
Supplemental Materials for: Exploring Hidden Dimensions in Parallelizing
Convolutional Neural Networks

1. Node and Edge Eliminations
We define node and edge eliminations in Algorithm 1.

Algorithm 1 Node and edge eliminations.

1: function NODEELIMINATION(G)
2: if exist a node lj with a single in-edge e1 = (li, lj)

and a single out-edge e2 = (lj , lk) then
3: e′ = (li, lk)
4: G′ = G − lj − e1 − e2 + e′

5: return G′
6: else
7: return G
8: end if
9: end function

10:
11: function EDGEELIMINATION(G)
12: if exist two edges e1 = (li, lj) and e2 = (li, lj)

then
13: e′ = (li, lj)
14: G′ = G − e1 − e2 + e′

15: return G′
16: else
17: return G
18: end if
19: end function
20:

Theorem 1. Assume G′ = NodeElimination(G) and lj is the
eliminated layer. If So′ is an optimal strategy for G′, then
So = So′ + ĉj is an optimal strategy for G, where

ĉj = argmin
cj

{tc(nj , cj) + ts(nj , cj)

+ tx(e1, ci, cj) + tx(e2, cj , ck)}
(1)

Proof. It is equivalent to prove that to(G,S1) ≥ to(G,So)
for any other strategy S1. We assume layer li has paral-
lelization configuration ci1 ∈ S1. We prove this inequality
by using the following path.

to(G,S1) ≥ to(G′,S1) (2)
≥ to(G′,So′) (3)
= to(G,So) (4)

Proof of Equation 2. The difference between to(G,S1)
and to(G′,S1) is

to(G,S1)− to(G′,S1)
=tc(lj , cj1) + ts(lj , cj1) + tx(e1, ci1, cj1)

+ tx(e2, cj1, ck1)− tx(e′, ci1, ck1)
(5)

This is because all other layers except lj use the same config-
urations in to(G,S1) and to(G′,S1), and therefore all cost
functions non-related to lj are eliminated in the subtraction.
The remaining parts are lj , e1, and e2, which no longer
exist in G′ after node elimination, and e′ that is added to G′.
Recall that tx(e′, ·, ·) is defined as follows.

tx(e′, ci, ck) = min
cj
{tc(lj , cj) + ts(lj , cj)

+ tx(e1, ci, cj) + tx(e2, cj , ck)}
(6)

Combining Equation 5 and 6, we have to(G,S1) ≥
to(G′,S1).

Proof of Equation 3. Since So′ is an optimal strategy for
G′, the inequality holds by definition.

Proof of Equation 4. Similarly, the difference between
to(G′,So′) and to(G,So) is

to(G,So)− to(G′,So′)
=tc(lj , ĉj) + ts(lj , ĉj) + tx(e1, ci, ĉj)

+ tx(e2, ĉj , ck)− tx(e′, ci, ck)
(7)

This is because So = So′ + ĉj , and therefore all cost func-
tions non-related to lj are eliminated. We can prove Equa-
tion 4 by bringing Equation 1 into Equation 7.

Theorem 2. Assume G′ = EdgeElimination(G), and So′ is
an optimal strategy for G′, then So = So′ is an optimal
strategy for G.

Proof. We can use the same path to prove this theorem.

Proof of Equation 2. The difference between to(G,S1)
and to(G′,S1) is

to(G,S1)− to(G′,S1)
=tx(e1, ci1, cj1) + tx(e2, ci1, cj1)− tx(e′, ci1, cj1)

(8)



Supplemental Materials for: Exploring Hidden Dimensions in Parallelizing Convolutional Neural Networks

Recall that tx(e′, ·, ·) is defined as follows.

tx(e′, ci, cj) = tx(e1, ci, cj) + tx(e2, ci, cj) (9)

Combining Equation 8 and 9, we have to(G,S1) =
to(G′,S1).

Proof of Equation 3. The inequality holds since So′ is an
optimal strategy for G′.

Proof of Equation 4. The difference between to(G′,So′)
and to(G,So) is

to(G,So)− to(G′,So′)
=tx(e1, ci, cj) + tx(e2, ci, cj)− tx(e′, ci, cj)

=0

(10)


