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Abstract

We consider the problem of learning a low-rank
matrix, constrained to lie in a linear subspace, and
introduce a novel factorization for modeling such
matrices. A salient feature of the proposed factor-
ization scheme is it decouples the low-rank and
the structural constraints onto separate factors.
We formulate the optimization problem on the
Riemannian spectrahedron manifold, where the
Riemannian framework allows to develop compu-
tationally efficient conjugate gradient and trust-
region algorithms. Experiments on problems such
as standard/robust/non-negative matrix comple-
tion, Hankel matrix learning and multi-task learn-
ing demonstrate the efficacy of our approach.

1. Introduction

Our focus in this paper is on learning structured low-rank
matrices and we consider the following problem:

min CL(Y,W)+ ||W Hi )
WE]Rde (1)
subject to W €D,

where Y € R¥*7 is a given matrix, L : R*T x R¥>*T — R
is a convex loss function, || - ||« denotes the nuclear norm
regularizer, C' > 0 is the cost parameter, and D is the linear
subspace corresponding to structural constraints. It is well
known the nuclear norm regularization promotes low rank
solutions since ||[W||, is equal to the £;-norm on the singular
values of W (Fazel et al., 2001). The linear subspace D
in problem (1) is represented as D := {W : A(W){0},
where A : R¥T — R" is a linear map and <) represents
equality (=) or greater than equal to (>) constraint.

Low-rank matrices are commonly learned in several ma-
chine learning applications such as matrix completion (Aber-
nethy et al., 2009; Boumal and Absil, 2011), multi-task
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learning (Amit et al., 2007; Argyriou et al., 2008; Zhang
and Yeung, 2010; Jawanpuria and Nath, 2012), multivari-
ate regression (Yuan et al., 2007; Journée et al., 2010),
to name a few. In addition to the low-rank constraint,
other structural constraints may exist, e.g., entry-wise non-
negative/bounded constraints (Kannan et al., 2012; Mare-
cek et al., 2017; Fang et al., 2017). Several linear dynami-
cal system models require learning a low-rank Hankel ma-
trix (Fazel et al., 2013; Markovsky and Usevich, 2013). A
Hankel matrix has the structural constraint that all its anti-
diagonal entries are the same. In robust matrix completion
and robust PCA problems (Wright et al., 2009), the ma-
trix is learned as a superimposition of a low-rank matrix
and a sparse matrix. This sparse structure is modeled ef-
fectively by choosing a robust loss function (Cambier and
Absil, 2016), such as the ¢4 -loss.

We propose a generic framework to the structured low-rank
matrix learning problem (1) that is well suited for handling
a range of smooth/non-smooth loss functions L, structural
constraints W € D, and is scalable for large-scale problem
instances. Using the duality theory, we introduce a novel
modeling of structured low-rank matrix W of rank r as
W =UU'(Z+ A), where U € R¥™" and Z, A € R¥*T.
It can be observed that our factorization naturally decouples
the low-rank and structural constraints on W. The low-rank
of W is enforced by U, the structural constraint is modeled
by A, and the loss function specific structure is modeled by
Z. The decoupling of low-rank and structural constraints
onto separate factors makes the resulting optimization con-
ceptually simpler. To the best of our knowledge, such a
decoupling of constraints has not been studied in the ex-
isting structured low-rank matrix learning literature (Fazel
et al., 2013; Markovsky and Usevich, 2013; Yu et al., 2014;
Cambier and Absil, 2016; Fang et al., 2017).

Our approach leads to an optimization problem on the Rie-
mannian spectrahedron manifold. We exploit the Rieman-
nian framework to develop computationally efficient con-
jugate gradient and trust-region algorithms. The proposed
algorithms perform well in several applications such as
standard/robust/non-negative matrix completion, Hankel
matrix learning application, and multi-task learning. Our
algorithms readily scale to the Netflix data set, even with
the non-smooth /¢;-loss and e-SVR (e-insensitive support
vector regression) loss functions.



A Unified Framework for Structured Low-rank Matrix Learning

The main contributions of this work are:

— we propose a novel factorization W = UU T (Z + A)
for modeling structured low-rank matrices.

— we present a unified framework to learn structured
low-rank matrix for several applications with different
constraints and loss functions.

