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1. The Univariate Case
For completeness we show explicitly that the formula

dz

dθ
= −

∂Fθ

∂θ (z)

qθ(z)
(1)

yields the correct gradient. Without loss of generality we
assume that f(z) has no explicit dependence on θ. Substi-
tuting Eqn. 1 for dzdθ we have

Eqθ(z)

[
∂f

∂z

∂z

∂θ

]
= −

∫ ∞
−∞

qθ(z)

qθ(z)

∂f

∂z

∫ z

−∞

∂qθ(z′)

∂θ
dz′dz

= −
∫ ∞
−∞

∂qθ(z′)

∂θ

∫ ∞
z′

∂f

∂z
dzdz′

= −
∫ ∞
−∞

∂qθ(z′)

∂θ
(−f(z′)) dz′

=
d

dθ
Eqθ(z)[f(z)]

(2)

In the second line we changed the order of integration and
in the third we appealed to the fundamental theorem of
calculus, assuming that f(z) is sufficiently regular that we
can drop the boundary term at infinity.

Note that Eqn. 1 is the unique solution v = dz
dθ to the one-

dimensional version of the transport equation that satisfies
the boundary condition limz→∞ qθv = 0:

∂qθ
∂θ

+
∂

∂z
(qθv) = 0 (3)

1.1. Example: Truncated Unit Normal

We consider an illustrative case where Eqn. 1 can be com-
puted in closed form. For simplicity we consider the unit
Normal distribution truncated1 to the interval [0, κ] with κ
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1As one would expect, Eqn. 1 yields the standard reparameter-
ized gradient in the case of an non-truncated Normal distribution.
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Figure 1. We illustrate how the pathwise derivative is obtained
from the CDF in the univariate case. The black curves depict
the CDF of the Gamma distribution with β = 1 and α varying
between 1.4 and 2.0. The red line corresponds to a fixed quantile
u. As we vary α the point z where the CDF intersects the red line
varies. The rate of this variation is precisely the derivative dz

dα
.

as the only free parameter. A simple computation yields

dz

dκ
= e

1
2 (z

2−κ2)
erf( z√

2
)

erf( κ√
2
)

(4)

First, notice that for z = κ we have dz
dκ = 1, which is what

we would expect, since u = 1 is mapped to the rightmost
edge of the interval at z = κ, i.e. F−1κ (1) = κ. Similarly
we have dz

dκ = 0 for z = 0. For z ∈ (0, κ) the derivative dz
dκ

interpolates smoothly between 0 and 1. This makes sense,
since for a fixed value of u as we get further into the tails of
the distribution, nudging κ to the right has a correspondingly
larger effect on z = F−1κ (u), while it has a correspondingly
smaller effect for u in the bulk of the distribution.

Also note that the truncated unit normal is amenable to the repa-
rameterization trick provided that one can compute the inverse
error function erf−1.
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Figure 2. We compare the OMT gradient to the score function
gradient for the test function f(z) = z4 where qθ(z) is a mixture
with two components. Depicted is the variance of the gradient
w.r.t. the logit `1 that governs the mixture probability of the first
component. The logit of the second component is fixed to be zero.

1.2. Example: Univariate Mixture Distributions

Consider a mixture of univariate distributions:

qθ(z) =

K∑
k=1

πkqθk(z) (5)

If we have analytic control over the individual CDFs
(or know how to approximate them and their derivatives
w.r.t. the parameters) then we can immediately appeal to
Eqn. 1. Concretely for derivatives w.r.t. the parameters of
each component distribution we have:

∂z

∂θi
= −

πi
∂Fθi
∂θi

(z)

qθ(z)
(6)

from which we can get, for example

∂z

∂µi
=
πiqµi,σi(z)

qθ(z)
(7)

for a mixture of univariate Normal distributions.

In Fig. 2 we demonstrate that the OMT gradient for a mix-
ture of univariate Normal distributions can have much lower
variance than the corresponding score function gradient.
Here the mixture has two components with µ = (0, 1) and
σ = (1, 1). Note that using the reparameterization trick in
this setting would be impractical.

