
Firing Bandits: Optimizing Crowdfunding

Lalit Jain 1 Kevin Jamieson 1

Abstract
In this paper, we model the problem of optimizing
crowdfunding platforms, such as the non-profit
Kiva or for-profit KickStarter, as a variant of
the multi-armed bandit problem. In our setting,
Bernoulli arms emit no rewards until their cumu-
lative number of successes over any number of
trials exceeds a fixed threshold and then provides
no additional reward for any additional trials - a
process reminiscent to that of a neuron firing once
it reaches the action potential and then saturates.
In the spirit of an infinite armed bandit problem,
the player can add new arms whose expected prob-
ability of success is drawn iid from an unknown
distribution – this endless supply of projects mod-
els the harsh reality that the number of projects
seeking funding greatly exceeds the total capital
available by lenders. Crowdfunding platforms nat-
urally fall under this setting where the arms are
potential projects, and their probability of success
is the probability that a potential funder decides to
fund it after reviewing it. The goal is to play arms
(prioritize the display of projects on a webpage) to
maximize the number of arms that reach the firing
threshold (meet their goal amount) using as few
total trials (number of impressions) as possible
over all the played arms. We provide an algorithm
for this setting and prove sublinear regret bounds.

1. Introduction
In the crowdfunding paradigm, a crowd of many users
pledge to contribute a small amount of funding toward a
project, but the project is only funded if the total amount
of funding pledged exceeds a known reserve price. This is
reminiscient of the firing of a neuron once it reaches its ac-
tion potential - where the number of pledges from the crowd

1Computer Science and Engineering, University of
Washington, Seattle, USA. Correspondence to: Lalit
Jain <lalitj@cs.washington.edu>, Kevin Jamieson
<jamieson@cs.washington.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

controls the firing. Recent years have seen a huge prolifera-
tion of crowdfunding sites, with over 700 platforms in 2012
and an estimated 2000 in 2016. These platforms account
for a significant amount of investment; the World Bank
estimates that $90 billion will be raised through crowdfund-
ing ventures alone in 2020 (Barnett, 2015). This includes
non-profit micro-lending sites such as Kiva, charity organi-
zations DonorsChoose and GoFundMe, and venture capital
efforts such as Kickstarter and IndieGoGo.

Crowdfunding platforms seeking to maximize the number
of projects funded need to decide when and how to show
projects to users visiting their sites. The administrators of a
platform can influence the outcomes of which projects are
more likely to be funded by showing them more or less often
in display results. Naive strategies that do not prioritize
the most likely projects to reach the reserve price within a
reasonable amount of time are doomed to only partially fund
many projects (that fail to fire), versus a preferred outcome
of a moderate number fully funded to the reserve price (and
fire).

An intuitive strategy to maximize the number of projects
that hit their reserve price is to first estimate the popular-
ity of a project by considering the proportion of users who
pledged funding relative to the total number of users that
reviewed the project. Then projects on the webpage can be
prioritized by popularity. This is a challenge because the
popularity cannot be accurately estimated without having
the prioritization to ensure enough reviews are gathered.
Simultaneously, we want to avoid prioritizing unpopular
projects. Through personal correspondences with some of
these popular platforms, we have learned that these compa-
nies rely on poorly motivated heuristics. Indeed, we became
aware of this problem from one such platform seeking as-
sistance. Despite the enormous interest, capital investment,
and potential for small improvements to make large im-
pact on the number of projects funded, we are unaware of
any rigorous mathematical study or approaches to optimize
these mechanisms. Our paper seeks to bridge this gap and
is organized as follows. In the next section we specify our
problem statement precisely. We then present our algorithm
in Section 2 and prove a sub-linear regret bound. Finally, we
present both synthetic experiments and real-world scenarios
derived from data on the Kiva platform.

Firing Bandits: Optimizing Crowdfunding

1.1. The Problem Statement

Two key features define recommendation for the crowd-
funding problem. Firstly, since the goal is to fund as many
projects as possible, rather than just collect as many pledges
as possible, we do not see a reward for an arm until the
project has hit its reserve price. In addition, once funded,
the project effectively exits the recommendation system.
Secondly, in most crowdfunding models, the demand of
lenders is vastly exceeded by the supply of funding seekers.
Thus, at any given time there is an exceedingly large pool
of loans to choose from when making a recommendation to
a user, and this pool is constantly growing.

We also make a simplifying assumption that each pledge is
the same amount, and that each loan needs the same number
of pledges. Thus, instead of worrying how much funding a
project raises, we only focus on the number of pledges. This
is actually a realistic assumption, since in many platforms,
the majority of pledges are a single small amount such as
$25 (see (Barnett, 2015)).

With the above considerations in mind, we model each
project as a biased coin with mean µ: showing the project
to a lender is a flip of the coin, and µ is the expected propor-
tion of times the project receives a pledge when shown. We
assume at any time we can obtain a new project/coin whose
mean is drawn i.i.d. from a reservoir distribution F defined
on [0, 1]. For a project to reach its reserve price, i.e. the coin
to fire, we need the number of successes to reach a threshold
of τ ∈ N in a sequence of flips from µ. Throughout the rest
of the paper, we adopt the vocabulary of “coin” and “flips”.
Unlike models normally used for search, we assume that a
single project is being chosen at each time to be evaluated.
We believe that it should be possible to generalize to more
general settings in which multiple loans are displayed simul-
taneously in search results (e.g. cascading bandits (Kveton
et al., 2015; Szepesvári et al., 2015) or best-of-K-bandits
(Simchowitz et al., 2016)).

The protocol for any algorithm for firing bandits is shown
below. The algorithm maintains a set of coins and at every
time step we are choose between two actions: either flip an
existing coin, or draw a new coin from F and flip it. Our
goal is to find a policy that maximizes the number of coins
that reach τ successes and fire.

1.2. Fixed Budget Policies

Without loss of generality, we can assume an optimal pol-
icy following the protocol has full knowledge of F (indeed,
there will be different optimal policies for different reservoir
distributions). Since the means of the coins are drawn iid
from F , the flips of different coins are independent and, in
particular, they provide no information about each other.
This immediately implies that there exists an optimal policy

Firing Bandits Protocol
Input: Reserve price τ
S: Set of coins being maintained by algorithm.
for t = 1, 2, . . .
Algorithm does one of the following:

• Draw a new coin from F , flip it and add it to S.

• Choose a coin from S and flip it. If the coin
has had a total of τ successes, it fires to yield a
reward of 1 and is then removed from S.

that treats each coin individually and identically. The impli-
cation of this is crucial: there exists an optimal policy that
looks at coins one at a time, choosing only to keep flipping
or discarding a coin based on its history of successeses.

However, since we do not have access to F , our approach
is to optimize over a policy class that we believe contains a
near- optimal policy. Such a policy search naturally appears
in multi-armed bandit problems. For example in the stan-
dard multi-armed bandit each arm gives rise to the policy
that only pulls that arm in each round and the optimal policy
corresponds to playing the arm with the highest mean. A
more interesting example is contextual bandits where poli-
cies map context feature vectors to actions. Algorithms for
multi-armed bandits optimize over this set of policies to find
the optimal arm.