— we develop efficient Riemannian conjugate gradient
and trust-region algorithms, which obtain state-of-the-
art generalization performance across applications.

The proofs of all the theorems, additional details and ex-
periments are provided in the longer version of the paper
(Jawanpuria and Mishra, 2017). Our codes are available at
https://pratikjawanpuria.com/. We begin by
discussing the related works in the next section.

2. Related Work

Matrix completion: Existing low-rank matrix learning lit-
erature has been primarily focused on problem (1) with the
square loss and in the absence of the structural constraint
W € D. Singular value thresholding (Cai et al., 2010),
proximal gradient descent (Toh and Yun, 2010), active sub-
space selection (Hsieh and Olsen, 2014) are some of the
algorithms proposed to solve (1) without the structural con-
straint W € D. Alternatively, several works (Wen et al.,
2012; Mishra et al., 2014; Mishra and Sepulchre, 2014,
Boumal and Absil, 2015) propose to learn a low-rank ma-
trix by fixing the rank explicitly, i.e. W = UV ", where
U € R¥", V € RT*" and the rank 7 is fixed a priori.

Robust matrix completion: A matrix completion problem
where few of the observed entries are perturbed/outliers
(Candes et al., 2011). Recent works (He et al., 2012; Cam-
bier and Absil, 2016) model it as a low-rank matrix comple-
tion problem with robust loss functions such as the ¢;-1loss
or the pseudo-Huber loss. In particular, Cambier and Absil
(2016) develop a large-scale Riemannian conjugate gradient
algorithm for this application.

Non-negative matrix completion: Certain recommender
system and image completion based applications desire ma-
trix completion with non-negative entries (Kannan et al.,
2012; Sun and Mazumder, 2013; Tsagkatakis et al., 2016;
Fang et al., 2017), i.e W > 0. Kannan et al. (2012)
present a block coordinate descent algorithm that learns
W as W = UV for a given rank r. Recently, Fang et al.
(2017) propose a large-scale alternating direction method
of multipliers (ADMM) algorithm for solving (1) in the
fixed-rank setting.

Hankel matrix learning: The Hankel constraint is a linear
equality constraint. Fazel et al. (2013) propose the ADMM
approaches to solve (1) with the above constraint. On the
other hand, Yu et al. (2014) learn a low-rank Hankel matrix

by relaxing the structural constraint with a penalty term
in the objective function. Markovsky and Usevich (2013)
model the low-rank Hankel matrix learning problem as a
non-linear least square problem in the fixed rank setting and
propose a second-order algorithm.

Multi-task feature learning: The goal in multi-task fea-
ture learning (Argyriou et al., 2008; Jawanpuria and Nath,
2011) is to jointly learn a low-dimensional latent feature rep-
resentation common across several classification/regression
problems (tasks). Problems such as multi-class classification
(Amit et al., 2007; Jawanpuria et al., 2015b), multi-variate
regression (Yuan et al., 2007), matrix completion with side
information (Xu et al., 2013), among others, may be viewed
as special cases of multi-task feature learning.

In the following section, we present a unified framework for
solving the above problems.

3. Structured Low-rank Matrix Learning

For notational simplicity, we consider only equality struc-
tural constraint A(W) = 0 to present the main results.
However, our framework also admits inequality constraints
A(W) > 0. We use the notation P¢ to denote the set of
d x d positive semi-definite matrices with unit trace.

Problem (1) is a convex problem with linear constraint. In
addition to the trace-norm regularizer, the loss function L
may also be non-smooth (as in the case of ¢1-loss or e-SVR
loss). Dealing with (1) directly or characterizing the nature
of its optimal solution in the general setting is non trivial. To
this end, we propose an equivalent partial dual of (1) in the
following section. The use of dual framework often leads to
a better understanding of the primal problem (Jawanpuria
et al., 2015a). In our case, the duality theory helps in dis-
covering a novel factorization of its optimal solution, which
is not evident directly from the primal problem (1). This
subsequently helps in the development of computationally
efficient algorithms.

3.1. Decoupling of Constraints and Duality

The following theorem presents a dual problem equivalent
to the primal problem (1).