2. The Multivariate Case
Suppose we are given a velocity field that satisfies the trans-
port equation:

∂

∂θ
qθ +∇z ·

(
qθv

θ
)

= 0 (8)

Then, as discussed in the main text, we can form the gradient
estimator

∇θL = Eqθ(z)
[
vθ · ∇zf

]
(9)

That this gradient estimator is unbiased follows directly
from the transport equation and divergence theorem:

∇θL =

∫
dz
∂qθ(z)

∂θ
f(z) = −

∫
dz∇z ·

(
qθv

θ
)
f(z) =∫

dzqθ(z)∇zf · vθ = Eqθ(z)
[
∇zf · vθ

]
(10)

where we appeal to the identity∫
V

f∇z ·(qθvθ) dV =−
∫
V

∇zf · (qθvθ) dV+∮
S

(qθfv
θ) · n̂ dS

(11)

and assume that qθfvθ is sufficiently well-behaved that we
can drop the surface integral. This is just the multivariate
generalization of the derivation in the previous section.

3. Multivariate Normal
3.1. Whitened Coordinates

First we take a look at gradient estimators in whitened co-
ordinates z̃ = L−1z. The reparameterization trick ansatz
for the velocity field can be obtained by transforming the
solution in Eqn. 26 (which is also given in the main text) to
the new coordinates:

ṽi ≡
∂z̃i
∂Lab

= L−1ia z̃b (12)

Note that the transport equation for the multivariate distri-
bution can be written in the form

∂

∂Lab
log q +∇ · ṽ + ṽ · ∇ log q = 0 (13)

The homogenous equation (i.e. the transport equation with-
out the source term ∂ log q

∂Lab
) is then given by

∇ · ṽ = ṽ · z̃ (14)

In these coordinates it is evident that infinitesimal rotations,
i.e. vector fields of the form

w̃i = (Az̃)i with Aij = −Aji (15)

satisfy2 the homogenous equation, since

∇ · w̃ = Tr A = 0 =
∑
ij

z̃iAij z̃j = w̃ · z̃ (16)

2These are in fact not the only solutions; in addition there are
non-linear solutions.
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Finally, if we make the specific choice

Aij =
1

2

(
δibL

−1
ja − δjbL

−1
ia

)
(17)

we find that ṽi + w̃i (which automatically satisfies the trans-
port equation) and which is given by

ṽi + w̃i ≡
(
∂z̃i
∂Lab

)OMT

=
1

2

(
L−1ia z̃b + δib

∑
k

L−1ka z̃k

)
satisfies the symmetry condition

∂

∂z̃j

(
∂z̃i
∂Lab

)OMT

=
∂

∂z̃i

(
∂z̃j
∂Lab

)OMT

(18)

since

∂

∂z̃j

(
∂z̃i
∂Lab

)OMT

=
1

2

(
L−1ia δjb + L−1ja δib

)
(19)

which is symmetric in i and j. This implies that the velocity
field can be specified as the gradient of a scalar field (this is
generally true for the OMT solution), i.e.(

∂z̃i
∂Lab

)OMT

=
∂

∂z̃i
T̃ ab(z̃) (20)

for some T̃ ab(z̃), which is evidently given by3

T̃ ab(z̃) =
1

2
(L−Tz̃)az̃b (21)

Note, however, that this is not the OMT solution we care
about: it minimizes a different kinetic energy functional
to the one we care about (namely it minimizes the kinetic
energy functional in whitened coordinates and not in natural
coordinates).

We now explicitly show that solutions of the transport equa-
tion that are modified by the addition of an infinitesimal
rotation (as in Eqn. 18) still yield valid gradient estimators.
Consider a test statistic f(z̃) that is a monomial in z̃:

f(z̃) = κ

n∏
i=1

z̃nii (22)

It is enough to show that the following expectation van-
ishes:4

Eqθ(z̃)

∑
ij

∂f

∂z̃i
Aij z̃j

 (23)

where Aij is an antisymmetric matrix. The sum in Eqn. 23
splits up into a sum of paired terms of the form

Eqθ(z̃)

[
Aij

(
∂f

∂z̃i
z̃j −

∂f

∂z̃j
z̃i

)]
(24)

3Up to an unspecified additive constant.
4Note that we can thus think of this term as a control variate.