For a given coin with mean µ ∼ F (where we refer to
µ simultaneously as the coin and the mean of the coin),
let {Xi}Ti=1 ⊂ {0, 1}T be an empirical sequence of flips
and let X(t) =

∑t
i=1Xi. The sequence of flips give rise

to a random walk (t,X(t)) that we refer to as the coin’s
trajectory. A coin fires at time t only if X(t) = τ . The
line with slope 1 corresponds to the trajectory of a coin
with probability 1 of success, and similarly the horizontal
axis corresponds to a trajectory of a coin with 0 probability
of heads– each random walk X(t) lies between these two
lines. Furthermore, the average slope of a random walk
after t steps, X(t)/t is an empirical estimate of the value
of µ. By the theory of random walks we expect X(t) ∈
µt±

√
2µ(1− µ)t with constant probability. The minimum

t such thatX(t) = τ is a negative binomial random variable
with mean τ/µ.

A policy is given by a non-decreasing function π(t), where
µ is rejected at time t if X(t) ≤ π(t).

Intuitively, ifX(t) > π(t) there is some hope that µt > π(t)
and that the positive trend should continue until it reaches
τ successes and fires. Because X(t) is non-decreasing, it
only makes sense to consider policies π(t) that are also non-
decreasing. Indeed, if π is ever decreasing, it would behave
just as if it remained constant. The difficulty of finding the

Firing Bandits: Optimizing Crowdfunding

optimal policy is now apparent–it requires a search over the
space of all non-decreasing functions. Even if we knew F ,
it is not clear how we could carry out such a search.

There exist several natural families of policies arising in the
sequential testing literature (see (Siegmund, 1985)). Notable
classes include the SPRT which corresponds to π(t) being
an affine function (Figure 1). In this work we choose to
study fixed budget policies, which correspond to vertical
thresholds.

It remains to define a rich enough policy class for our algo-
rithm to search over that only considers a single coin at a
time. A Fixed Budget Policy πB evaluates a coin by repeat-
edly flipping it and rejecting it if τ successes have not been
reached within B flips(note, to prevent additional notation,
we may use B to simultaneously refer to the number of flips
and the policy πB). Note, we expect coins that do not fire
have means less than τ/B. In practice, πB corresponds to
showing a project on a crowdfunding site at most B times,
and then retiring it if it fails to get funded. This type of pol-
icy is appealing for a number of reasons: 1) it is intuitively
fair to loan seeking applicants and simple to implement,
2) executing πB also simultaneously evaluates every πB′
for B′ ≤ B (we will expand on this later), and 3) leads to
interpretable regret bounds.

Figure 1. Example trajectory. The red dashed line corresponds to
the trajectory of a coin with success probability 1. The purple line
is an example of a linear SPRT boundary, and the blue dashed line
is a fixed budget policy πB .

The problem of finding the best B will occupy the rest of
this paper. If we had knowledge of F , we could use calculus
techniques to find the best value of B. Faced with only
access to the empirical flips of coins that expire, we will
have to consider all possible values of B.

1.3. Related Work

The firing bandit problem involves several salient features
which have not been previously addressed in the literature.
Firstly is the aspect of only receiving a reward once enough
successes have been observed. Past work on delayed bandits
(Vernade et al., 2017; Joulani et al., 2013) has considered
the case when rewards may not be received until a later

round, however this is very different from only receiving
a single reward at some later time. There are also several
(very) different bandit models referred to as Threshold ban-
dits (Abernethy et al., 2016; Locatelli et al., 2016). While
these papers share some of the same vocabulary, they are
variants on the standard multi-armed bandit and there is no
notion of a threshold being passed once enough successes
are accumulated.

Secondly, once an arm has fired (reached τ heads), it can
no longer be played. But we can optionally add as many
arms as we want with means drawn i.i.d. from F . Many
different bandit models have considered situations where
the arms change over time. This includes sleeping bandits
(Kleinberg et al., 2010) where the set of arms is variable
over time. In mortal bandits (Chakrabarti et al., 2009) each
arm has a different budget of the number of pulls it receives
before going away and being replaced by a new arm whose
underlying mean is drawn from a distribution F . While
related, the major difference is that in mortal bandits rewards
are accumulated as they are observed instead of only after
the arm expires, which is the core difficulty of our problem.

In some sense, our problem is most closely modeled by
an infinite armed bandit problem. In this setting we have
infinitely many arms to choose from with the goal of maxi-
mizing cumulative reward. The mean rewards of the arms
are distributed according to an underlying F . In the setting
where F is semi-parametric or known, extensive work has
been done in both the pure exploration case where the goal
is to find an arm close to the optimal (see (Carpentier &
Valko, 2015; Jamieson et al., 2016)), and in the cumula-
tive expected regret setting (Berry et al., 1997; Wang et al.,
2009; Bonald & Proutiere, 2013). Recent work has pro-
vided algorithms for the stochastic and non-stochastic pure
exploration setting case when the distribution is unknown
(Li et al., 2016).

Most algorithms for infinite armed bandits follow a simi-
lar mold. A large number of arms are sampled from the
distribution (sometimes requiring partial knowledge of the
underlying distribution to ensure a sufficient number, but not
too many for their budget) and then an algorithm like UCB
(Auer et al., 2002) is executed. Algorithms exploit the fact
that the arms are drawn i.i.d. from a distribution by knowing
that if they’ve seen a good arm, there is likely another just
as good still out there. Hence, an arm is typically sampled
as long as it cannot be ruled out as a potential superior arm
to those found so far. In our setting, however, our arms ex-
pire and it is not at all clear how such a technique could be
adapted. Firstly, since the goal is to have as many coins fire
as possible, it’s unclear that dropping arms is a good idea -
there is the possibility no arms would fire even after a very
large number of samples using such a strategy. Secondly, as
we will show in the experiments section, naive UCB style

Firing Bandits: Optimizing Crowdfunding

algorithms do not work wll in an anytime sense, since they
fail to reject coins that take extremely long times to convert.
There is the possibility of using a UCB style algorithm that
keeps increasing the number of arms it considers as time
progresses but we believe such a policy is very difficult
to analyze in our setting. See (Wang et al., 2009) for an
example of such a strategy.

2. Our Approach
Given a coin drawn i.i.d. from F , let the random variable
CB be the indicator that it fires under policy πB . Moreover,
let NB be the random variable representing the number of
times it is flipped by policy πB; clearly, τ ≤ NB ≤ B. Of
course, we will be applying πB repeatedly to many coins
and using the results to estimate E[CB] and E[NB]. If we
draw m coins from F and evaluate each one using policy
πB , let Ĉ(B,m) the empirical proportion of the m coins
that fired, and N̂(B,m) the empirical mean of the number
of times each of the m coins was flipped.