Theorem 1 Let L* be the Fenchel conjugate function of the
loss: L : R>T R, v L(Y,v). An equivalent partial
dual problem of (1) with A(W') = 0 constraint is

i (CIV/ 2
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where the function [ is defined as
1(6,2,5) = ~CL*("2) = J{O(Z + A'(5)), 2+ A"(5))

and A* : R" — R¥*T s the adjoint of A.



A Unified Framework for Structured Low-rank Matrix Learning

Proof sketch: The proof employs a variational characteri-
zation of the trace-norm regularizer (Argyriou et al., 2006)
and the KKT conditions of (1).

Our next result gives the expression of an optimal solution
of the primal problem (1).

Theorem 2 (Representer theorem) Let {©, Z, 5} be an opti-
mal solution of (2). Then, a corresponding optimal solution
W of (1) is

W = 0O(Z + A*(3)).

Remark 1: O in (2) is a positive semi-definite with unit
trace. Hence, an optimal © in (2) is a low-rank matrix.

Remark 2: Theorem 1 gives an expression for W of (1) as
a function of © and Z + A*(5). The low-rank constraint
is enforced through ©, the loss-specific structure (encoded
in L*) is enforced through Z, and the structural constraint
is enforced through A*(5). Overall, such a decoupling
of constraints onto separate variables facilitates the use of
simpler optimization techniques as compared to the case
where all the constraints are enforced on a single variable.

As discussed earlier, an optimal © of (2) is a low-rank
positive semi-definite matrix. However, an algorithm for (2)
need not produce intermediate iterates that are low rank. For
large-scale optimization, this observation as well as other
computational efficiency concerns motivate a fixed-rank
parameterization of © as discussed in the following.

3.2. A Novel Fixed-rank Factorization of W

We model © € P? as a rank r matrix in the following
way: © = UUT, where U € R¥" and ||U||r = 1.
The proposed modeling has several benefits in large-scale
low-rank matrix learning problems, where r < min{d, T'}
is a common setting. First, the parameterization ensures
that © € P? constraint is always satisfied. This saves the
costly projection operations to ensure © € P¢. Enforcing
[U|lFr = 1 constraint costs O(rd). Second, the dimen-
sion of the search space of problem (2) with ©® = UUT is
rd—1—r(r—1)/2, which is much lower than the dimension
(d(d+1)/2—1) of © € P4. By restricting the search space
for ©, we gain computational efficiency. Third, increasing
the parameter C' in (1) and (2) promotes low training error
but high rank of the solution, and vice-versa. The proposed
fixed-rank parameterization decouples this trade-off.

Remark 3: With the proposed fixed-rank parameterization
of ©, the expression for W becomes UU T (Z + A*(s)).

Instead of solving a minimax objective as in (2), we solve
a minimization problem after incorporating the © = UU T
parameterization as follows:

min_~ g(U), 3)
UeRdxr |U||lp=1

where the function g is defined as

g9(U) = - CL*(-Z/C) 4)

max
ZcRIXT gcRn

_ % [UT(Z + A% (s))|[5.

It should be noted that (3) is the proposed generic structured
low-rank matrix learning problem. The application-specific
details are modeled within the sub-problem (4). In Sec-
tion 5, we present specialized expressions of (4), tailored
for various applications. We propose a unified optimization
framework for solving (3) in Section 4.

The fixed-rank parameterization, © = UU", results in non-
convexity of the overall optimization problem (3), though
sub-problem (4) is a convex optimization problem. We end
this section by stating sufficient conditions of obtaining a
globally optimal solution of (2) from a solution of (3).

Theorem 3 Let U be a feasible solution of (3) and {27 s}
be an optimal solution of the convex problem in (4) at U =
U. Let o, be the maximum singular of the matrix Zi+ A*(3).
A candidate solution for (2) is {©, Z, 3}, where © = UUT.
The duality gap () associated with {©,Z, 3} is given by
o 2
A= (- or@+aen]).

Furthermore, tffJ is a rank deficient local minimum of (3),
then {O©,Z, 8} is a global minimum of (2), i.e., A = 0.

The value of the duality gap A can be used as to verify
whether a candidate solution {©, Z, 3} is a global optimum
of (2). The cost of computing o is computationally cheap
as it requires only a few power iteration updates.

