Supplemental Materials for: Exploring Hidden Dimensions in Parallelizing
Convolutional Neural Networks

1. Node and Edge Eliminations

We define node and edge eliminations in Algorithm 1.

Algorithm 1 Node and edge eliminations.

1: function NODEELIMINATION(G)

2: if exist a node [; with a single in-edge e; = ({;,1;)
and a single out-edge ex = (I;,1;) then

3 6/ = (l“ lk)

4: g’:g—lj—el—eg—i—e'

5: return G’

6 else

7 return g

8: end if

9: end function

10:

11: function EDGEELIMINATION(G)
12: if exist two edges e; = (l;,1;) and ex = (I;,1;)
then

13: e = (ll‘,lj)

14: G =G—e—ey+e
15: return G’

16: else

17: return G

18: end if

19: end function

20:

Theorem 1. Assume G' = NodeElimination(G) and j is the
eliminated layer. If S, is an optimal strategy for G', then
S, = 8, + ¢j is an optimal strategy for G, where

¢j = argmin{tc(ny, ¢;) + ts(nj, ¢j)
e (D
+tx(er, i ;) +tx(ea, ¢jcn)}

Proof. Tt is equivalent to prove that (G, S1) > to(G,S,)
for any other strategy S;. We assume layer [; has paral-
lelization configuration ¢;; € S;. We prove this inequality
by using the following path.

to(G,S1) >to(G',S1))
> t0(G',S,) 3)
= to(ga SO) (4)

Proof of Equation 2. The difference between ¢o(G,S1)
and to(G’, S1) is

to(gvsl) - tO(glv‘Sl)
=tc(lj,ci1) +ts(lj, ci1) + tx(er, ¢, ci1))

+ tx(e2, ¢, cr1) — tx(€, ¢in, cr1)

This is because all other layers except /; use the same config-
urations in tp (G, S1) and to(G', S1), and therefore all cost
functions non-related to [; are eliminated in the subtraction.
The remaining parts are /;, e;, and ez, which no longer
exist in G’ after node elimination, and e’ that is added to G'.
Recall that tx(€’, -, -) is defined as follows.

tx(€', ciycr) = minf{te (15, ¢;) + ts(l, ¢;)
“ (6)
+tx(e, ¢i, ¢j) + tx(ez, ¢j cr) }

Combining Equation 5 and 6, we have to(G,S1) >
to(G',S1).

Proof of Equation 3. Since S, is an optimal strategy for
G’, the inequality holds by definition.

Proof of Equation 4. Similarly, the difference between
to(G',S,') and tp(G, S,) is

to(g7 So) - to(g/7 So/)
=tc(ly, ¢5) +ts(ly, &) + tx(er, ¢, ¢5) (7N
+ t.x(€2a C/\j, Ck;) - t.x(e/) Ci, Ck})
This is because S, = S, + ¢;, and therefore all cost func-

tions non-related to /; are eliminated. We can prove Equa-
tion 4 by bringing Equation 1 into Equation 7. O

Theorem 2. Assume G' = EdgeElimination(G), and S,,’ is
an optimal strategy for G, then S, = S, is an optimal
strategy for G.

Proof. We can use the same path to prove this theorem.
Proof of Equation 2. The difference between ¢o(G, S1)
and to(G',S1) is

to(G,81) —to(G',S1)

=tx(e1, ¢i1,¢j1) + tx(ez, civ, cj1) — tx(€, ¢, ¢j1)

®)

Supplemental Materials for: Exploring Hidden Dimensions in Parallelizing Convolutional Neural Networks

Recall that tx (€', -, -) is defined as follows.

tx(€',¢i,¢5) = tx(er, i, ¢5) +tx(ez,ciej) (9)
Combining Equation 8 and 9, we have t,(G,S1) =
to(G',S1).

Proof of Equation 3. The inequality holds since S, is an
optimal strategy for G’.

Proof of Equation 4. The difference between to(G’, S,’)
and to(G,S,) is
ﬁO(g, So) - tO(g/y So/)

=tx(e1, ¢, ;) + tx(ea, i, ¢j) — tx(€', ¢, ¢5) (10)
—0