Intuitively, the efficacy of πB should be given by the ex-
pected number of coins firing in a budget of V total flips
over all coins. Let m(V) be the random variable represent-
ing how many coins end up being evaluated by πB using V
total flips. The last coin we look at may be stopped prema-
turely, and we let 0 ≤ κ ≤ B denote the number of flips it
was given. Then the number of coins that fire is given by
m(V)Ĉ(B,m) and V = m(V)N̂(B,m(V)) +κ. The rate
at which coins fire is given by,

E

[
m(V)Ĉ(B,m(V))

V

]
= E

[
Ĉ(B,m(V))

N̂(B,m(V)) + κ/m(V)

]
V→∞

=
P(CB = 1)

E[NB]

The last line follows by the law of large numbers since
m(V) ≥ (V −B)/B. This motivates defining for any B,

ρ(B) :=
P(CB = 1)

E[NB]
, ρ∗ := max

B
ρ(B).

As the total budget of flips V gets very large, the ex-
pected number of coins firing is V ρ(B). Analogous to
the empirical estimators given above, we can also define
ρ̂(B,m) = Ĉ(B,m)/N̂(B,m) For any m, ρ̂(B,m) pro-
vides an asymptotically consistent estimator of ρ(B). If
our algorithm allocates a budget of V total flips to B as
above, versus using an optimal fixed budget policy, asymp-
totically our expected loss in the number of coins firing is
V ρ∗−V ρ(B). We can generalize this to any algorithm that
allocates a budget of V among policies. Definition Con-
sider an algorithm allocated a budget of V total flips and
considers a random number of m(V) coins. In each round
i, the algorithm draws a coin from F and flips it according

to policy Bi using vi flips (so V =
∑m(V)
i=1 vi). Then, the

regret of the algorithm is V ρ∗ − E[
∑m(V)
i=1 viρ(Bi)].

The regret expresses the number of coins fewer the algorithm
fires relative to some policy B that satisfies ρ(B) = ρ∗. It’s
important to mention that our notion of regret is not based
on the optimal policy over all policies but rather the weaker
notion of the optimal fixed budget policy.

In general, the problem of identifying B with ρ(B) = ρ∗ is
not well defined - there can be several such optimal policies
B. We will let B∗ := min{B : ρ(B) = B∗}. Finding
the optimal value of ρ∗ can be difficult due to a lack of
good optimzation properties - in general ρ(B) need not be
concave, much less unimodal.

Low Probability of Conversion. For most crowdfunding
platforms such as Kiva or Kickstarter, the demand of fund-
ing seekers is far greater than the total capital available
from all lenders. Hence very few projects have a chance
of being funded. For example, only 3.6% of technology
projects reach their funding goal on IndieGoGo and 80%
of all projects do not reach a quarter of their reserve price
(Jeffries, 2013). This suggests that only the best loans get
funded, and that there are very few good loans. Any optimal
policy will only target good loans drawn from F , i.e. loans
with large values of µ, and even if the policy is funding the
maximum rate of loans, the probability of any single loan
being funded will be very low.

Hence throughout the rest of the paper, we will assume
that the probability of a coin drawn from F obtaining τ
successes (i.e., firing) by an optimal fixed budget policy is
bounded above. Equivalently, the probability that a coin
does not fire, even under the optimal policy, is bounded
below.

Specifically, we assume there exists α > 0 such that that
P (CB = 1) < 1 − α, or equivalently, P (CB 6= 1) ≥ α
for any B ∈ {B : ρ(B) = ρ∗}. In practice, again we
expect the probability of any particular loan firing to be
extremely small even for the best policy so we can safely
assume α > 1/2. Finally, since P (CB = 1) is increasing
with B, we note that P (CB = 1) < 1− α for any B ≤ B∗.

2.1. Algorithm Overview

The problem of finding the πB with the maximum ρ(B) will
occupy the rest of this paper. If we had knowledge of F , we
could compute ρ(B) analytically. Faced with only access
to the empirical flips of coins that expire leads to a classical
exploration/exploitation tradeoff - our algorithm for finding
the optimal policy will have to trade off exploring a large
range ofB with exploiting values that have empirically high
values of ρ̂(B).

Our algorithm FIRINGUCB is presented below. Note that

Firing Bandits: Optimizing Crowdfunding

we assume FIRINGUCB and PULL both have access to a
global history over all flips. We now describe it at a high
level.

Throughout we assume we have a pre-defined sequence
bk, for concreteness we can take bk = 2k. We begin
with a guess on a value of K such that bK ≥ B∗, (one
can always take K = 1). The algorithm partitions the
set of policies (0, bK] (it does not make sense to eval-
uate policies B < τ since we need at least τ success
to fire, however we ignore this for brevity) into a series
of brackets (0, bK] = ∪Kk=1(bk−1, bk]. For each B ≤
BK we maintain empirical estimates ρ̂(B,m) along with
confidence bounds UCB(B,m), LCB(B,m) such that
LCB(B,m) < ρ(B) < UCB(B,m) at all times (see
Lemma 2.2) where m tracks the total number of coins eval-
uated by policy πB . Ignoring INITIALIZE for a moment, at
each round of FIRINGUCB , the subroutine PULL is run
on the bracket containing the policy with the largest upper
confidence bound.

Pulling the k-th bracket corresponds to drawing a coin
from F and then executing πB for the largest B in the
bracket that has not yet been eliminated. These flips are
then used to evaluate the other policies πB′ for B′ ≤ B
by looking at the result of the first B′ flips. The estimates
of ρ, and the corresponding confidence bounds are then
updated for each B in the bracket and in addition, sub-
optimal policies are culled - any policy whose UCB is less
than the maximum LCB in that round is removed. Since
|UCB(B,mk) − LCB(B,mk)| → 0 as mk → ∞ and
each active policy in a bracket has been evaluated on the
same number of coins, the set of active policies shrinks and
eventually eliminates all suboptimal policies. A new bracket
is added when the highest upper confidence bound drops
below a pre-determined value and the UCB game continues
with the addition of this new bracket.

As we will see in Theorem 2.3, using multiple brackets op-
posed to just a single bracket we obtain higher statistical
power in our estimates, translating into improved sample
complexities. Also, note that our initialization step is nec-
essary to ensure that our confidence bounds hold - see the
discussion after Lemma 2.2.

Our main theorem is the following, recall typically α > 1/2:

Theorem 2.1. If FIRINGUCB is run with a budget of V
samples, and brackets defined by bk satisfy bk/b2k−1 ≤ 1 for
all k, then with probability at least 1− δ the regret incurred
is at most

K̄ c
α4ρ2
∗

log(1
αρ∗δ

) +

√
c
α4 K̄V log (V) log

(
log(V/α)
αρ∗δ

)
where K̄ = max{k : bk−1 ≤ 2

αρ∗
}. If bk+1 = b2k = 22k

then K̄ ≤ log2(log2(2
αρ∗

)).

We now discuss each component of the algorithm in greater
detail and explain our choice of brackets.