4. Optimization on Spectrahedron Manifold

The matrix U lies in, what is popularly known as, the spec-
trahedron manifold S¢ = {U € R¥" . |U||r = 1}.
Specifically, the spectrahedron manifold has the structure
of a compact Riemannian quotient manifold (Journée et al.,
2010). The quotient structure takes the rotational invariance
of the constraint | U||p = 1 into account. The Riemannian
optimization framework embeds the constraint U € S¢ into
the search space, conceptually translating the constrained
optimization problem (3) into an unconstrained optimiza-
tion over the spectrahedron manifold. The Riemannian
optimization framework generalizes various classical first-
and second-order Euclidean algorithms (e.g., the conjugate
gradient and trust region algorithms) to manifolds and pro-
vide concrete convergence guarantees (Edelman et al., 1998;
Absil et al., 2008; Journée et al., 2010; Sato and Iwai, 2013;
Sato et al., 2017). In particular, Absil et al. (2008) provide
a systematic way of implementing Riemannian conjugate
gradient (CG) and trust region (TR) algorithms.
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Algorithm 1 Proposed first- and second-order algorithms for (3)

Input: matrix Y, rank r, regularization parameter C'.
Initialize U € S2.
repeat

1: Solve for {Z, s} by computing g(U) in (4). Section 5 discusses solvers for specific applications.

2: Compute Vg(U) as given in Lemma 1.
3: Riemannian CG step: compute a conjugate
direction V and step size o using Armijo line search.
It makes use of Vg(U).
4: Update U = (U + aV)/ ||U + oV || - (retraction step)
until convergence
Output: {U,Z,s} and W = UU ' (Z + A*(s)).

3: Riemannian TR step: compute a search direction V
which minimizes the trust region sub-problem. It makes use
of Vg(U) and its directional derivative. Step size o = 1.

We implement the Riemannian conjugate gradient (CG)
and trust-region (TR) algorithms for (3). These require the
notions of the Riemannian gradient (first-order derivative
of the objective function on the manifold), Riemannian
Hessian along a search direction (the covariant derivative
of the Riemannian gradient along a tangential direction
on the manifold), and the retraction operator (that ensures
that we always stay on the manifold). The Riemannian
gradient and Hessian notions require computations of the
Euclidean gradient and the directional derivative of this
gradient along a given search direction, which are expressed
in the following lemma.

Lemma 1 Let {Z, 5} be an optimal solution of the convex
problem (4) at U. Then, the gradient of g(U) at U is given
by the following expression:

Vg(U) = —(Z + A*(3))(Z + A*(3))TU.

Let DV g(U)[V] denote the directional derivative of the
gradient Vg(U) along V € RY*". Let {Z, $} denote the
directional derivative of {Z, s} along V at {Z,3}. Then,

DVg(U)[V] = (Z + A*(3))(Z + A*(3)) U
+(Z + A*(é))((Z + A () TU - (Z + A*(é))TV).

The terms {Z, §} are computed from the first-order KKT
conditions of the convex problem (4) at {Z, 3}. In particular,
when L*(-) is differentiable (e.g., the square loss), {Z, 5}
are obtained by solving the following linear system:

DVL*(-Z/C)[Z]-Q=0 and A(Q)=0

where Q = (UVT + VUT)(Z + A*(3)) + UUT(Z +
A*($)). In various applications such as matrix comple-
tion or multi-task learning, both the gradient Vg(U) and
its directional derivation DV g(U)[V] can be computed by
closed-form expressions.

Riemannian CG algorithm: It computes the Riemannian
conjugate gradient direction by employing the first-order
information Vg(U) (Lemma 1). We perform Armijo line

search on S? to compute a step-size that sufficiently de-
creases ¢(U) on the manifold. We update along the conju-
gate direction with the step-size by retraction.

Riemannian TR algorithm: It solves a Riemannian trust-
region sub-problem (in a neighborhood) at every iteration.
Solving the trust-region sub-problem leads to a search di-
rection that minimizes a quadratic approximation of g(U)
on the manifold. Solving this sub-problem does not require
inverting the full Hessian of the objective function. It makes
use of Vg(U) and its directional derivative DVg(U)[V].

Overall algorithm: Algorithm 1 summarizes the proposed
first- and second-order algorithms for solving (3).

Computational complexity: The computational complex-
ity of Algorithm 1 is the sum of the cost of manifold related
operations and the cost of application specific ingredients.
The spectrahedron manifold operations cost O(dr-+13). The
following section discusses the application specific compu-
tational costs.