We can easily show that each of these paired terms has zero
expectation. First note that the expectation is zero if either
of i or j is even (since Eqθ(z̃)

[
z̃2k−1l

]
= 0). If both i and j

are odd we get (using Eqθ(z̃)
[
z̃2kl
]

= (2k − 1)!!, where !!
is the double factorial)

κAij [ni(ni−2)!!nj !!−nj(nj−2)!!ni!!] = 0 (25)

Thus, solutions of the transport equation that are modified
by the addition of an infinitesimal rotation still yield the
same gradient ∇LabEqθ(z̃) [f(z̃)] in expectation.

3.2. Natural Coordinates

We first show that the velocity field vRT that follows from
the reparameterization trick satisfies the transport equation
in the (given) coordinates z, where we have

vRTi ≡ ∂zi
∂Lab

= δia(L−1z)b (26)

We have that

∂ log q

∂Lab
=

∂

∂Lab

(
− log detL− 1

2
zTΣ−1z

)
= −L−1ba +

(
Σ−1z

)
a

(
L−1z

)
b

(27)

and
∇ · vRT = L−1ba (28)

and

vRT · ∇ log q = −vRT ·
(
Σ−1z

)
= −

(
Σ−1z

)
a

(
L−1z

)
b

Thus, the terms cancel term by term and the transport equa-
tion is satisfied.

What about the OMT gradient in the natural (given) coor-
dinates z? To proceed we represent v as a linear vector
field with symmetric and antisymmetric parts. Imposing the
OMT condition determines the antisymmetric part. Impos-
ing the transport equation determines the symmetric part.
We find that

vOMT
i =

1

2

(
δia(L−1z)b + zaL

−1
bi

)
+ (Sabz)i (29)

where Sab is the unique symmetric matrix that satisfies the
equation

Σ−1Sab + SabΣ−1 = Ξab with Ξab ≡ ξab + (ξab)T

where we define

ξabij = 1
2

(
L−1bi Σ−1aj −δai(L

−1Σ−1)bj
)

(30)

To explicitly solve Eqn. 30 for Sab we use SVD to write

Σ−1 = UDUT and Ξ̃ab = UTΞabU (31)
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Figure 3. We compare the OMT gradient to the gradient from the
reparameterization trick for a bivariate Normal distribution and the
test function fθ(z)= cosω · z with ω = (1, 1). The Cholesky
factor L has diagonal elements (1, 1) and off-diagonal element
L21. The gradient is with respect to L21. The variance for the
OMT gradient is everywhere lower than for the reparameterization
trick gradient.

where D and U are diagonal and orthogonal matrices, re-
spectively. Then we have that

Sab = U
(

Ξ̃ab ÷ (D ⊗ 1+1⊗D)
)
UT (32)

where ÷ represents elementwise division and ⊗ is the outer
product. Note that a naive implementation of a gradient
estimator based on Eqn. 29 would explicitly construct ξabij ,
which has size quartic in the dimension. A more efficient
implementation will instead make use of ξabij ’s structure as
a sum of products and never explicitly constructs ξabij .5

3.3. Bivariate Normal distribution

In Fig. 3 we compare the performance of our OMT gradient
for a bivariate Normal distribution to the reparameterization
trick gradient estimator. We use a test function fθ(z) for
which we can compute the gradient exactly. We see that the
OMT gradient estimator performs favorably over the entire
range of parameters considered.

4. Gradient Variance for Linear Test
Functions

We use the following example to give more intuition for
when we expect OMT gradients for the multivariate Nor-
mal distribution to be lower variance than RT gradients.
Let qθ(z) be the unit normal distribution in D dimensions.
Consider the test function

f(z) =

D∑
i=1

κizi L = Eqθ(z) [f(z)] (33)

5Our implementation can be found here:
https://github.com/uber/pyro/blob/0.2.1/pyro/distributions/omt_mvn.py

and the derivative w.r.t. the off-diagonal elements of the
Cholesky factor L. A simple computation yields the total
variance of the RT estimator:∑

a>b

Var

(
∂L
∂Lab

)
=
∑
a>b

κ2a (34)

Similarly for the OMT estimator we find∑
a>b

Var

(
∂L
∂Lab

)
=

1

4

∑
a>b

(
κ2a + κ2b

)
(35)

So if we draw the parameters κi from a generic prior we
expect the variance of the OMT estimator to be about half of
that of the RT estimator. Concretely, if κi ∼ N (0, 1) then
the variance of the OMT estimator will be exactly half that
of the RT estimator in expectation. While this computation
is for a very specific case—a linear test function and a
unit normal qθ(z)—we find that this magnitude of variance
reduction is typical.

