via composition, e.g.
fe(fe—1(-+- fi(=))) is fundamentally different than combin-
ing functions via summation or product, e.g. Z?:l fi(x) or

H?:l fi(z).

(Papamakarios et al., 2017) where the Jacobian is assumed
to be triangular.

Remark 2 on Uniformability Eq. 4 This novel uni-
formability property characterizes destructors in an intu-
itive but general way. Importantly, this novel property es-
sentially transforms a structured density P, to the least
structured density, namely an independent uniform distri-
bution over the hypercube. This builds on the intuition
of the univariate CDF, which is a destructive transforma-
tion class for any univariate distribution that transforms any
variable into a univariate uniform variable. Thus, this re-
quirement can be seen as a generalization of the univariate
CDF transformation to a multivariate CDF transformation.
Importantly, however, it should be noted that this multi-
variate CDF transformation (where Dy: R? — [0,1]%) is
quite different than the multivariate CDF function (where
F:R% — [0,1]) because it can be inverted unlike the
multivariate CDF function. While traditional whitening re-
moves any structure related to the first and second moments
via PCA, a destructive transformation can be seen a gener-
alized whitening transformation that removes all structure
from the density.

Remark on Invertibility Eq. 5 Invertibility is required
from a destructive perspective so that we can evaluate the
generative trasnformation G4(2) = D, '(z) and sample
from the estimated distribution via the constructive per-
spective as in Eq. 1. This invertibility requirement is
also the fundamental property of network flows (Tabak &
Vanden-Eijnden, 2010; Tabak & Turner, 2013; Papamakar-
ios et al., 2017).

Definition 2 (Canonical Density Destructor Class). A
canonical density destructor class is said to destroy a den-
sity class if it has the properties in Def. 1 but also has the
following properties:

1. Canonical domain
V0, Dy: [0,1]% — [0,1]¢ (7)
2. Identity element

30 s.t. Dy(x) = ¥

By adding the domain constraint in Eq. 7, we can trivially
compose these destructive transformations because the out-
put range of one layer is exactly the input domain of the
next layer. The identity requirement in Eq. 8 seems like a
modest requirement which merely means that the destruc-
tor can model the uniform distribution and is critical to our
group-theoretic characterization of deep destructor models
given later. In addition, we note that the inverse of a canon-
ical destructor is also a canonical destructor for some (pos-
sibly implicit) density—showing the elegant symmetry of
the canonical destructor.



Deep Density Destructors

Remark on Unrestricted Nature of Canonical Class
Note that most destructive transformation classes can be
nearly trivially mapped to a canonical transformation class
by applying an inverse univariate CDF on each dimen-
sion, where the CDF’s domain matches the original vari-
able’s support. For example, given a destructive transfor-
mation Dy: R — [0,1]%, we can construct Dy(u) =
Dg(®1(u)): [0,1]¢ — [0,1]?. If the original input do-
main is R?, we could simply perform the trivial preprocess-
ing step of u = ®(x). By combining this preprocessing
step and modified estimator Dy, we arrive at the original
destructor: Dg(u) = Dg(® ' (u)) = Do(®(®(x))) =
Dy(x). Thus, the canonical property does not impose
any significant restrictions on the transformation class but
makes the transformation class amenable to transformation
composition. By restricting the domain to be the unit hy-
percube, we make all destructors directly interchangeable
with each other—thus providing a common interface for all
destructors. This canonical density destructor class leads
us to the following group-theoretic characterization of de-
structive deep learning models.

Definition 3 (Deep Density Destructor Group). Given a
canonical destructive transformation class {Dy: 0 € O}
defined in Def. 2, we define the deep density destruc-
tor group as the group generated by ({Dy: 6 € O} U
{Dy': 0 € ©}) where the group operation is function
composition.

The above definition provides an elegant characterization
of all possible deep density models of any depth given a
destructive transformation class—which can either be de-
fined by the transformation class itself or derived based on
a given density class.

3. Density Destructor Examples

We show that many previous density models fall under our
more general framework and give some new examples of
density destructors that are enabled by this new perspec-
tive. A summary of example density destructors and their
corresponding density models can be seen in Table 1.