Although we have focused on batch algorithms, our frame-
work can be extended to stochastic settings, e.g., when the
columns are streamed one by one (Bonnabel, 2013). In
this case, when a new column is received, we perform a
(stochastic) gradient update on S¢.

5. Specialized Formulations for Applications

The expression of g(U) in (4) depends on the functions L(-)
and A(-) employed in the application at hand. Below, we
discuss g(U) for popular applications.

5.1. Matrix Completion

Given a partially observed matrix Y at indices €2, the aim
here is to learn the full matrix W (Toh and Yun, 2010; Cai
et al., 2010). Let £2; be the set of indices that are observed
in y;, the tth column of Y. Let Yto, and Uyq, represents
the rows of 4, and U, respectively, that correspond to the
indices in €2;. Then, the function g(U) in (4) for low-rank
matrix completion problem with square loss is (5) in Ta-
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Table 1. Specialized expression for (4) across different structured low-rank matrix learning applications.

Application g(UUT) as defined in (4)
Matrix completion >r, max (Ytg, > 2t) — Szl = 21U, 2 (5)
zt ERICIE )
Robust matrix completion Zthl max <y,gQt 2y — UG, 2 (6)

zee[—C,C)l2l

. . . T
Non-negative matrix completion >, , max

s;€[0,00)0 24 €RICIE

max (Yiq,, ) — goll2el” = 51U, 20 + Ul s (M

Hankel matrix learning (y, 2)

max
st €ERAVE, zeRI+T—1

—1ellzl® = 3 T, U s (8)

subject to: 37 v,y st =2V €{2,3,...,d+ T} i€ {1,2,...,d},t € {1,2,...,T}

Multi-task feature learning ax,
2zt ER™

Sioy max (g, 2) — gellel® = SIUTX 2 9)

ble 1. Problem (5) is a least-squares problem for each z;
and is solved efficiently in closed-form with O(|©2|r?) time
complexity. By taking into account the manifold opera-
tion costs (discussed in Section 4), the overall per-iteration
computational cost of Algorithm 1is O(|Q|r? + dr + r3).

5.2. Robust Matrix Completion

We solve for this application by employing the ¢;-loss func-
tion in low-rank matrix completion problem. The expres-
sion for g(U) is (6) in Table 1. Coordinate descent (CD)
algorithm is employed to efficiently solve (6). The cost of
computing g(U) is O(|Q|kr?), where k is the number of
iterations of the CD algorithm. Overall, the per-iteration
computational cost of Algorithm 1is O(|Q|kr? + dr + 13).
We also experiment with the e-SVR loss in this setting.

5.3. Non-negative Matrix Completion

In this application, problem g(U) with the square loss gets
specialized to (7) in Table 1. Since the dual variables s; have
non-negative constraints (due to the constraint W > 0 in
(1)), we model (7) as a non-negative least squares (NNLS)
problem. We employ the NNLS algorithm of Kim et al.
(2013) to solve for the variable s; in (7). In each iteration
of NNLS, z; is solved in closed form. If k is the number
of iterations of NNLS, then the cost of computing g(U) is
O(dTkr+|Q|kr?). Overall, the per-iteration computational
cost of Algorithm 1is O(dTkr + |Q|kr? + dr + 73).

It should be noted that (7) is computationally challenging as
it has dT" entry-wise non-negativity constraints. In our initial
experiments, we observed that the solution [sq, ..., s7] is
highly sparse. For large-scale problems, we exploit this
observation for an efficient implementation.

5.4. Hankel Matrix Learning

Hankel matrices have the structural constraint that its anti-
diagonal entries are the same. A Hankel matrix correspond-

ing to a vector y = [y1,y2, - . ., yr] is as follows:

Y1 Y2 Y3 Ya Ys
Y2 Y3 Ys+ Ys Ys
Ys Ya Ys Ye Yt

Hankel matrices play an important role in determining the
order or complexity of linear time-invariant systems (Fazel
et al., 2013; Markovsky and Usevich, 2013). The aim in
such settings is to find the minimum order of the system
that explains the observed data (i.e. low error). A low-order
system is usually desired as it translates into cost benefit
and ease of analysis.