5. The Lugannani-Rice Approximation
Saddlepoint approximation methods take advantage of cu-
mulant generating functions (CGFs) to construct (often very
accurate) approximations to probability density functions in
situations where full analytic control is intractable.6 These
methods are also directly applicable to CDFs, where a par-
ticularly useful approximation—often used by statisticians
to estimate various tail probabilities—has been developed
by Lugannani and Rice (Lugannani & Rice, 1980). This
approximation—after additional differentiation w.r.t. the
parameters of the distribution qθ(z)—forms the basis of
our approximate formulas for pathwise gradients for the
Gamma, Beta and Dirichlet distributions in regions of (z, θ)
where the (marginal) density is approximately gaussian. As
we will see these approximations attain high accuracy.

For completeness we briefly describe the Lugannani-Rice
approximation. It is given by:

F (z) ≈

{
Φ(ŵ) + φ(ŵ)(1/ŵ − 1/û) if z 6= µ
1
2 + K′′′(0)

6
√
2πK′′(0)3/2

if z = µ
(36)

where

ŵ = sgn(ŝ)
√

2{ŝz −K(ŝ)} û = ŝ
√
K ′′(ŝ) (37)

and where ŵ and û are functions of z and the saddlepoint
ŝ, with the saddlepoint defined implicitly by the equation
K ′(ŝ) = z. Here K(s) = log Eqθ(z) [exp(sz)] is the CGF
of qθ(z), µ is the mean of qθ(z), and Φ(·) and φ(·) are the
CDFs and probability densities of the unit normal distri-
bution. Note that Eqn. 36 appears to have a singularity at

6We refer the reader to (Butler, 2007) for an overview.
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z = µ; it can be shown, however, that Eqn. 36 is in fact
smooth at z = µ. Nevertheless, in our numerical recipes we
will need to take care to avoid numerical instabilities near
z = µ that result from finite numerical precision.

6. Gamma Distribution
Our numerical recipe for dz

dα for the standard Gamma dis-
tribution with β = 1 divides (z, α) space into three regions.
If z < 0.8 we use the Taylor series expansion given in the
main text. If α > 8 we use the following set of expressions
derived from the Lugannani-Rice approximation. Away
from the singularity, for z ≷ α± δ · α, we use:

dz

dα
=

√
2
α

α+z
(α−z)2 +log z

α

(√
8α
z−α ± (z−α−α log z

α )−
3
2

)
√

8α/(zSα)
(38)

where

Sα ≡ 1+ 1
12α+ 1

288α2

Near the singularity, i.e. for |z − α| ≤ δ · α, we use:

dz

dα
=

1440α3+6αz(53−120z)−65z2+α2(107+3600z)

1244160α5/(1 + 24α+ 288α2)
(39)

Note that Eqn. 39 is derived from Eqn. 38 by a Taylor expan-
sion in powers of (z−α). We set δ = 0.1, which is chosen to
balance use of Eqn. 38 (which is more accurate) and Eqn. 39
(which is more numerically stable for z ≈ α). Finally, in the
remaining region (z > 0.8 and α < 8) we use a bivariate
rational polynomial approximation f(z, α) = exp

(
p(z,α)
q(z,α)

)
where p, q are polynomials in the coordinates log(z/α) and
log(α), with terms up to order 2 in log(z/α) and order 3
in log(α). We fit the rational approximation using least
squares on 15696 random (z, α) pairs with α sampled log
uniformly between 0.00001 and 10, and z sampled condi-
tioned on α. Our complete approximation for dz

dα is unit
tested to have relative accuracy of 0.0005 on a wide range
of inputs.

7. Beta Distribution
The CDF of the Beta distribution is given by

Fα,β(z) =
B(z;α, β)

B(α, β)
(40)

where B(z;α, β) and B(α, β) are the incomplete beta func-
tion and beta function, respectively. Our numerical recipe
for computing dz

dα and dz
dβ for the Beta distribution divides

(z, α, β) space into three sets of regions. First suppose that
z � 1. Then just like for the Gamma distribution, we can

compute a Taylor series of B(z;α, β) in powers of z

B(z;α, β) = zα

(
1

α
+

1− β
1 + α

z +
1− 3β

2 + β2

2

2 + α
z2 + ...