FIRINGUCB
Input: τ, α,K
Create brackets {(bk−1, bk]}Kk=1

Global Variables:
mk : number of coins allocated to bracket k
Ak: the set of active policies in (bk−1, bk]

Subroutine INITIALIZE(k):
Run PULL (k), U−1(α/4, δ) times (see 1 for definition of U).
Remove any B with Ĉ(B,U−1(α/4, δ)) > 1− 3α/4.

UCB Algorithm:
for k ≤ K: INITIALIZE(k)
while True

k̂ ← argmaxk∈S maxB∈Ak UCB(B, Tk)
Call PULL(k)
if maxB≤bK UCB(B,mk) <

2
αbK

K ← K + 1
allocate new bracket (bK−1, bK]
Call INITIALIZE(k)

PULL
Input: bracket k
Draw a new coin with mean µ ∼ F .

B := max{Ak}
Execute πB: Let {Xi}mi=1 be a sequence of m ≤ B flips, where
the flipping is stopped early if there are τ success and the coin fires.

mk ← mk + 1
Update:
for each active policy B′ in Ak

Evaluate policy B′ using {Xi}B
′

i=1.
Update Ĉ(B′,mk), N̂(B′,mk), ρ̂(B

′,mk)

Eliminate:
Let LCB = max

B∈Ak

LCB(B,mk, δ)

for B ∈ Ak
if UCB(B,mk, δ) < LCB

Ak ← Ak − {B}

2.2. Analysis: A Single Bracket

Since every call of PULL gives an additional budget to a
fixed bracket, we can analyze the regret a specific bracket
contributes to the total regret independently of the other
brackets. First we explain the confidence bounds used in
PULL .

Much of our analysis relies on an anytime confidence bound.
Specifically, we assume the existence of a constant cU such

that if U(m, δ) :=
√

cU log(log2(2m)/δ)
m , and Xi are i.i.d.

bounded random variables then

P

(∞⋃
m=1

{∣∣∣∣∣ 1
m

m∑
i=1

Xi − E[Xi]

∣∣∣∣∣ ≥ U(m, δ)

})
≤ δ (1)

Firing Bandits: Optimizing Crowdfunding

for any δ ∈ (0, 1). One can show that cU = 4 suffices,
but there exist substantially tighter expressions, albeit not
as succinctly stated (c.f. Theorem 8 of (Kaufmann et al.,
2016)). For the same cU it is known that U−1(ε, δ) =

min{m : U(m, δ) ≤ ε} ≤ cU ε
−2 log(2 log(ecU ε

−2

δ)/δ)

(c.f. (Jamieson, 2015)). Both Ĉ(B,m) and N̂(B,m) are
empirical means of bounded i.i.d. random variables (in
[0, 1] and [0, B], respectively), thus we can apply Equation 1.

Recall that ρ̂(B,m) = Ĉ(B,m)

N̂(B,m)
. Define

LCB(B,m, δ) :=
Ĉ(B,m)− U(m, δ/4B2)

N̂(B,m) +BU(m, δ/4B2)
,

UCB(B,m, δ) :=
Ĉ(B,m) + U(m, δ/4B2)

N̂(B,m)−BU(m, δ/4B2)
.

and φ(B,m, δ) := 16
α2BU(m, δ

4B2). Using the bound on
U−1(ε, δ) given above, we see that

φ−1(B, ε, δ) := min{m : φ(B,m, δ) ≤ ε}

≤ 16cU ε
−2

α4B2 log 8B2 log 16ecU ε
−2

α4B2δ /δ.

Define the events

Ec =

∞⋂
B=1

∞⋂
m=1

{
|Ĉ(B,m)− cB | ≤ U(m, δ

4B2)
}

En =

∞⋂
B=1

∞⋂
m=1

{
1
B |N̂(B,m)− nB | ≤ U(m, δ

4B2)
}

Lemma 2.2. For the events defined above, P(Ecc ∪ Ecn) < δ.
On the event, Ec ∩ En the following happen. After INITIAL-
IZE is called on bracket k, each B ∈ (bk−1, bK] satisfies
P (CB 6= 1) > α/2, and U(m, δ) < α/4. In addition, for
any m > 0 and any B ∈ N satisfying these conditions we
have that with probability greater than 1− δ

ρ(B) ≤ UCB(B,m, δ) ≤ ρ̂(B,m) + φ(B,m, δ)

ρ(B) ≥ LCB(B,m, δ) ≥ ρ̂(B,m)− φ(B,m, δ).

In general UCB(B,m, δ) could be negative so the call to
INITIALIZE prevents this and ensures the confidence bounds
given hold. In practice α > 1/2 so the number of calls to
Pull needed by INITIALIZE is O(1) for each bracket, so the
initialization step will not contribute to regret. Throughout
the following, we assume the event Ec ∩ En.

Note that the confidence interval given by φ implies that
it takes fewer pulls to reach the same level of statistical
confidence for large values ofB compared to smaller values.
We are now ready to state our main regret theorem for a
single bracket.

Theorem 2.3. Suppose PULL is calledm times on bracket k
and uses V total flips. Assume on the i-th pull, the maximum

active policy is Bi and takes vi ≤ Bi flips. Then,

V ρ∗−
m∑
i=1

viρ(Bi) ≤ V∆k

+
√
cV bk

α4b2k−1
log (V) log

(
bk−1

log(V/α)
δ

)
where c is an absolute constant ρk,∗ :=
maxbk−1<B≤bk ρ(B) and ∆k := ρ∗ − ρk,∗.

Sketch of Proof. For any policy B in bracket k,

ρ∗ − ρ(B) = ρ∗ − ρ∗k + ρ∗k − ρ(B) = ∆k + (ρ∗k − ρ(B)).

Thus the regret using policy B decomposes into two terms:
the regret of the best policy in the bracket relative to playing
ρ∗, plus the regret of policy B relative to the best policy in
bracket. This gives the first term. For the second term, we
bound the number of pulls to the bracket it takes to eliminate
policies with regret more than ε by φ−1(bk−1, ε, δ) and then
applying a peeling argument. See the supplementary for
details.

2.3. Analysis: UCB for Multiple brackets

The appearance of the term bk/b
2
k−1 in the regret expression

of Theorem 2.3 shows the advantage of using brackes. If
we use a single bracket e.g. (τ,Bmax], we incur an addi-
tional factor of Bmax in our regret. This also motivates the
choice of sequence, namely we should choose bk to satisfy
bk/b

2
k−1 < 1. One such sequence is bk = 22k

, however we
find that bk = 2k works well in practice. Finally, throughout
this section we assume that B∗ < bK , i.e. the best policy is
contained in the set of current policies and that we are not
growing brackets - we will handle the more general case in
the next section.

Our argument in this section is similar to that used in the
standard UCB analysis. We first quantify the total number
of calls of PULL by a sub-optimal bracket. Using this, we
bound the regret.
Lemma 2.4. If FIRINGUCB is run with K brackets such
that maxB≤bK ρ(B) = ρ∗ then any bracket k with ∆k > 0
is allocated at most φ−1(bk−1,∆k/2, δ) coins.