We first describe the more recent autoregressive models
such as MADE (Germain et al., 2015), NICE (Dinh et al.,
2015), Real NVP (Dinh et al., 2017) and MAF (Papa-
makarios et al., 2017) in terms of our density destructor
framework. Under our framework, these models assume
that the density is given by the chain rule of probability,
namely: H'j:l Ps(2zs | ®1.5-1), where @151 is subvector
of all variables up to s — 1. They parameterize these uni-
variate conditional distributions as a Gaussian or a mixture
of Gaussians where the mean, variance and weight param-
eters are the outputs of neural networks.

Another major class of density destructors, such as Gaus-

sianization (Chen & Gopinath, 2000; Lin et al., 2000; Lyu
& Simoncelli, 2009; Laparra et al., 2011; Ballé et al.,
2016), is based on linear projections followed by an inde-
pendent density estimate such as an independent mixture
of Gaussians (Chen & Gopinath, 2000) or univariate his-
tograms (Laparra et al., 2011). One key component of these
approaches is to find the linear projection that is most in-
dependent, namely using a method related to independent
components analysis (ICA). Laparra et al. (2011) suggest
that possibly even random rotations can be enough in the
low dimensional setting though this is unlikely to work in
higher dimensions because of the curse of dimensionality.

Another classical model that falls under this framework is
copula models (Jaworski et al., 2010). In particular, the
Gaussian copula model can be seen as applying a series of
independent transforms and a linear rotation based on cor-
relation matrix estimation: ®(R~2®~(F(x))) , where R
is the correlation matrix in the transformed space. Note
that this could be computed using high-dimensional statis-
tical methods such as the Non-paranormal SKEPTIC (Liu
etal., 2012), which may reduce the required sampling com-
plexity. In many ways, our destructor framework is almost
like a deep copula model because each density estimate lies
on the uniform cube; however, we do not require that the
marginal densities be uniform as is the case for copulas.

3.1. Gaussian Mixture Model Destructor

Because Gaussian mixture models are often used for shal-
low density estimators, we developed a density destructor
from the Gaussian mixture model density.® The key idea
is based on the following facts: 1) the conditional distribu-
tions of a mixture of Gaussians is also a mixture of Gaus-
sians with modified weights, and 2) the marginal distribu-
tions of a mixture of Gaussians is just a univariate mix-
ture of Gaussians. From this, we can directly compute the
conditional CDF functions Fs(z | x3), where x; is some
set of variables not including x,. This is a special case
of an autoregressive model where the conditionals are ac-
tually known in closed form. By building this destructor,
the power of traditional Gaussian mixture model estimators
can be leveraged in our deep density framework.

3.2. Density Tree Destructor

A density estimation tree (DET) (Ram & Gray, 2011) is
a piecewise constant density defined by a decision tree
when the domain is the unit hypercube (or more generally
a bounded region). In the original formulation from (Ram
& Gray, 2011), each leaf node is associated with a con-

8As noted in the introduction, Graves (2016) briefly explored
this possibility but focus on backpropagation for learning the mix-
ture weights rather than using shallow density estimates as we do
here.



Deep Density Destructors

stant density value based on the number of samples that
fall into that leaf and the volume of the leaf node. We pro-
pose a novel destructor for the tree density that is merely
a shift and scaling of the coordinates depending on which
leaf node £, a sample belongs to: {diag(as)x + by, if x €
Ly}, where a and b are based on the density estimate and
leaf volume. The set of disjoint hyperrectangles defining
each leaf node of the input space is mapped to different set
of disjoint hyperrectangles in the output space such that the
new density is uniform. An illustration of a tree destructor
can be seen in Fig. 1 and more details can be found in the
appendix. We implement both a random tree estimator and

Pr=0.25 Pr=0.25

Pr=0.5

Pr=0 25 Pr=0.25

Figure 1. Given the initial tree density on the left where Pr indi-
cates the probability of being in that leaf node, the tree destructor
resizes the rectangles so that the density is distributed uniformly
on the unit hypercube as on the right.

and a wrapper that interfaces with the fast density tree al-
gorithm from (Ram & Gray, 2011) implemented in mlpack
(Curtin et al., 2013). Given the tree structure, we then esti-
mate the density of each leaf based on the number of points
that fall into the leaf. One straightforward extension is to
apply a destructor to each leaf node since each leaf node is
independent. For example, an independent histogram could
be used to individually destroy each leaf node before pro-
jecting to the appropriate hyperrectangle. This emphasizes
the modular nature of this framework where destructors can
be composed hierarchically.