)
(41)

that can readily be differentiated w.r.t. either α or β. Com-
bined with the derivatives of the beta function,

d

dα
B(α, β) = B(α, β) (ψ(α)− ψ(α+ β))

d

dβ
B(α, β) = B(α, β) (ψ(β)− ψ(α+ β))

(42)

this gives a complete recipe for approximating dz
dα and dz

dβ

for small z.7 By appealing to the symmetry of the Beta
distribution

Beta(z|α, β) = Beta(1− z|β, α) (43)

we immediately gain approximations to dz
dα and dz

dβ for
1− z � 1. It remains to specify when these various approx-
imations are applicable. Let us define ξ = z(1− z)(α+ β).
Empirically we find that these approximations are accurate
for dz

dα if

1. z ≤ 0.5 and ξ < 2.5; or

2. z ≥ 0.5 and ξ < 0.75

with the conditions flipped for dzdβ . Depending on the precise
region, we use 8 to 10 terms in the Taylor series.

Next we describe the set of approximations we derived
from the Lugannani-Rice approximation and that we find
to be accurate for α > 6 and β > 6. By Eqn. 43 it is suf-
ficient to describe our approximation for dz

dα . First define
σ =

√
αβ

(α+β)
√
α+β+1

, the standard deviation of the Beta distri-
bution. Then away from the singularity, for z ≷ α

α+β ± ε ·σ,
we use:

dz

dα
=
z(1− z)

(
A+ log α

z(α+β)B±
)

√
2αβ
α+β

Sαβ
SαSβ

(44)

with

A =
β(2α2(1− z) + αβ(1− z) + β2z)√

2αβ(α+ β)3/2(α(1− z)− βz)2

and

B± =

√
2αβ
α+β

α(1−z)−βz
±1

2

(
α log α

(α+β)(1−z) +β log β
(α+β)z

)−3/2
Near the singularity, i.e. for |z − α

α+β | ≤ ε · σ, we use:

dz

dα
=

(12α+ 1)(12β + 1)(H+ I + J +K)

12960α3β2(α+ β)2(12α+ 12β + 1)
(45)

7Here ψ(·) is the digamma function, which is available in most
advanced tensor libraries.
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Figure 4. Relative error of our four approximations for dz
dα

for the
Beta distribution in their respective regions. Note that the region
boundaries are in the three-dimensional z, α, β space, so the upper
boundaries are only cross-sections.

with

H=8α4(135β − 11)(1− z)
I=α3β(453− 455z + 1620β(1− z))
J =3α2β2(180β − 90z + 59)

K=αβ3(20z(27β + 16) + 43) + 47β4z

We set ε = 0.1, which is chosen to balance numerical ac-
curacy and numerical stability (just as in the case of the
Gamma distribution).

Finally, in the remaining region we use a rational multivari-
ate polynomial approximation

f(z, α, β) =
p(z, α, β)

q(z, α, β)

z(1− z)
β

(ψ(α+ β)− ψ(α))

where p, q are polynomials in the three coordinates log(z),
log(α/z), and log((α + β)z/α) with terms up to order 2,
2, and 3 in the respective coordinates. The rational approx-
imation was minimax fit to 2842 points in the remaining
region for 0.01 < α, β < 1000. Test points were randomly
sampled using log uniform sampling of α, β and stratified
sampling of z conditioned on α, β. Minimax fitting achieved
about half the maximum error of simple least squares fitting.
Our complete approximation for dz

dα and dz
dβ is unit tested to

have relative accuracy of 0.001 on a wide range of inputs.

8. Dirichlet Distribution
For completeness we record the general version of the for-
mula for the pathwise gradient (given implicitly in the main
text):

dzi
dαj

= −
∂FBeta

∂αj
(zj |αj , αtot − αj)

Beta(zj |αj , αtot − αj)
×
(
δij − zi
1− zj

)
(46)

We want to confirm that Eqn. 46 satisfies the transport equa-
tion for each choice of j = 1, ..., n:

∂

∂αj
log q +∇ · v + v · ∇ log q = 0 (47)

Treating zj as a function of z−j =
(z1, ..., zj−1, zj+1, ..., zn) everywhere and introduc-
ing obvious shorthand for FBeta(·) and Beta(·) we
have:

∇ · v =
∑
i6=j

∂

∂zi

(
∂FBeta

∂αj
(zj |αj , αtot − αj)

Beta(zj |αj , αtot − αj)
zi∑
k 6=j zk

)

=

∂F
∂αj

B

n− 2

1− zj
− ∂ logB

∂αj
+
∂F

∂αj

(logB)
′

B

where (logB)
′ is differentiated w.r.t. the argument ofB(zj).