Proof. For anyB∗ ≤ bK that satisfies ρ(B∗) = ρ∗ we have
for all m ∈ N, ρ̂(B∗,m) + φ(B∗,m, δ) ≥ ρ(B∗) = ρ∗.
On the other hand, for any B ∈ (bk−1, bk] such that B∗ 6∈
(bk−1, bk] we have

ρ̂(B, t) + φ(B, t, δ) ≤ ρ(B) + 2φ(B, t, δ)

≤ ρk,∗ + 2φ(bk−1, t, δ)

Thus if B∗ ≤ BK , for all t ≥ φ−1(bk−1,∆k/2, δ) we
have ρ̂(B, t) + φ(B, t, δ) ≤ ρ∗ which implies that the sub-
optimal bracket will not have the largest confidence bound.

Firing Bandits: Optimizing Crowdfunding

Theorem 2.5. Suppose FIRINGUCB is run on K brackets
with a total of V flips across all brackets, and such that
maxB≤bK ρ(B) = ρ∗. The total regret incurred is bounded

by
√

c
α4KV log (V) log

(
log(V/α)
δ/bK−1

)
.

Proof. Suppose bracket k has used Vk total flips (e.g., the
sum total flips over all coins it had been allocated in calls to
PULL), then by Theorem 2.3 the regret incurred by bracket
k is bounded by

∆kVk +

√
c
α4Vk log (Vk) log

(
log(Vk/α)
δ/bk−1

)
using the fact that bk

b2k−1
≤ 1. The total regret is given by

summing over all k ≤ K. Now let’s analyze each term
separately - first focusing on the summed second term. By
Jensen’s inequality,∑

k≤K

√
c
α4Vk log(Vk) log

(
log(Vk/α)
δ/bk−1

)
≤
√

c
α4K log(V) log

(
log(V/α)
δ/bK−1

)
V

using the fact that Vk ≤ V, bk−1 ≤ bK and
∑
k≤K Vk = V .

To bound the summed first term we use a peeling argu-
ment (analogous to that in Theorem 2.3). By Lemma 2.4
for any ∆k > 0 we have Vk ≤ bkφ

−1(bk−1,∆k/2, δ) ≤
bk

64cU∆−2
k

α4b2k−1
log(8b2k−1 log(

64ecU∆−2
k

α4b2k−1δ
)/δ). For any η > 0∑

k≤K

∆kVk =
∑

k:∆k<η

∆kVk +
∑

k:∆k≥η

∆kVk

≤ ηV +
∑

k:∆k≥η

∆kbk
64cU∆−2

k

α4b2k−1
log(

8 log(
64ecU∆−2

k

α4b2k−1δ
)

δ/b2k−1
)

≤ ηV +
∑

k:∆k≥η

∆−1
k

64cU
α4 log(

8 log(
64ecU∆−2

k

α4δ)

δ/b2k−1
)

≤ ηV + 1
η

64cU
α4

∑
k≤K

log(8b2k−1 log(64ecUη
−2

α4δ)/δ)

≤ ηV + K
η

64cU
α4 log(8b2K−1 log(64ecUη

−2

α4δ)/δ)

Optimizing over η, the righthand side can be bounded by√
c
α4KV log(log(V/α)

δ/bK−1
).

2.4. Expanding Brackets

Returning to the definition of ρ(B), recall that by the ini-
tialization step for B∗ and any B under consideration,
nB ≥ BP(CB 6= 1) ≥ Bα/2 so that

ρ(B) =
cB
nB
≤ cB
Bα/2

≤ 2

αB

In particular, this implies that ρ∗ ≤ 2
αB∗ . This motivates Al-

gorithm 2.1, we add on brackets opportunistically whenever
there is a possibility that B∗ is not yet being considered.
The proof of Theorem 2.1 is given in the supplementary
materials.

3. Experiments
We compare FIRINGUCB with a number of alternatives.
The first is a natural modification of FIRINGUCB we call
FIRINGBANDITSTHRESHOLD: instead of waiting for a bud-
get B before rejecting a coin that does not convert, we mon-
itor the empirical mean µ̂k after k flips and stop sampling
at flip min{k ≤ B : k d(µ̂k, τ/B) ≥ log(1/δ)} (mark-
ing it as not converting in B flips) where d(·, ·) is the KL
divergence of two Bernoullis and δ = .05. This variant
attempts to predict whether a coin will not convert within
B flips before the full B flips are taken and is motivated
by the guarantees of a Chernoff bound, but has no rigorous
theoretical justification. With the exception of this change,
we maintained estimates of ρ̂(B,m) for each B identically
to FIRINGUCB and eliminated brackets as needed.

We also compare to a variant of the standard UCB algorithm.
For a fixed value of k, NAIVEUCB-k maintains a pool of k
coins. Identically to UCB (we used the anytime formulation
given in (Abbasi-Yadkori et al., 2011)), at each round the
coin with the highest UCB is flipped and its empirical mean
and number of flips are updated. Once a coin reaches τ
heads, it is removed from the pool, a reward of 1 is received,
and a new coin is drawn to replace it.

Finally, as discussed in Section 1.2, the optimal policy with
respect to a given coin reservoir distribution for evaluating
coins will consist of an increasing boundary. Though a
search over this space is difficult in general, we considered
the set of all linear boundaries, parametrized as at−b, a, b >
0. Recall the traditional sequential probability ratio test
(SPRT) corresponds to one of these boundaries (Siegmund,
1985). For each of the reservoir distributions considered
below, we did an exhaustive search to discover the optimal
values of a, b (as always in terms of the number of coins
converted in a fixed budget). We refer to the algorithm that
repeatedly applies the policy at− b as LINEARBOUNDARY-
a, b .

We considered two examples of reservoir distributions.
Firstly, a synthetic example using F1 = Beta(1/20, 1) as
the reservoir distribution, and τ1 = 10.

Secondly, we considered a distribution F2 derived from
actual page click data arising from the search page of the mi-
croloan crowdfunding site Kiva (www.kiva.org). Dur-
ing a period of a week earlier this year, roughly 10000
microloans were listed on Kiva, and on average each loan
was shown about 500 times. The average requested loan

www.kiva.org

Firing Bandits: Optimizing Crowdfunding

Figure 2. F2: Empirical distribution of means for Kiva loans shown
during in a fixed week.

amount on Kiva is $500, and the amount pledged per user
funding a loan was equal to $25 more than half the time
(the default amount). The underlying distribution of em-
pirical µ’s (i.e. # times funded/#times shown to potential
funders) is in Figure 3. The mean µ was ≈ .03. We used
this empirical distribution as our reservoir distribution and
took τ = 25.

Figure 3 displays the results for F1 and Figure 3 for the
Kiva distribution of shown in Figure F2. In both cases, we
supplied each algorithm with a budget of 5× 106 total flips
over all coins considered, and we considered 50 repetitions
of each algorithm with 95% confidence intervals plotted us-
ing a normal approximation. The optimal linear boundaries
in both cases are indicated in the legend, note b = 0 in both
cases.