3.3. Image-Specific Feature Pairs

To show that our framework can incorporate prior knowl-
edge, we give an example of a image-specific density de-
structor that leverages the smoothness property of images.
The main idea is that we can destroy the structure based on
pixel locality (i.e. the smoothness property of real images)
by destroying the structure of pairs of nearby pixels. For
this to work, we require that the pairs of pixels be disjoint
so that the density model is: [[pcp Pr(zp(1),Tpe2)),
where P is a disjoint set of pixel pairs. For each pair
density, we can use any other destructor (including another
deep destructor) to destroy the structure in each 2D space;
again, this emphasizes the modular and possibly hierarchi-
cal nature of our framework since we are free to use any de-
structor for these pairs. We choose pairs of adjacent pixels
rotating between possible directions in one our experiments
on the MNIST and CIFAR-10 datasets.

3.4. Non-Parametric Greedy Algorithm

We implement a simple non-parametric greedy algorithm
which merely estimates a density at each layer, transforms
the training data via the associated destructor and repeats
this process until the likelihood on a held-out validation set
decreases.” Note that layers can be added as long as the
model does not overfit the training data. For the models in
our experiments, we only leverage classical shallow den-
sity estimators such as Gaussian mixtures or tree densities
at each layer but more advanced density estimators could
also be used. In addition, the cumulative log likelihood of
the training and validation set is merely the sum of layer log
likelihoods because of the uniformability property. Thus,
each layer can compute the best density approximation for
that layer and can be computed independently of previous
layers. Clearly, a non-greedy algorithm that tunes all the
previous layers would likely be better but we think this
simple greedy algorithm provides a useful baseline. We
have found that using highly regularized density estimates
at each layer usually performs better because it does not
overfit the training data as will be seen in the experiments.
As the density estimates approach the uniform distribution,
the training data moves less and less at each layer. Thus,
similar to simulated annealing, the cooling schedule (i.e.
how much regularization is applied to each layer) will af-
fect the quality and depth of the final deep model.

An illustrative example of the progression of our algorithm
using a concentric circles dataset and a density tree destruc-
tor (described more fully in the experiments section) can be
seen in Fig. 2. As the training data is transformed from the
original density to the uniform density, the implicit gener-
ative density converges towards the true density.

4. Experiments
4.1. Synthetic Toy Data

We start with some simple 2D experiments to illustrate
our density destructor framework and build some intuitions
about how to design destructors (code to reproduce this ex-
periment and corresponding figures is available on the first
author’s website). For this toy experiment, we choose a
simple but difficult-to-estimate synthetic dataset of concen-
tric circles as seen in Fig. 2. The radius is a mixture of
Gaussians and the angle is uniform. Note that this dataset
does not contain any obvious information in the marginals
and the underlying density is nearly a low-dimensional
manifold—thus very roughly approximating some of the
difficult density estimation problems in practice such as

"Note that the general greedy approach has been proposed in
previous work (e.g. (Tabak & Turner, 2013; Chen & Gopinath,
2000; Laparra et al., 2011)) but previous work did not directly
estimate shallow densities at each layer.