We further have that

v · ∇ log q =

∂F
∂αj

B

∑
i6=j

αi − 1

1− zj
− αj − 1

zj


and

∂

∂αj
log q = ψ(αj)− ψ(αtot) + log zj

Since we have

∂ logB

∂αj
= ψ(αj)− ψ(αtot) + log zj

and
(logB)

′
=
αj − 1

zj
− αtot − αj − 1

1− zj
it becomes clear by comparing the individual terms that
everything cancels identically and so Eqn. 47 is in fact
satisfied by the velocity field in Eqn. 46.

Finally, we note that Eqn. 46 is not the OMT solution in
the coordinates z−j . It is the OMT solution in some coordi-
nate system, but it is not readily apparent which coordinate
system that might be.

9. Student’s t-Distribution
As another example of how to compute pathwise gradients
consider Student’s t-distribution. Although we have not
done so ourselves, it should be straightforward to compute
an accurate approximation to Eqn. 1. In the absence of
such an approximation, however, we can still get a pathwise
gradient for the Student’s t-distribution by composing the
Normal and Gamma distributions:

τ ∼ Gamma(ν/2, 1) x|τ ∼ N (0, τ−
1
2 )

⇒ z ≡
√

ν
2x ∼ Student(ν)

(48)
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Since sampling z like this introduces an auxiliary random
degree of freedom, pathwise gradients dz

dν computed using
Eqn. 48 will exhibit a larger variance than a direct computa-
tion of Eqn. 1 would yield.8 The point is that no additional
work is needed to obtain this particular form of the pathwise
gradient: just use pathwise gradients for the Gamma and
Normal distributions and the sampling procedure in Eqn. 48.

10. Baseball Experiment
To gain more insight into when we expect the OMT gra-
dient estimator for the multivariate Normal distribution to
outperform the RT gradient estimator, we conduct an addi-
tional experiment. We consider a model for repeated binary
trial data (baseball players at bat) using the data in (Efron
& Morris, 1975) and the modeling setup in (Stan Manual,
2017) with partial pooling. There are 18 baseball players
and the data consists of 45 hits/misses for each player. The
model has two global latent variables and 18 local latent vari-
ables so that the posterior is 20-dimensional. Specifically,
the two global latent random variables are φ and κ, with
priors Uniform(0, 1) and Pareto(1, 1.5) ∝ κ−5/2, respec-
tively. The local latent random variables are given by θi for
i = 0, ..., 17, with p(θi) = Beta(θi|α = φκ, β = (1−φ)κ).
The data likelihood factorizes into 45 Bernoulli observations
with mean chance of success θi for each player i. The varia-
tional approximation is formed in the unconstrained space
{logit(φ), log(κ−1), logit(θi)} and consists of a multivari-
ate Normal distribution with a full-rank Cholesky factor L.
We use the Adam optimizer for training with a learning rate
of 5× 10−3 (Kingma & Ba, 2014).

For this particular model mean field SGVI performs rea-
sonably well, since correlations between the latent random
variables are not particularly strong. If we initialize L near
the identity, we find that the OMT and RT gradient esti-
mators perform nearly identically, with the difference that
the former has an increased computational cost of about
25% per iteration. If, however, we initialize L far from the
identity—so that the optimizer has to traverse a considerable
distance in L space where the covariance matrix exhibits
strong correlations—we find that the OMT estimator makes
progress more quickly than the RT estimator and converges
to a higher ELBO, see Fig. 5. Generalizing from this, we
expect the OMT gradient estimator for the multivariate Nor-
mal distribution to exhibit better sample efficiency than the
RT estimator in problems where the covariance matrix ex-
hibits strong correlations. This is indeed the case for the
GP experiment in the main text, where the learned kernel
induces strong temporal correlations.

8Note, however, that this additional variance will decrease as ν
increases.