Figure 3. Coins fired when the reservoir distribution is F1.

The advantage of FIRINGUCB and FIRINGBANDIT-
STHRESHOLDcompared to NAIVEUCB-k is immediately
apparent in this plot - though NAIVEUCB-k can achieve
higher reward in a small time horizon for large values of
k, it fails to provide an anytime regret guarantee. Indeed,

Algorithm F1 F2

FIRINGUCB 135190± 2712 6439± 98
FIRINGBANDITSTHRESHOLD 387038± 6242 11269± 109

LINEARBOUNDARY-a, b 2546582± 1044 1242166± 1479
NAIVEUCB-1000 - 2105± 266
NAIVEUCB-10000 11205± 18 17270± 332

NAIVEUCB-100000 110627± 42 102335± 29
NAIVEUCB-500000 508438± 37 -

Table 1. Number of Coins considered.

NAIVEUCB-k will quickly convert any good coin it sam-
ples, and then be burdened down by many subpar arms
that it is forced to convert before receiving a good arm.
FIRINGUCB successfully manages to avoid this problem by
searching over policy classes that quickly disregard subpar
coins.

Figure 4. Coins fired when the reservoir distribution is F2.

In both cases the LINEARBOUNDARY-a, b policy greatly
outperforms the FIRINGUCB algorithms (by almost a factor
of 4). Recall that in both cases LINEARBOUNDARY-a, b
is a line of the form at, thus any coin that does not get a
head on the first flip will be immediately rejected. This ag-
gressiveness is most apparent when considering the number
of coins that each policy considers, for instance, LINEAR-
BOUNDARY-a, b considers almost 200 times more coins
than FIRINGUCB (see Table 1). In a crowdfunding environ-
ment, such a policy that rejects loans after displaying it just
a single time would certainly be considered unfair and very
impractical.

4. Acknowledgments
Finally, we would like to thank Kiva, especially Melissa
Fabros and Kevin O’Brien for their invaluable help and
providing us with data.

Firing Bandits: Optimizing Crowdfunding

References
Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. Improved

algorithms for linear stochastic bandits. In Advances in
Neural Information Processing Systems, pp. 2312–2320,
2011.

Abernethy, J. D., Amin, K., and Zhu, R. Threshold bandits,
with and without censored feedback. In Advances In
Neural Information Processing Systems, pp. 4889–4897,
2016.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time
analysis of the multiarmed bandit problem. Machine
learning, 47(2-3):235–256, 2002.

Barnett, C. Trends show crowdfunding to surpass vc
in 2016, 2015. URL https://www.forbes.
com/sites/chancebarnett/2015/06/09/
trends-show-crowdfunding-to-surpass\
-vc-in-2016/2/#3d3d1aef666f. [Online;
accessed 9-February-2018].

Berry, D. A., Chen, R. W., Zame, A., Heath, D. C., and
Shepp, L. A. Bandit problems with infinitely many arms.
The Annals of Statistics, pp. 2103–2116, 1997.

Bonald, T. and Proutiere, A. Two-target algorithms for
infinite-armed bandits with bernoulli rewards. In Ad-
vances in Neural Information Processing Systems, pp.
2184–2192, 2013.

Carpentier, A. and Valko, M. Simple regret for infinitely
many armed bandits. In ICML, pp. 1133–1141, 2015.

Chakrabarti, D., Kumar, R., Radlinski, F., and Upfal, E.
Mortal multi-armed bandits. In Advances in neural infor-
mation processing systems, pp. 273–280, 2009.

Jamieson, K. The Analysis of Adaptive Data Collection
Methods for Machine Learning. PhD thesis, University
of Wisconsin-Madison, 2015.

Jamieson, K. G., Haas, D., and Recht, B. The power of adap-
tivity in identifying statistical alternatives. In Advances
in Neural Information Processing Systems, pp. 775–783,
2016.

Jeffries, A. Indie no-go: only one in ten projects gets fully
funded on kickstarter’s biggest rival, 2013. URL https:
//www.theverge.com/2013/8/7/4594824/
less-than-10-percent-of-projects-on\
-indiegogo-get-fully-funded. [Online;
accessed 9-February-2018].

Joulani, P., Gyorgy, A., and Szepesvári, C. Online learning
under delayed feedback. In International Conference on
Machine Learning, pp. 1453–1461, 2013.

Kaufmann, E., Cappé, O., and Garivier, A. On the com-
plexity of best-arm identification in multi-armed bandit
models. The Journal of Machine Learning Research, 17
(1):1–42, 2016.

Kleinberg, R., Niculescu-Mizil, A., and Sharma, Y. Re-
gret bounds for sleeping experts and bandits. Machine
learning, 80(2-3):245–272, 2010.

Kveton, B., Szepesvari, C., Wen, Z., and Ashkan, A. Cas-
cading bandits: Learning to rank in the cascade model.
In International Conference on Machine Learning, pp.
767–776, 2015.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and
Talwalkar, A. Hyperband: A novel bandit-based ap-
proach to hyperparameter optimization. arxiv 2016. arXiv
preprint arXiv:1603.06560, 2016.

Locatelli, A., Gutzeit, M., and Carpentier, A. An optimal
algorithm for the thresholding bandit problem. In Interna-
tional Conference on Machine Learning, pp. 1690–1698,
2016.

Siegmund, D. Sequential Analysis: Tests and Confidence
Intervals. Springer Science & Business Media, 1985.

Simchowitz, M., Jamieson, K., and Recht, B. Best-of-k-
bandits. In Conference on Learning Theory, pp. 1440–
1489, 2016.

Szepesvári, C., Wen, Z., and Ashkan, A. Cascading bandits:
Learning to rank in the cascade model. 2015.

Vernade, C., Cappé, O., and Perchet, V. Stochastic ban-
dit models for delayed conversions. In Conference on
Uncertainty in Artificial Intelligence, 2017.

Wang, Y., Audibert, J.-Y., and Munos, R. Algorithms for
infinitely many-armed bandits. In Advances in Neural
Information Processing Systems, pp. 1729–1736, 2009.

https://www.forbes.com/sites/chancebarnett/2015/06/09/trends-show-crowdfunding-to-surpass\-vc-in-2016/2/#3d3d1aef666f
https://www.forbes.com/sites/chancebarnett/2015/06/09/trends-show-crowdfunding-to-surpass\-vc-in-2016/2/#3d3d1aef666f
https://www.forbes.com/sites/chancebarnett/2015/06/09/trends-show-crowdfunding-to-surpass\-vc-in-2016/2/#3d3d1aef666f
https://www.forbes.com/sites/chancebarnett/2015/06/09/trends-show-crowdfunding-to-surpass\-vc-in-2016/2/#3d3d1aef666f
https://www.theverge.com/2013/8/7/4594824/less-than-10-percent-of-projects-on\-indiegogo-get-fully-funded
https://www.theverge.com/2013/8/7/4594824/less-than-10-percent-of-projects-on\-indiegogo-get-fully-funded
https://www.theverge.com/2013/8/7/4594824/less-than-10-percent-of-projects-on\-indiegogo-get-fully-funded
https://www.theverge.com/2013/8/7/4594824/less-than-10-percent-of-projects-on\-indiegogo-get-fully-funded

Firing Bandits: Optimizing Crowdfunding

Supplementary

5. Proof of Lemma 2.2
Proof. For any B, consider the process of coins being evaluated by πB . Each coin is drawn i.i.d. from F and we observe
whether it fires or not within B flips, and the random number of flips it was flipped. Recall for any m, Ĉ(B,m) is the
empirical proportion of times the first m coins converted, and N̂(B,m) is the empirical mean of the number of times each
of the m coins was flipped. Both Ĉ(B,m) and N̂(B,m) are empirical means of bounded i.i.d. random variables (in [0, 1]
and [0, B], respectively), thus we can apply Equation 1. For brevity let cb = P(CB = 1) and nb = E[Nb].