Deep Density Destructors

Table 1. Examples of Density Destructor Classes

Description

Density

Transformation

Autoregressive Density

Mixture of Gaussians Conditionals
(e.g. MADE, MAF)

Block Gaussian Conditionals (e.g.
Real NVP, NICE)

HZ:1 IIEbs(-rs ‘ wl:s—l)

T, [ 20w
Pa(zs | pse(®1:5-1), Uft(wl;s,l))}
Par(x1:40,1)

X Py (@1 | p(@iee), 02 (21:4))

[Fi(z1), Fa(za | 21),
s Fa(xa | @1:5—-1)

[F1($1)7F2($2 [21),
oo Fa(zg| @, - ,xs—l)]

[Q(m),@(w),

orr1(®1:t)

. @(%*Md(wm) )]

oq(x1:t)

Linear Projection Density

Independent Components
(e.g. Gaussianization via ICA)

Gaussian (e.g. via PCA)

Py (W)
H§:1 Ps (wsT-'B)

Pun(z | p, %)

Dg (W:I})

(573 (2 — p))

Copula-based Density

Gaussian Copula

PP (F(x)) 17, Pa(xs)
PN (F(a)) [T, P(zs)

Do(F(z))
(R 197 (F(x)))

Gaussian Mixture (note that
Fs(xzs | x—s) is computable)

2ty mPy(2)

[F1(21), Fa(x2 | 21),

o Fa(mal e mso1)]

Examples of new destructors enabled by our unified destructor framework

Piecewise Density (or Tree Density) {Py,(x), if ¢ € L}, {Dg¢,(x), if x € L}
where L, are the disjoint subspaces of the leaves.

{ce, if © € Lo}

HPe’P PP(Q:P(I)7 xP(Q))y
where feature pairs P are based on pixel locality.

{diag(a¢)x + be, if € L;}
{Dp(mp<1),xp(2)),VP € P}

Piecewise Uniform (e.g. DET)

Image-Specific Feature Pairs

Layer 53

Train Data

Implicit Density

Figure 2. The transformed samples (top) and implicit density
(bottom) at different layers of the DensityTree (100) model de-
scribed in Sec. 4. While the initial layers do not provide a good
estimate of the underlying density, after many layers, the under-
lying density begins to model the true underlying patterns. (En-
larged figure in appendix.)

image densities. We now describe several baseline shal-
low models, and representative deep models from the linear
destructor class, the Gaussian mixture destructor class and
the tree destructor class as outlined in the next paragraphs.
Note that we merely use an independent Gaussian destruc-
tor as the first destructor for all the non-baseline models to
project the data into the canonical unit hypercube space.

Baseline Models We choose a multivariate Gaussian, a
mixture of twenty spherical Gaussians and two tree densi-
ties: (1) a random tree density with the maximum number
of leaves set to 50 and the density of each leaf node is ap-
proximated by independent histograms with 10 bins, and
(2) a density tree where the min samples per leaf is 10.
For the histograms, we regularize the bin counts by adding
o = 10 pseudo-counts to each bin, which can be seen as
putting a Dirichlet prior on the histogram bins.

Linear Destructor For simplicity, we choose a random
projection model where the data is orthogonally projected
onto a new space similar to (Laparra et al., 2011). We
build a canonical destructor by composing the indepen-
dent standard normal inverse CDF, a random linear projec-
tion, a standard normal CDF (which returns the values to
the unit hypercube) and finally an independent histogram
on the unit hypercube: Fis(®(Arang®1(x))). The his-
togram was estimated with 20 bins and a regularization
parameter (pseudo-counts) « in the set {0.1,1,10}. Un-
like in (Laparra et al., 2011) where the histograms are esti-
mated on an unbounded domain, we project our data onto
the bounded unit hypercube via the normal CDF before es-
timating the histograms so that we do not have to handle
histogram boundary issues—because histograms are inher-
ently bounded density estimates. We allow « to vary to



Deep Density Destructors

show the effect of regularization on the depth and perfor-
mance of the deep destructor. Note that as &« — oo the
estimate approaches the uniform distribution.