The function g(U) gets specialized to (8) in Table 1. We
solve (8) via the conjugate gradient algorithm. The equality
constraints are handled efficiently by using an affine projec-
tion operator. The computational cost of computing g(U)
is O(dT'kr), where k is the number of iterations of the in-
ner conjugate gradient algorithm. Overall, the per-iteration
complexity of Algorithm 1 is O(dTkr + dr + r3).

5.5. Multi-task Feature Learning

In this application, every task ¢ has input/output instances
{Xy,y:}, where X; € R™* and y; € R™. The aim is
to learn the model parameter w; for each task ¢ such that
they share a low-dimensional latent space. The prediction
function for task ¢ is h:(z) = (x, w). Argyriou et al. (2008)
solve the convex primal (1) to learn the task parameters in
this setting. The function g(U) for multi-task feature learn-
ing is (9) in Table 1, which can be further specialized for
problems such as matrix completion with side information,
inductive matrix completion, and multi-variate regression.

6. Experiments

In this section, we evaluate the generalization performance
as well as computational efficiency of our approach against
state-of-the-art in different applications. It should be empha-
sized that state-of-the-art in each application are different
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Figure 1. Evolution of test RMSE on the Netflix data set for first- and second-order matrix completion (MC) algorithms as well as robust
MC algorithms. Our algorithms converge to the best generalization performance in all the experiments.

Table 2. Data set statistics

Data set d T |
MLIm 3706 6040 1000209
ML10m 10677 71567 10000 054
ML20m 26744 138493 20000263
Netflix 17770 480189 100198 805

and to the best of our knowledge there does not exist a uni-
fied framework for solving such applications. All our algo-
rithms are implemented using the Manopt toolbox (Boumal
et al.,, 2014). We term our algorithm as Riemannian
Structured Low-rank Matrix learning (RSLM).

6.1. Matrix Completion

Baseline techniques: Our first- and second-order matrix
completion algorithms are denoted by RSLM-cg and RSLM-
tr, respectively. We compare against state-of-the-art fixed-
rank and nuclear norm minimization based matrix comple-
tion solvers: APGL: accelerated proximal gradient algo-
rithm for nuclear norm minimization (Toh and Yun, 2010),
Active ALT: first-order nuclear norm solver based on ac-
tive subspace selection (Hsieh and Olsen, 2014), R3MC:
fixed-rank Riemannian preconditioned non-linear conjugate
gradient algorithm (Mishra and Sepulchre, 2014), LMaFit:
nonlinear successive over-relaxation algorithm based on al-
ternate least squares (Wen et al., 2012), MMBS: fixed-rank
second-order nuclear norm minimization algorithm (Mishra
et al., 2013), RTRMC: fixed-rank second-order Rieman-
nian preconditioned algorithm on the Grassmann mani-
fold (Boumal and Absil, 2011; 2015), and PRP: a recent
proximal Riemannian pursuit algorithm (Tan et al., 2016).

Data sets and experimental setup: We compare the perfor-
mance of the above algorithms on movie recommendation
data sets: Netflix (Recht and Ré, 2013), MovieLens10m
(ML10m), and MovieLens20m (ML20m) (Harper and Kon-

Table 3. Mean test RMSE on matrix completion problems. The
proposed first-order (RSLM-cg) and second-order (RSLM-tr) al-
gorithms obtain the best generalization performance.

Netflix ML10m ML20m
RSLM-tr 0.8443 0.8026 0.7962
RSLM-cg 0.8449 0.8026 0.7963
R3MC 0.8478 0.8070 0.7982
RTRMC 0.8489 0.8161 0.8044
APGL 0.8587 0.8283 0.8160
Active ALT  0.8463 0.8116 0.8033
MMBS 0.8454 0.8226 0.8053
LMaFit 0.8484 0.8082 0.7996
PRP 0.8488 0.8068 0.7987

stan, 2015). The data set statistics is provided in Table 2.
For every data set, we create five random 80/20 train/test
splits. For every split, the regularization parameters for re-
spective algorithms are cross-validated to obtain their best
performance. All the fixed algorithms (R3MC, LMaFit,
MMBS, RTRMC, RSLM) are provided the rank = 10. In
other approaches, the maximum rank parameter is set to 10.