Define the events

Ec =

∞⋂
B=1

∞⋂
m=1

{
|Ĉ(B,m)− cB | ≤ U(m, δ

4B2)
}

En =

∞⋂
B=1

∞⋂
m=1

{
1
B |N̂(B,m)− nB | ≤ U(m, δ

4B2)
}

First note that P(Ecc ∪ Ecn) ≤ P(Ecc) + P(Ecn), where each case is handled identically. We begin by bounding just one here:

P(Ecc) = P

(∞⋃
B=1

∞⋃
m=1

{
|Ĉ(B,m)− cB | > U(m, δ

4B2)
})

≤
∞∑
B=1

P

(∞⋃
m=1

{
|Ĉ(B,m)− cB | > U(m, δ

4B2)
})

≤
∞∑
B=1

δ
4B2 ≤ δ

2

where the inequalities follow from a union bound and the definition of U , respectively. Thus, P(Ecc ∪ Ecn) ≤ δ.

As discussed in the algorithm overview, we are assuming that the probability of not firing under B∗, P (CB∗ 6= 1) is greater
than α and more generally since P(CB = 1) is increasing with B, P(CB 6= 1) > α for B ≤ B∗. The initialization step
guarantees that any arm with P(CB 6= 1) > α/2 will be eliminated. Indeed, after the initialization step, each B left satisfies
|Ĉ(B,m)− P (CB = 1)| < α/4 and Ĉ(B,m) < 1− 3α/4. For such B, P (CB = 1)− α/2 ≤ Ĉ(B,m)− α/4 < 1− α
which implies P (CB 6= 1) > α/2.

We now derive a more convenient expression to bound ρ̂(B,m) for analysis purposes. For any coin that does not convert, we
are guaranteed that nB = B and by assumption, 1− cB > α/2. Putting these together implies nB > B(1− cB) > Bα/2.
In addition, by assumption, U(m, δ) < α/4, thus

N̂(B,m)−BU(m, δ) > nB −Bα/2 > 0. (2)

So, on Ec ∩ En, the following confidence bound is true.

Ĉ(B,m)− U(m, δ)

N̂(B,m) +BU(m, δ)
≤ cB
nB

<
Ĉ(B,m) + U(m, δ)

N̂(B,m)−BU(m, δ)

Subtracting Ĉ(B,m)/N̂(B,m) from both sides,

Ĉ(B,m)

N̂(B,m)
− LCB(B,m, δ) =

Ĉ(B,m)BU(m, δ) + U(m, δ)N̂(B,m)

N̂(B,m)(N̂(B,m) +BU(m, δ))

<
2BU(m, δ)

(nB −BU)(nB)

<
2BU(m, δ)

(Bα/2−Bα/4)(Bα/2)

≤ 16U(m, δ)

α2B

Firing Bandits: Optimizing Crowdfunding

where the first line uses cB ≤ 1 and nB ≤ B. The second to third line again uses the fact that nB > Bα/2 and
U(m, δ) < α/4. Thus, combining the two above displays we conclude

ρ(B) ≥ Ĉ(B,m)

N̂(B,m)
− φ(B,M, δ)

We now address the upper bound. Similarly,

UCB(B,m, δ)− Ĉ(B,m)

N̂(B,m)
=
U(m, δ)(Ĉ(B,m)B + N̂(B,m))

N̂(B,m)(N̂(B,m)−BU(m, δ))

=
2BU(m, δ)

(nB −BU(m, δ))(nB − (B + 1)U(m, δ))

≤ 2BU(m, δ)

(Bα/2− (B + 1)α/4)2

≤ 16U(m, δ)

α2B

6. Proof of Theorem 2.3
The following lemma puts the confidence bounds to work and establishes that for sufficiently large t, every active policy
will be close to optimal.

Lemma 6.1. Consider a bracket (bk−1, bk] with ρ̄ = maxB∈(bk−1,bk] ρ(B) and B̄ = max{B ∈ (bk−1, bk] : ρ(B) ≥ ρ̄}.
Let Ak(m) denote the active set of policies B ∈ (bk−1, bk] after the bracket has been fed m coins. Then, on events En ∩ Ec
we have max

B∈Ak(m)
ρ̄− ρ(B) ≤ ε whenever m > φ−1(bk−1, ε/4, δ).

Proof. Let B∗k = argmaxB∈(bk−1,bk]ρ(B) (if there are multiple such B∗k’s take any of them). We first show that B∗k will
never be eliminated. With probability at least 1− δ, for any B in the bracket and m ∈ N,

ρ̂(B,m)− ρ̂(B∗k ,m) = (ρ̂(B,m)− ρ(B))− (ρ̂(B∗k ,m)− ρ(B∗k)) + ρ(B)− ρ(B∗k)

≤ φ(B,m, δ) + φ(B∗k ,m, δ)

since by definition, ρ(B) ≤ ρ(B∗k). In particular, the upper confidence bound onB∗k will always exceed the lower confidence
bound on B so B∗k will never be eliminated.

For the smallest integer m ≥ φ−1(bk−1, ε/4, δ) ≥ φ−1(B∗, ε/4, δ), let B̂ = arg maxB∈(bk−1,bk] ρ̂(B,m) − φ(B,m, δ).
Observe

ρ̂(B̂,m)− φ(B̂,m, δ) ≥ ρ̂(B∗k ,m)− φ(B∗k ,m, δ)

≥ ρ(B∗k)− 2φ(B∗k ,m, δ)

≥ ρ(B∗k)− ε/2.

where the last line follows by the definition of φ−1(B∗k , ε/4, δ). On the other hand, for any B such that ρ(B) < ρ(B∗k)− ε
and m ≥ φ−1(bk−1, ε/4, δ) ≥ φ−1(B, ε/4, δ) we have

ρ̂(B,m) + φ(B,m, δ) ≤ ρ(B) + 2φ(B,m, δ)

≤ ρ(B) + ε/2

< ρ(B∗k)− ε/2.

Combining the two above displays shows that for all m ≥ φ−1(bk−1, ε/4, δ) we have

ρ̂(B̂,m)− φ(B̂,m, δ) > ρ̂(B,m) + φ(B,m, δ) implying that B is eliminated from the bracket.