Gaussian Mixture Destructor We merely compose two
transformations to form a canonical Gaussian mixture de-
structor: 1) an inverse normal CDF transformation—this
projects from the unit hypercube onto the unbounded real
space—, and 2) a spherical Gaussian mixture density de-
structor, which can now be estimated in an unbounded
space because of the first transformation. In our prelimi-
nary experiments, we found that an unregularized Gaussian
mixture density destructor often performed poorly. Thus,
we developed a simple variation in which a mixture model
is first estimated. Then, a standard multivariate normal
component (i.e. N(0,I)) is added with a fixed mixture
weight w € {0.1,0.5,0.9}. Finally, the density is refit with
the new component fixed. Thus, this smooths the mixture
density towards a standard multivariate normal, and thus,
w is a simple regularization parameter.

Random Tree Destructor For our random tree destruc-
tor, we first apply a random rotation to avoid the effects of
a single coordinate view. Then, we construct a tree den-
sity using random splits with a maximum number of nodes
set to 4 and a minimum leaf size set to 10% of the training
data—note that this is a highly regularized tree since there
can only be 4 leaf nodes. At each leaf node, we apply a
histogram destructor with 10 bins and let the regularization
parameter « vary in the set {1,10,100}. This destructor
illustrates the power of creating complex destructors from
simpler destructors.

Density Tree Destructor Similar to our random tree de-
structor, we first apply a random rotation. Then, we es-
timate a full tree density using the DET (Ram & Gray,
2011) estimator implemented in mlpack (Curtin et al.,
2013) where we set the minimum number of samples per
leaf to 10. To regularize the density tree, we implicitly es-
timate a smoothed tree by taking a mixture of the empirical
density tree estimate, which is based on leaf counts, and
the uniform distribution with weight w € {0.1,0.5,0.9}
similar to the mixture weight used in the Gaussian mixture
destructor. If w = 1, then the estimated density is exactly
the uniform whereas if w = 0, the estimated density is
solely based on normalizing the empirical leaf counts.

The geometric mean of the test likelihood (i.e. the expo-
nential of the mean log likelihood) along with the selected
number of layers for the concentric circles dataset can be
seen in Fig. 3. Clearly the deep models outperform their
shallow counterparts. Note that the deep models also pro-
vide a useful latent space that is not possible with shallow
models. We observe that as expected, the number of layers

increases as the regularization increases. The best model is
a random tree with a very high regularization of o = 100
and a very deep network of 172 layers. We note, however,
that the best density tree model only has 53 layers and is
thus a strong but much more compact model. These results
give evidence for the idea that composing many highly reg-
ularized transformations is better than composing a small
number of unregularized transformations. However, we
also note that more layers does not always translate into
better performance as the case for the Gaussian mixture
models where w = 0.5 with 16 layers outperforms w = 0.9
020221

with 36 layers.
025 027 .026
023
; 020 020020 o 02d
g 1 017
014014015
mzl I I
0.000 I
152 172
o 1111ﬁﬁ PPN PN

0 0@ <@ <@ A A o QA 0D @ A A LoD oA D o)
S 1 @O 4 0 02, 0o N0 W o 02 oF
%7 AW 000 G VT RN R RS GRS (0000 L 00 (e (0 (&

< P2 0o o g A o e e i

5\‘\9%«\()\6 R aa™ o oo o @@ o ?@“08“9\02‘\902‘\9\

Concentric Circles Dataset

Geom. Mean Likelihood
o © o o o
(=3 (=3 o o o
8 2 2 8 B
& & @ oS o

# of Layers

Figure 3. Deep models clearly outperform baseline models, and
random trees seem to perform the best in terms of test likeli-
hood. As expected, the selected number of layers increases as
the amount of regularization on each layer increases. (Enlarged
figure in appendix.)

We show train and test final transformations (i.e. in the la-
tent space) for the best performing models in each class in
Fig. 4. As a first observation, we notice that the test trans-
formation is clearly less uniform than the train transforma-
tion due to finite sample errors. While the Gaussian mix-
ture with w = 0.5 performs reasonably in terms of log like-
lihood, the transformation is clearly irregular with many
bumps in comparison to the original data; this is likely due
to the fact that a Gaussian mixture model is parametric
rather than non-parametric and can only model elliptical
regions. In light of this discrepancy, it would be interesting
to explore other quality measures other than test likelihood
but that is out of the scope of this paper. For the linear
model, it is interesting to note that the edges (i.e. the out-
ermost circle) is the most uniformly distributed; this effect
is likely due to the fact that the inner structure is some-
what obscured in marginal distributions in comparison to
the outer structure. For both tree models, the latent space
transformation maintains the circular structure of the orig-
inal data which suggests that highly regularized trees may
be an good general destructor at least in small dimensions.
Comparing both tree models, we notice that while they are
very similar in spreading the training points out evenly, the
density tree is slightly better at maintaining the underlying



Deep Density Destructors

circle structure. For example notice the slightly distorted
right section of RandTree (100).