103 104

Iteration

70

68

66

64

62

60

58

56

EL
BO

OMT
RT

Figure 5. ELBO training curves for the experiment in Sec. 10 for
the case where the Cholesky factor is initialized far from the iden-
tity. Depicted is the mean ELBO for 10 runs with 1−σ uncertainty
bands around the mean. The OMT gradient estimator learns more
quickly than the RT estimator and attains a higher ELBO.

11. Experimental Details
As noted in the main text, we use single-sample gradient
estimators in all experiments. Unless noted otherwise, we
always include the score function term for RSVI.

11.1. Multivariate Normal Synthetic Test Function
Experiment

We describe the setup for the experiment corresponding to
Fig. 5 in the main text. The dimension is fixed to D = 50
and the mean of qθ is fixed to the zero vector. The Cholesky
factor L that enters into qθ is constructed as follows. The
diagonal of L consists of all ones. To construct the off-
diagonal terms we proceed as follows. We populate the
entries below the diagonal of a matrix ∆L by drawing each
entry from the uniform distribution on the unit interval.
Then we define L = 1D + r∆L. Here r controls the
magnitude of off-diagonal terms of L and appears on the
horizontal axis of Fig. 5 in the main text. The three test
functions are constructed as follows. First we construct a
strictly lower diagonal matrix Q′ by drawing each entry
from a bernoulli distribution with probability 0.5. We then
define Q = Q′ + Q′T . The cosine test function is then
given by

f(z) = cos

∑
i,j

Qijzi/D

 (49)

The quadratic test function is given by

f(z) = zTQz (50)

The quartic test function is given by

f(z) =
(
zTQz

)2
(51)

In all cases the gradients can be computed analytically,
which makes it easier to reliably estimate the variance of
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the gradient estimators.

11.2. Sparse Gamma DEF

Following (Naesseth et al., 2017), we use analytic expres-
sions for each entropy term (as opposed to using the sam-
pling estimate). We use the adaptive step sequence ρn pro-
posed by (Kucukelbir et al., 2016) and also used in (Naes-
seth et al., 2017), which combines RMSPROP (Tieleman &
Hinton, 2012) and Adagrad (Duchi et al., 2011):

ρn = η · n−1/2+δ ·
(

1 +
√
sn
)−1

.

sn = t (ĝn)
2

+ (1− t)sn−1
(52)

Here n = 1, 2, ... is the iteration number and the operations
in Eqn. 52 are to be understood element-wise. In our case
the gradient ĝn is always a single-sample estimate. We fix
δ = 10−16 and t = 0.1. In contrast to (Kucukelbir et al.,
2016) but in line with (Naesseth et al., 2017) we initialize s0
at zero. To choose η we did a grid search for each gradient
estimator and each of the two model variants. Specifically,
for each η we did 100 training iterations for three trials with
different random seeds and then chose the η that yielded the
highest mean ELBO after 100 iterations. This procedure
led to the selection of η = 4.5 for the first model variant
and η = 30 for the second model variant (note that within
each model variant the gradient estimators preferred the
same value of η). For the first model variant we included
the score function-like term in the RSVI gradient estimator,
while we did not include it for the second model variant,
as we found that this hurt performance. In both cases we
used the shape augmentation setting B = 4, which was
also used for the results reported in (Naesseth et al., 2017).
After fixing η we trained the model for 2000 iterations,
initializing with another random number seed. The figure in
the main text shows the training curves for that single run.
We confirmed that other random number seeds give similar
results. A reference implementation can be found here:
https://github.com/uber/pyro/blob/0.2.1/examples/sparse_gamma_def.py

11.3. Gaussian Process Regression

We used the Adam optimizer (Kingma & Ba, 2014) to opti-
mize the ELBO with single-sample gradient estimates. We
chose the Adam hyperparameters by doing a grid search
over the learning rate and β1. For each combination (lr, β1)
we did 20 training iterations for three trials with different
random seeds and then chose the combination that yielded
the highest mean ELBO after 20 iterations. This procedure
led to the selection of a learning rate of 0.030 and β1 = 0.50
for both gradient estimators (OMT and reparameterization
trick). We then trained the model for 500 iterations, ini-
tializing with another random number seed. The figure in
the main text shows the training curves for that single run.

We confirmed that other random number seeds give similar
results.
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