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1. Proofs
1.1. Proof of Lemma 1

We first write Φ as Φ(v) = g(Av)Av, with g(w) := 1/‖w‖.
Let t 7→ s(t) be some curve on the unit sphere Sd−1 and
s̃(t) := Φ(s(t)) its image and assume v = s(0) and ṽ =
s̃(0). Then we have

d

dt
Φ(s(t)) = 〈∇g(As(t)), As′(t)〉As(t)

+g(As(t))As′(t),

with∇g(w) = −w/‖w‖3. Hence we obtain

d

dt
Φ(s(t)) (1)

=
−1

‖As(t)‖3
〈As(t), As′(t)〉As(t) + g(As(t))As′(t)

= g(As(t))
(
As′(t)− s̃(t)s̃(t)TAs′(t)

)
= g(As(t))

(
1− s̃(t)s̃(t)T

)
As′(t), (2)

where we have used s̃(t) = As(t)/‖As(t)‖. Note that
the matrix 1 − s̃(t)s̃(t)T projects As′(t) onto the space
orthogonal to s̃(t), that is, the tangent space of the surface
of the sphere at s̃(t). Further, the matrix

g(As(t))
(
1− s̃(t)s̃(t)T

)
A

maps each tangent vector s′(t) at s(t) (for any curve s)
to the corresponding tangent vector s̃′(t) at s̃(t). It thus
describes the JacobianDΦ mapping between tangent spaces
Ts(t) and Ts̃(t) of the sphere at s(t) and s̃(t), respectively.
Let e1, . . . , ed−1 and ẽ1, . . . , ẽd−1 be orthonormal bases
of Tv and Tṽ, respectively (that is, bases of v⊥ and ṽ⊥,
respectively). If we set Uv := (e1, . . . , ed−1) and Uṽ :=
(ẽ1, . . . , ẽd−1), the matrix representation of the Jacobian
DΦ with respect to these bases reads

D̂Φ(v) := g(Av)UTṽ AUv.
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We then have

det D̂Φ(v) = g(Av)d−1 det(UTṽ AUv).

For later use, we also observe that multiplying the equation
ṽ = Av/‖Av‖ with A−1 and taking the norm on both sides
yields

1/‖Av‖ = ‖A−1ṽ‖. (3)

For the probability density we thus obtain

p(ṽ) = |det D̂Φ(Φ−1(ṽ))|−1

=
(
‖A−1ṽ‖d−1|det(UTṽ AUv)|

)−1
=

(
‖A−1ṽ‖d−1|det(Ã)|

)−1
, (4)

with the abbreviation Ã := UTṽ AUv . Let us now define the
orthogonal d× d matrices

Wv := (Uv, v) and (Uṽ, ṽ).

Then we define A′ := WT
ṽ AWv, which implies

|det(A′)| = |det(A)|. A′ can be written as

A′ =

(
Ã 0
w ‖Av‖

)
,

where w is some 1× (d− 1)-matrix. Hence we obtain

det(A′) = det(Ã)‖Av‖ =
det(Ã)

‖A−1ṽ‖
,

where we have used also (3). We can thus rewrite (4) as

p(ṽ) =
1

|det(A)|‖A−1ṽ‖d
.

1.2. Proof of Theorem 3

By definition, pθ′ is obtained by applying the map
√
R′θ

to vectors drawn from a rotation invariant distribution with
renormalizing it later. Without loss of generality, let all the
matrices Rθ be diagonal with eigenvalues fj(θ) (note that
they commute). Let v be generated by drawing each entry
vj from N (0, 1). We can then compute the entries of ṽ by

ṽj :=
1∑d

i=1 fj(θ
′)v2j

√
fj(θ′)vj .
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Rewriting (10) in terms of vj instead of ṽ yields

log pθ(ṽ) = −1

2

log
1

d

d∑
j=1

fj(θ
′)fj(θ)

−1v2j

− log
1

d

d∑
j=1

fj(θ
′)v2j

+
1

2
log detRθ.

Since each v2j is an independent squared standard Gaussian
it has expectation 1 and variance 2. Therefore, the random
variable

1

d

d∑
j=1

fj(θ
′)fj(θ)

−1v2j

has mean τ(RθR
−1
θ′ ) and variance

2

d2

d∑
j=1

fj(θ
′)2fj(θ)

−2.

Due to Chebychev’s inequality we have∣∣∣∣∣∣1d
d∑
j=1

fj(θ
′)fj(θ)

−1v2j − τ(Rθ′R
−1
θ )

∣∣∣∣∣∣ ≤ δ,
with probability 1 − 2

d2

∑d
j=1 fj(θ

′)2fj(θ)
−2/δ2 = 1 −

2
dτ(R2

θ′R
−2
θ )/δ2. Likewise,∣∣∣∣∣∣1d

d∑
j=1

fj(θ
′)v2j − τ(Rθ′)

∣∣∣∣∣∣ ≤ δ,
with probability 1 − 2

dτ(R2
θ′)/δ

2. Since | log(x + ρ) −
log x| ≤ 2ρ/x for sufficiently small ρ, we can ensure that∣∣∣∣∣∣log

1

d

d∑
j=1

fj(θ
′)fj(θ)

−1v2j − log τ(Rθ′R
−1
θ )

∣∣∣∣∣∣ ≤ ε, (5)

by choosing δ ≤ ε/(2τ(Rθ′R
−1
θ )). Likewise, we can

achieve that∣∣∣∣∣∣log
1

d

d∑
j=1

fj(θ
′)v2j − log τ(Rθ′)

∣∣∣∣∣∣ ≤ ε, (6)

if δ ≤ ε/(2τ(Rθ′)). Thus, both inequalities (5) and (6)
together hold with probability at least

1− 8

dε2
[
τ(R2

θ′R
−2
θ )τ(Rθ′R

−1
θ )2 + τ(R2

θ′)τ(Rθ′)
2
]
.