RandLin (100)

GausMix (0.5)
ALY

RandTree (100) DensityTree (0.9)

Figure 4. Each deep model transforms the data differently with
DensityTree seeming to be the most regular. Notice that while the
train data may be evenly spaced on the unit square, this does not
mean the test data is also uniform. This is why highly regularized
destructors are required to build usable deep models via a greedy
algorithm. (Enlarged version of figure in the appendix.)

S. Image Experiments

We now give some initial results using the MNIST and
CIFAR-10 datasets to show that it is possible to train den-
sity destructor models on larger datasets. We base our ex-
periments on the unconditional (i.e. unsupervised) MNIST
and CIFAR-10 experiments in (Papamakarios et al., 2017)
and use the same preprocessed data as in (Papamakarios
et al., 2017). As with the 2D experiment, code is available
to reproduce the estimation of our deep density models.

The preprocessed data in (Papamakarios et al., 2017) pro-
jected the data into the unbounded data space via the logit
transform. Because we can model the data in a bounded re-
gion, we first apply an inverse logit preprocessing transfor-
mation to return the data to the original space (the change
in likelihood is directly accounted for because preprocess-
ing steps can be directly incorporated in our destructive
framework). We first choose a deep Gaussian copula model
which just applies a Gaussian copula destructor at each
layer; we use a histogram destructor with 40 bins and
o = 100 for the marginals. We also apply our image pairs
destructor by pairing adjacent pixel coordinates—rotating
through the 8 possible directions. For the pair destructor,
we evaluate both a Gaussian copula destructor and a single
density tree with the minimum number of samples per leaf
set to 100 and the maximum number of leaf nodes set to 50.
We compare to the state-of-the-art models in (Papamakar-
ios et al., 2017) and show the test log likelihood, depth, and
training time in Table 2. Note that the timings for the base-
lines from (Papamakarios et al., 2017) are based on using
a Titan X GPU whereas our methods merely use at most
10 CPUs. We have not attempted to optimize our code for
GPU usage but think this is an excellent future direction.

For MNIST, the deep copula model and the image pairs
(tree) models outperform previous models including MAF.
The experiments on CIFAR-10 illustrate both the power
and the limitations of the particular destructors we selected.
The deep copula model can model some of the massive de-
pendencies in real images which allows it to surpass all but
the MAF models in performance. Note that the first lay-
ers of the deep copula have the following log likelihood
values (-4572, 1881, 2368, 2461)—notice the massive in-
crease of log likelihood within the first several layers. On
the other hand, the image pairs estimators are not powerful
enough and stop in a very bad minimum because they can
only model a small amount of dependency in a small local
region. While CIFAR-10 shows the limitation of the partic-
ular instantiations we selected for this experiment, we have
proposed a general framework for building new destructors
that would enable composing a deep copula destructor and
then applying a tree destructor.

Table 2. Test Log Likelihood, Depth and Train Time

MNIST CIFAR-10

LL D T LL D T
Models from MAF paper computed on Titan X GPU
Gaussian -1367 1 0.0 2367 1 0.0
MADE -1385 1 0.0 448 1 0.2
MADE MoG -1042 1 0.1 53 1 03
Real NVP -1329 5 02 2600 5 14
Real NVP -1765 10 0.2 2469 10 1.0
MAF -1300 5 01 2941 5 37
MAF -1314 10 02 3054 10 7.5
MAF MoG -1100 5 02 2822 5 39
Our proposed destructors computed on 10 CPUs
Copula -1028 5 0.2 2626 17 10.1
Pairs (Cop) -1043 17 0.7 -2518 31 74
Pairs (Tree) -1003 21 1.0 -2404 31 38.0