Firing Bandits: Optimizing Crowdfunding

Note that in general the algorithm may cease to send coins to a bracket before we eliminate sub-optimal policies in that
bracket.
Theorem 2.3. Using the notation of Lemma 6.1, suppose PULL is called m times on bracket k and uses a total budget of V
flips. Assume on the i-th pull, the maximum active policy is Bi and takes vi ≤ Bi flips. Then,

V ρ∗ −
m∑
i=1

viρ(Bi) ≤ V∆k +

√
cV bk

α4bk−1

2
log (V) log

(
bk−1

log(V/α)
δ

)
where c is an absolute constant ρk := maxbk−1<B≤bk ρ(B) and ∆k = ρ∗ − ρk,∗.

Proof. For any ε > 0, Lemma 6.1 implies that after φ−1(bk−1, ε/4, δ) coins have been fed to the bracket we are guaranteed
that every active B satisfies ρ̄− ρ(B) ≤ ε. Hence, after this many coins, we can incur an additional regret of at most ε for
each additional flip. In particular, if we define ψ(ε) = φ−1(bk−1, ε/4, δ) and Vi is the total number of flips performed up to
the ith coin, then for any r the regret incurred after Vψ(2−r)) flips during an additional (Vψ(2−r−1)−Vψ(2−r)) coin tosses is at
most 2−r(Vψ(2−r−1)− Vψ(2−r)). If m is the number of coins considered in the lemma, let rm = max{i : ψ(2−ri−1) ≤ m}.
Recursing the same argument over all r ≤ rm, we see that our regret after a total of m coins is at most

rm∑
r=1

2−r(Vψ(2−r−1) − Vψ(2−r)) + 2−rm(Vm − Vψ(2−rm))

For some η to be chosen later, we now partition the sum into two parts, {r : 2−r ≤ η} and {r : 2−r > η}. Consider the first
case, ∑

r:2−r≤η

2−r(Vψ(2−r−1) − Vψ(2−r)) + 2−rm(Vm − Vψ(2−rm))

≤ η
rm∑
r=1

(Vψ(2−r−1) − Vψ(2−r)) + η(Vm − Vψ(2−rm))

≤ ηV

For 2−r > η we use

ψ(ε) = φ−1(bk−1, ε/4, δ) ≤
256cU ε

−2

α4b2k−1

log(8b2k−1 log(
256ecU ε

−2

α4b2k−1δ
)/δ)

to bound

∑
r:2−r≥η

2−r(Vψ(2−r−1) − Vψ(2−r)) ≤
∑

r:2−r≥η

2−rVψ(2−r−1)

≤
∑

r:2−r≥η

2−rbkψ(2−r−1)

≤ 256cU
α4

∑
r:2−r≥η

2−r bk
b2k−12−2r log

(
8 log(

256ecU22r

α4b2k−1δ
)

δ/b2k−1

)

= 256cUbk
α4b2k−1

∑
r:η−1≥2r

2r log

(
8 log(

256ecU22r

α4b2k−1δ
)

δ/b2k−1

)

≤ 256cUbk
α4b2k−1

η−1 log2(1/η) log

(
8 log(

256ecUη
−2

α4b2k−1δ
)

δ/b2k−1

)
≤ cBmax

α4b2k−1
η−1 log2(1/η) log

(
log(η−1/α)
δ/bk−1

)
where the last step holds for some absolute constant c since cU ≤ 4. The result now follows by optimizing over η.

Firing Bandits: Optimizing Crowdfunding

Figure 5. A graph of a prototypical ρ(B). The red indicates the set of brackets under consideration.

7. Proof of Theorem 2.1
Proof. Claim: If K̄ is the index of the largest bracket ever created over all time, bK̄−1 ≤ 2

αρ∗
.

Note that we may assume maxB≤bK̄ ρ(B) = ρ∗, otherwise bK̄ < B∗ ≤ 1
αρ∗

and the claim is true. For any B′ ≤ bK̄ that
satisfies ρ(B′) = ρ∗, regardless of how many coins m have been allocated to its bracket, we have for its UCB:

ρ̂(B′,m) + φ(B′,m, δ) ≥ ρ(B′) = ρ∗.

Because the largest UCB triggers the addition of a bracket when it dips below 2
bKα

(for the current acting value of K), we
have that K̄ = min{` : ρ∗ >

2
αb`
} which implies bK̄−1 ≤ 2

αρ∗
.

Now we consider how many total flips are required to guarantee that B is under consideration, ie, B∗ ∈ (0, bK]. Consider a
time when K brackets are under consideration, and the largest UCB is less than 2ρ∗. If 2ρ∗ ≤ 2

αbK
, then we will trigger a

new bracket and the UCB algorithm will then repeatedly pull it until the largest UCB is under 2ρ∗ again. This process will
repeat until 2ρ∗ ≥ 2

αbK
. However at this time bK ≥ 1/αbK ≥ Bast, so we know that B∗ ≤ bK . Hence, to count the total

number of samples needed to ensure that B∗ ∈ (0, bK] it suffices to count the number of samples needed to ensure that
every bracket has its UCB less than 2ρ∗.

We recall that for any B in the kth bracket, ρ̂(B,mk) + φ(B,mk, δ) ≤ ρ(B) + 2φ(B,mk, δ). By definition ρ(B) ≤ ρ∗ for
all B ∈ N. Because the coins are always allocated to the bracket with the largest upper confidence bound, we can consider
just the minimum mk for each bracket k such that 2φ(B,mk, δ) ≤ ρ∗ since ρ∗ ≤ 2ρ∗ − ρ(B). This value of mk is then
scaled by the maximum number of flips per coin, bk. By similar arguments to that of above, the total number of flips per
bracket before all upper confidence bounds are below 2ρ∗ is bounded by

K∑
k=1

bk φ
−1(bk−1, ρ∗/2, δ) ≤

K∑
k=1

bk
64cUρ

−2
∗

α4b2k−1
log(8b2k−1 log(

64ecUρ
−2
∗

α4b2k−1δ
)/δ)

≤ K 64cUρ
−2
∗

α4 log(8b2K−1 log(
64ecUρ

−2
∗

α4δ)/δ)

≤ K̄ 64cUρ
−2
∗

α4 log(8
α2ρ2
∗

log(
64ecUρ

−2
∗

α4δ)/δ)

≤ K̄ c
α4ρ2
∗

log(1
αρ∗δ

)

where the second to last line follows from K ≤ K̄ and bK̄−1 ≤ 1
αρ∗

, and the last line holds with an asbolute constant due to
the inequality x log(x) ≤ x2 for x ≥ 1.

Once the algorithm has taken this many samples, we are gauranteed that B∗ ∈ bK and Theorem 2.5 applies. The regret after
this time is at most √

c
α4KV log (V) log

(
log(V/α)
δ/bK−1

)
≤
√

c
α4 K̄V log (V) log

(
log(V/α)
αρ∗δ

)