Results: Figures 1(a)&(b) display the evolution of test
RMSE against the training time on the Netflix data
set (Recht and Ré, 2013) for first- and second-order algo-
rithms, respectively. RSLM-cg is among the most efficient
first-order method and RSLM-tr is the best second-order
method. Table 3 reports the test RMSE of all the algorithms
on the three data sets. We observe that both our algorithms
obtain the best generalization performance.

6.2. Robust Matrix Completion

Baseline techniques: We develop CG implementation of
RSLM with two different robust loss functions: ¢;-loss and
€-SVR loss. The non-smooth nature of ¢;-loss and e-SVR
loss makes them challenging to optimize in large-scale low-
rank setting. For evaluation, we compare RSLM against
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Figure 2. Convergence behavior of RSLM and BMC for different values of regularization parameter and rank on non-negative matrix
completion problems. RSLM achieves better objective value in lesser training time than BMC. Both the axes are in log,, scale.
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Figure 3. Evolution of test RMSE of RSLM and BMC for different values of regularization parameter and rank on non-negative matrix
completion problems. RSLM achieves better generalization performance than BMC. Both the axes are in log,, scale.

6.3. Non-negative Matrix Completion
Table 4. Mean test RMSE on non-negative matrix completion prob- g P

lems. The proposed algorithm RSLM obtains the best generaliza- ~ Baseline techniques: We include the following methods in

tion performance.

our comparisons: BMC (Fang et al., 2017) and BMA (Kan-

Dataset 7  RSLM BMC BMA nan et al.,, 2012). BMC is a recently proposed ADMM
5  0.8651 0.8672 0.9476 based algorithm with carefully designed update rules to en-
MLIm 10 0.8574 0.8529 0.9505 sure an efficient computational and space complexity. BMA
20 0.8678 0.83691  0.9520 is based on co-ordinate descent algorithm.
ML10m ?O 8233‘;’ 8232; 82223 Data sets and experimental setup: We compare the per-
20 08148 08812 08904 formance of the above algorithms on three data sets (Table
2): MovieLens1m (ML1m), MovieLens10m (ML10m), and
5 0.8142 (0.8454 - MovieLens20m (ML20 Th . | s th
ML20m 10 0.8014 0.8477 B ovieLens20m ( m). The exper{menta setgp is the
20 0.8065 0.9130 _ same as described for the case of matrix completion. The

state-of-the-art RMC algorithm (Cambier and Absil, 2016).
RMC is a scalable Riemannian CG algorithm, employing
the smooth pseudo-Huber loss function.

Data sets and experimental setup: We compare the per-
formance of all the three algorithms on the Netflix data set.
We follow the same experimental setup as described for the
case of matrix completion. The rank r for both RSLM and
RMC is fixed at = 10.

Results: Figure 1(c) shows the results on the Netflix data
set. We observe that RSLM scales effortlessly on the Netflix
data set even with non-smooth loss functions and obtains
the best generalization performance with the e-SVR loss.
The test RMSE obtained at convergence are: 0.857 (RSLM

e-SVR loss), 0.869 (RSLM /1 -loss), and 0.868 (RMC).

performance of all the algorithms are evaluated at three
ranks: r = 5, 10, 20.

Results: We observe in Table 4 that RSLM outperforms
both BMC and BMA. The improvement obtained by RSLM
over BMC is more pronounced with larger data sets. BMA
is not able to run on MovieLens20m due to high memory
and time complexity.

Figures 2(a)-(e) compare the convergence behavior of
RSLM and BMC for different values of parameters C' and
r on all three data sets. Both algorithms aim to minimize
the same primal objective (1) for a given rank r. Though
the proposed approach solves the proposed fixed-rank dual
formulation (3), we compute the corresponding primal ob-
jective value of every iterate for the plots. We observe that
our algorithm RSLM is significantly faster than BMC in
converging to a lower objective value.
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Table 5. RMSE on problems that involve learning a low-rank
Hankel matrix. The proposed algorithm, RSLM, obtains the best
generalization performance.