6. Conclusion

We introduced a density destructor framework that enables
modular creation of deep density models by composing
density models (whether shallow or deep) and their corre-
sponding density destructors. We believe this work opens
up many more possibilities for the principled design and
analysis of unsupervised deep networks that leverages the
insight, algorithms and intuitions behind classical shallow
density models rather than having to work with black box
models. In addition, our framework may help understand-
ing traditional deep models by reinterpreting them from a
destructor perspective and finding the implicit densities of
each layer. Thus, we hope to lay the groundwork for many
interesting research directions based on the density destruc-
tor framework.



Deep Density Destructors

Acknowledgements

We acknowledge the support of NSF via I1S-1149803, IIS-
1664720, DMS-1264033, and NIH via RO1 GM117594-01
as part of the Joint DMS/NIGMS Initiative to Support Re-
search at the Interface of the Biological and Mathematical
Sciences.

References

Ballé, J., Laparra, V., and Simoncelli, E. P. Density mod-
eling of images using a generalized normalization trans-
formation. ICLR, pp. 1-12, 2016.

Chen, S. S. S. and Gopinath, R. A. Gaussianization. NIPS,
pp. 423-429, 2000.

Curtin, R. R., Cline, J. R., Slagle, N. P, March, W. B.,
Ram, P, Mehta, N. A., and Gray, A. G. MLPACK: A
scalable C++ machine learning library. Journal of Ma-
chine Learning Research, 14:801-805, 2013.

Dinh, L., Krueger, D., and Bengio, Y. NICE: Non-linear
independent components estimation. In arXiv preprint
arXiv:1410.8516, 2015.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density esti-
mation using real NVP. In ICLR, 2017.

Friedman, J. H. Exploratory projection pursuit. Journal
of the American Statistical Association, 82397:249-266,
1987.

Germain, M., Gregor, K., Murray, 1., and Larochelle, H.
MADE: Masked autoencoder for distribution estimation.
In ICML, 2015.

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In NIPS, pp. 2672-2680,
2014.

Graves, A. Stochastic backpropagation through mixture
density distributions. arXiv:1607.05690v1, 2016.

Jaworski, P., Durante, F., Hédrdle, W., and Rychlik, T. (eds.).
Copula Theory and Its Applications. Springer, 2010.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In ICLR, 2014.

Laparra, V., Camps-Valls, G., and Malo, J. Iterative Gaus-
sianization: From ICA to random rotations. /EEE Trans-
actions on Neural Networks, 22(4):537-549, 2011.

Lin, J., Saito, N., and Levine, R. An iterative nonlin-
ear Gaussianization algorithm for resampling dependent
components. Proc. 2nd International Workshop on Inde-
pendent Component Analysis and Blind Signal Separa-
tion, pp. 245-250, 2000.

Liu, H., Han, F,, Yuan, M., Lafferty, J., and Wasserman,
L. High dimensional semiparametric Gaussian copula
graphical models. The Annals of Statistics, 40(4):34,
2012.

Lyu, S. and Simoncelli, E. P. Nonlinear extraction of in-
dependent components of natural images using radial
Gaussianization. Neural computation, 21:1485-1519,
2009.

Papamakarios, G., Pavlakou, T., and Murray, I. Masked au-
toregressive flow for density estimation. In NIPS, 2017.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825-2830, 2011.

Ram, P. and Gray, A. G. Density estimation trees. In KDD,
pp. 627-635, 2011.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochas-
tic backpropagation and approximate inference in deep
generative models. In ICML, 2014.

Tabak, E. G. and Turner, C. V. A family of nonparametric
density estimation algorithms. Communications on Pure
and Applied Mathematics, 66(2):145-164, 2013.

Tabak, E. G. and Vanden-Eijnden, E. Density estimation by
dual ascent of the log-likelihood. Commun. Math. Sci.,
8(1):217-233, 2010.



