Supplemental Materials for: Exploring Hidden Dimensions in Parallelizing Convolutional Neural Networks

1. Node and Edge Eliminations

We define node and edge eliminations in Algorithm 1.

Algorithm 1 Node and edge eliminations.

```
1: function NodeElimination(\mathcal{G})
          if exist a node l_i with a single in-edge e_1 = (l_i, l_i)
     and a single out-edge e_2 = (l_j, l_k) then
 3:
               e' = (l_i, l_k)
               \mathcal{G}' = \mathcal{G} - l_j - e_1 - e_2 + e'
 4:
 5:
 6:
          else
 7:
               return \mathcal{G}
 8:
          end if
     end function
 9:
10:
     function EDGEELIMINATION(\mathcal{G})
          if exist two edges e_1 = (l_i, l_j) and e_2 = (l_i, l_j)
12:
      then
13:
               e' = (l_i, l_j)
               \mathcal{G}' = \overset{(a,b,c,f)}{\mathcal{G}} - e_1 - e_2 + e'
return \mathcal{G}'
14:
15:
16:
          else
17:
               return \mathcal{G}
          end if
18:
19:
     end function
20:
```

Theorem 1. Assume $\mathcal{G}' = NodeElimination(\mathcal{G})$ and l_j is the eliminated layer. If \mathcal{S}_o' is an optimal strategy for \mathcal{G}' , then $\mathcal{S}_o = \mathcal{S}_o' + \hat{c}_j$ is an optimal strategy for \mathcal{G} , where

$$\widehat{c_j} = \underset{c_j}{\arg\min} \{ t_C(n_j, c_j) + t_S(n_j, c_j) + t_X(e_1, c_i, c_j) + t_X(e_2, c_j, c_k) \}$$
(1)

Proof. It is equivalent to prove that $t_O(\mathcal{G}, \mathcal{S}_1) \geq t_O(\mathcal{G}, \mathcal{S}_o)$ for any other strategy \mathcal{S}_1 . We assume layer l_i has parallelization configuration $c_{i1} \in \mathcal{S}_1$. We prove this inequality by using the following path.

$$t_O(\mathcal{G}, \mathcal{S}_1) \ge t_O(\mathcal{G}', \mathcal{S}_1)$$
 (2)

$$\geq t_{\mathcal{O}}(\mathcal{G}', \mathcal{S}_{\mathcal{O}}')$$
 (3)

$$= t_{\mathcal{O}}(\mathcal{G}, \mathcal{S}_{\mathcal{O}}) \tag{4}$$

Proof of Equation 2. The difference between $t_O(\mathcal{G}, \mathcal{S}_1)$ and $t_O(\mathcal{G}', \mathcal{S}_1)$ is

$$t_{O}(\mathcal{G}, \mathcal{S}_{1}) - t_{O}(\mathcal{G}', \mathcal{S}_{1})$$

$$= t_{C}(l_{j}, c_{j1}) + t_{S}(l_{j}, c_{j1}) + t_{X}(e_{1}, c_{i1}, c_{j1})$$

$$+ t_{X}(e_{2}, c_{j1}, c_{k1}) - t_{X}(e', c_{i1}, c_{k1})$$
(5)

This is because all other layers except l_j use the same configurations in $t_O(\mathcal{G}, \mathcal{S}_1)$ and $t_O(\mathcal{G}', \mathcal{S}_1)$, and therefore all cost functions non-related to l_j are eliminated in the subtraction. The remaining parts are l_j , e_1 , and e_2 , which no longer exist in \mathcal{G}' after node elimination, and e' that is added to \mathcal{G}' . Recall that $t_X(e',\cdot,\cdot)$ is defined as follows.

$$t_{X}(e', c_{i}, c_{k}) = \min_{c_{j}} \{ t_{C}(l_{j}, c_{j}) + t_{S}(l_{j}, c_{j}) + t_{X}(e_{1}, c_{i}, c_{j}) + t_{X}(e_{2}, c_{j}, c_{k}) \}$$
(6)

Combining Equation 5 and 6, we have $t_0(\mathcal{G}, \mathcal{S}_1) \geq t_0(\mathcal{G}', \mathcal{S}_1)$.

Proof of Equation 3. Since S_o' is an optimal strategy for S_o' , the inequality holds by definition.

Proof of Equation 4. Similarly, the difference between $t_O(\mathcal{G}', \mathcal{S}_o')$ and $t_O(\mathcal{G}, \mathcal{S}_o)$ is

$$t_{O}(\mathcal{G}, \mathcal{S}_{o}) - t_{O}(\mathcal{G}', \mathcal{S}_{o}')$$

$$= t_{C}(l_{j}, \widehat{c_{j}}) + t_{S}(l_{j}, \widehat{c_{j}}) + t_{X}(e_{1}, c_{i}, \widehat{c_{j}})$$

$$+ t_{X}(e_{2}, \widehat{c_{i}}, c_{k}) - t_{X}(e', c_{i}, c_{k})$$

$$(7)$$

This is because $S_o = S_o' + \widehat{c_j}$, and therefore all cost functions non-related to l_j are eliminated. We can prove Equation 4 by bringing Equation 1 into Equation 7.

Theorem 2. Assume $\mathcal{G}' = EdgeElimination(\mathcal{G})$, and \mathcal{S}_o' is an optimal strategy for \mathcal{G}' , then $\mathcal{S}_o = \mathcal{S}_o'$ is an optimal strategy for \mathcal{G} .

Proof. We can use the same path to prove this theorem.

Proof of Equation 2. The difference between $t_O(\mathcal{G}, \mathcal{S}_1)$ and $t_O(\mathcal{G}', \mathcal{S}_1)$ is

$$t_{O}(\mathcal{G}, \mathcal{S}_{1}) - t_{O}(\mathcal{G}', \mathcal{S}_{1}) = t_{X}(e_{1}, c_{i1}, c_{i1}) + t_{X}(e_{2}, c_{i1}, c_{i1}) - t_{X}(e', c_{i1}, c_{i1})$$
(8)

Recall that $t_{\mathcal{X}}(e',\cdot,\cdot)$ is defined as follows.

$$t_{X}(e', c_{i}, c_{j}) = t_{X}(e_{1}, c_{i}, c_{j}) + t_{X}(e_{2}, c_{i}, c_{j})$$
(9)

Combining Equation 8 and 9, we have $t_O(\mathcal{G}, \mathcal{S}_1) = t_O(\mathcal{G}', \mathcal{S}_1)$.

Proof of Equation 3. The inequality holds since S_o' is an optimal strategy for S_o' .

Proof of Equation 4. The difference between $t_O(\mathcal{G}', \mathcal{S}_o{}')$ and $t_O(\mathcal{G}, \mathcal{S}_o)$ is

$$t_{O}(\mathcal{G}, \mathcal{S}_{o}) - t_{O}(\mathcal{G}', \mathcal{S}_{o}')$$

$$= t_{X}(e_{1}, c_{i}, c_{j}) + t_{X}(e_{2}, c_{i}, c_{j}) - t_{X}(e', c_{i}, c_{j})$$

$$= 0$$
(10)