Data set r RSLM SLRA  DADM  GCG
D;: 5 0.0156 0.0159  0.0628  0.1068

d = 100, 10 0.0171 0.0190 0.0291 0.0846
T =100 20 0.0177 0.0295 0.0196 0.0667
Ds: 5 0.0059 0.0164 0.0331 0.0531

d = 100, 10 0.0060 0.0077  0.0250 0.0386
T = 1000 20 0.0071 0.0108 0.0159 0.0345
Ds: 5 0.0149 0.0149 0.0458 0.0458
d=1000, 10 0.0043 0.0049 0.0314 0.0340
T =10000 20 0.0039 0.0053 0.0288 0.0330

Figures 3(a)-(e) plot the evolution of test RMSE against
training time for algorithms RSLM and BMC on different
data sets with different ranks (and the corresponding best C'
parameter). We observe that the RSLM outperforms BMC
in converging to a lower test RMSE at a much faster rate.

6.4. Hankel Matrix Learning

Baseline techniques: We compare our algorithm RSLM
with three methods (discussed in Section 2): GCG (Yu et al.,
2014), SLRA (Markovsky, 2014; Markovsky and Usevich,
2014), and DADM (Fazel et al., 2013). Since GCG and
DADM employ the nuclear norm regularizer, we tune the
regularization parameter to vary the rank of their solution.

Data sets and experimental setup: Given a vector y €
RI*T-1 we obtain a d x T Hankel matrix as discussed in
Section 5.4. The true parameter y is generated as the im-
pulse response (skipping the first sample) of a discrete-time
random linear time-invariant system of order ry (Markovsky,
2011; Fazel et al., 2013). The noisy estimate of these pa-
rameters () are generated as § = y + o€, where oe is the
measurement noise. We set o = 0.05 and generate e from
the standard Gaussian distribution N (0, 1). It should be
noted that § is the frain data and y is the frue data.

We generate three different data set Dy, Do, D3 of varying
size and order. D1 has (19, d,T") = (5,100, 100), where r
is the true order of the underlying system. The other two
data sets, Dy and D3, has the configurations (10, 100, 1000)
and (20, 1000, 10000), respectively. We evaluate the algo-
rithms on all the three data sets and report their RMSE with
respect to the true data (Liu and Vandenberghe, 2009) at
different ranks (r = 5, 10, 20) in Table 5.

Results: We observe from Table 5 that the proposed algo-
rithm RSLM obtains the best result in all the three data sets
and across different ranks. In addition, RSLM also usually
obtains the lowest true RMSE for a data set at the rank r
equal to g of the data set. This implies that RSLM is able

>
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=]

Test NMSE
3

Relative duality gap
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Figure 4. Multi-task feature learning application: (a) Generaliza-
tion performance vs rank. Our algorithm, RSLM, obtains better
generalization performance than MTFL (Argyriou et al., 2008); (b)
Relative duality gap vs rank for our algorithm.

to identify the minimal order of the systems corresponding
to the data sets.

6.5. Multi-task Feature Learning

Experimental setup: We compare the generalization per-
formance of our algorithm RSLM with the convex multi-task
feature learning algorithm MTFL (Argyriou et al., 2008).
Optimal solution for MTFL at different ranks is obtained by
tracing the solution path with respect to the regularization
parameter, whose value is varied as {278 277 ... 224}
For RSLM, we fix the value of the regularization parameter
C, and vary the rank r to obtain different ranked solutions.
The experiments are performed on two benchmark multi-
task regression data sets: a) Parkinsons: we need to predict
the Parkinson’s disease symptom score of 42 patients (Frank
and Asuncion, 2010); b) School: we need to predict perfor-
mance of all students in 139 schools (Argyriou et al., 2008).
We report the normalized mean square error over the test set
(test NMSE).

Results: Figure 4(a) present the results on the Parkinsons
data set. We observe from the figure that our method
achieves the better generalization performance at low ranks
compared to MTFL. Figure 4(b) plots the variation of dual-
ity gap with rank for our algorithm. We observe that as the
rank is increased, we converge to the globally optimal solu-
tion of (2) and obtain the duality gap close to zero. Similar
results are obtained on the School data set.

7. Conclusion

We have proposed a novel factorization for structured low-
rank matrix learning problems, which stems from the ap-
plication of duality theory and rank-constrained parameter-
ization of positive semi-definite matrices. This allows to
develop a conceptually simpler and unified optimization
framework for various applications. State-of-the-art perfor-
mance of our algorithms on several applications shows the
effectiveness of our approach.
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