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1. Proofs
1.1. Proof of Lemma 1

We first write ® as ®(v) = g(Av)Av, with g(w) := 1/||w]|.
Let t — s(t) be some curve on the unit sphere S¢~! and
5(t) := ®(s(t)) its image and assume v = s(0) and & =
5(0). Then we have

;t‘I’( (1) = (Vg(As(t), As'(t))As(t)
+g(As(t))As' (1),
with Vg(w) = —w/||w||. Hence we obtain

d

Sas(e) <1>
- Tha (1)H3(As(t),As’(t))As(t) + g(As(t)As' (1)
= g(As(t)) (As'(t) - 5(t)3()T As' (1))
= g(As(t) (1 - 3(1)3(1)") As'(t), 2

where we have used §(t ) = As(t)/||As(t)||. Note that
the matrix 1 — 3(¢)3(¢t)” projects As’(t) onto the space
orthogonal to 5(¢), that is, the tangent space of the surface
of the sphere at 5(t). Further, the matrix

g(As(1) (1~ 5()3(1)7) A

maps each tangent vector s'(t) at s(t) (for any curve s)
to the corresponding tangent vector §'(t) at §(¢). It thus
describes the Jacobian D® mapping between tangent spaces
Ts(+) and T4 of the sphere at s(t) and 5(t), respectively.
Let e1,...,e4q_1 and €é;1,...,€4_1 be orthonormal bases
of T, and Tj, respectively (that is, bases of v+ and 91,
respectively). If we set U, := (e1,...,eq—1) and Uy :=
(é1,...,€4—1), the matrix representation of the Jacobian
D® with respect to these bases reads

1/95(1)) = g(Av)UL AU,
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We then have
det DB (v) = g(Av)?~! det(UT AU,).

For later use, we also observe that multiplying the equation
¥ = Av/| Av|| with A~! and taking the norm on both sides

yields
1/[|Av]| = |A7"5]. 3)
For the probability density we thus obtain
p(0) = |det DO(~'(7))~"

(1A~ 5]|% | det (UF AU,)|)

~ -1
= (A7) der( D)) )

with the abbreviation A := UZ AU,. Let us now define the

orthogonal d x d matrices
W, = (Uy,v) and (Us,0).

Then we define A’ := WIAW,, which implies
| det(A”)| = | det(A)|. A’ can be written as

A 0
A = ,
( w || Av| )

where w is some 1 x (d — 1)-matrix. Hence we obtain

det(A)

det(A') ||A_1{.}||7

= det(A) [ 4v]| =
where we have used also (3). We can thus rewrite (4) as

o 1
P0) = Tqet A A To

1.2. Proof of Theorem 3

By definition, py- is obtained by applying the map \/RT’Q
to vectors drawn from a rotation invariant distribution with
renormalizing it later. Without loss of generality, let all the
matrices Ry be diagonal with eigenvalues f;(6) (note that
they commute). Let v be generated by drawing each entry
vj from A/(0, 1). We can then compute the entries of ¢ by

1
(L A ()
U= e VO
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Rewriting (10) in terms of v; instead of ¥ yields

d
- 1
logpe(0) = —2 loggz ]2
1 1
— log = > fi(0')u] ¢ + 5 logdet Ry.
j=1

Since each vjz is an independent squared standard Gaussian
it has expectation 1 and variance 2. Therefore, the random

variable
1
y D ACAN IO
j=1
has mean T(RgRe_,l) and variance
9 A
ﬁ Z f] (9/ 2
j=1
Due to Chebychev’s inequality we have
1
2D 5(0)f(0) ) — (e Ry <6,
j=1

with probability 1 — 2 59| f;(6')2f;(0)72/6% = 1 —
27(R% R,?)/8°. Likewise,

d
1
az 11 2 —1(Rg)| <6,

with probability 1 — 27(R3,)/6%. Since |log(z + p) —
log x| < 2p/x for sufficiently small p, we can ensure that

1 d
log - > £;(8);(6) v} —logT(Re By")| < e, (5)
Jj=

by choosing § < ¢/(27(Rg'R,")). Likewise, we can
achieve that

log ~ ij v —log7(Re)| <, 6)

if 0 < €/(27(Ry)). Thus, both inequalities (5) and (6)
together hold with probability at least
8

1— =5 [T(R} By m(Ror Ry ) + 7(Rj)7(Re)*]



