Supplementary Material

A. Tree Decomposition

Algorithm 2 presents our tree decomposition of molecules. V; and V5 contain non-ring bonds and simple rings respectively.
Simple rings are extracted via RDKit’s Get SymmSSSR function. We then merge rings that share three or more atoms as
they form bridged compounds. We note that the junction tree of a molecule is not unique when its cluster graph contains
cycles. This introduces additional uncertainty for our probabilistic modeling. To reduce such variation, for any of the three
(or more) intersecting bonds, we add their intersecting atom as a cluster and remove the cycle connecting them in the cluster
graph. Finally, we construct a junction tree as the maximum spanning tree of a cluster graph (1, £). Note that we assign an
large weight over edges involving clusters in ;) to ensure no edges in any cycles will be selected into the junction tree.

Algorithm 2 Tree decomposition of molecule G = (V, E)

V1 + the set of bonds (u,v) € F that do not belong to any rings.
V5 + the set of simple rings of G.
for 71,72 in ‘/2 do
Merge rings 71, 72 into one ring if they share more than two atoms (bridged rings).
end for
Vb < atoms being the intersection of three or more clusters in V; U V5.
V—TuViuV,
E+—{(i,j,e) eV XV xR||iNnj| >0}. Setc=o00if i € Vyorj € Vp, and ¢ = 1 otherwise.
Return The maximum spanning tree over cluster graph (), £).
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Figure 9. Illustration of tree decomposition and sample of cluster label vocabulary.

B. Stereochemistry

Though usually presented as two-dimensional graphs, molecules are three-dimensional objects, i.e. molecules are defined
not only by its atom types and bond connections, but also the spatial configuration between atoms (chiral atoms and cis-trans
isomerism). Stereoisomers are molecules that have the same 2D structure, but differ in the 3D orientations of their atoms in
space. We note that stereochemical feasibility could not be simply encoded as context free or attribute grammars.

Empirically, we found it more efficient to predict the stereochemical configuration separately from the molecule generation.
Specifically, the JT-VAE first generates the 2D structure of a molecule m, following the same procedure described in
section 2. Then we generate all its stereoisomers S,, using RDKit’s EnumerateStereoisomers function, which
identifies atoms that could be chiral. For each isomer m’ € S,,,, we encode its graph representation h,,,, with the graph
encoder and compute their cosine similarity f*(m’) = cos(hy,/,2,,) (note that z,, is stochastic). We reconstruct the
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final 3D structure by picking the stereoisomer m = arg max,,  f*(m’). Since on average only few atoms could have
stereochemical variations, this post ranking process is very efficient. Combining this with tree and graph generation, the
molecule reconstruction loss £ becomes

L=Le+ Lo+ Ly Lo=f(m)—log Y  exp(f*(m))) (17)

m €Sy,

C. Training Details

By applying tree decomposition over 240K molecules in ZINC dataset, we collected our vocabulary set X’ of size |X'| = 780.
The hidden state dimension is 450 for all modules in JT-VAE and the latent bottleneck dimension is 56. For the graph
encoder, the initial atom features include its atom type, degree, its formal charge and its chiral configuration. Bond feature is
a concatenation of its bond type, whether the bond is in a ring, and its cis-trans configuration. For our tree encoder, we
represent each cluster with a neural embedding vector, similar to word embedding for words. The tree and graph decoder
use the same feature setting as encoders. The graph encoder and decoder runs three iterations of neural message passing.
For fair comparison to SMILES based method, we minimized feature engineering. We use PyTorch to implement all neural
components and RDKit to process molecules.

D. More Experimental Results

Sampled Molecules Note that a degenerate model could also achieve 100% prior validity by keep generating simple
structures like chains. To prove that our model does not converge to such trivial solutions, we randomly sample and plot 250
molecules from prior distribution A(0, I). As shown in Figure 10, our sampled molecules present rich variety and structural
complexity. This demonstrates the soundness of the prior validity improvement of our model.

Neighborhood Visualization Given a molecule, we follow Kusner et al. (2017) to construct a grid visualization of its
neighborhood. Specifically, we encode a molecule into the latent space and generate two random orthogonal unit vectors
as two axis of a grid. Moving in combinations of these directions yields a set of latent vectors and we decode them into
corresponding molecules. In Figure 11 and 12, we visualize the local neighborhood of two molecules presented in Dai et al.
(2018). Figure 11 visualizes the same molecule in Figure 6, but with wider neighborhood ranges.

Bayesian Optimization We directly used open sourced implementation in Kusner et al. (2017) for Bayesian optimization
(BO). Specifically, we train a sparse Gaussian process with 500 inducing points to predict properties of molecules. Five
iterations of batch BO with expected improvement heuristic is used to propose new latent vectors. In each iteration, 50 latent
vectors are proposed, from which molecules are decoded and added to the training set for next iteration. We perform 10
independent runs and aggregate results. In Figure 13, we present the top 50 molecules found among 10 runs using JT-VAE.
Following Kusner et al.’s implementation, the scores reported are normalized to zero mean and unit variance by the mean
and variance computed from training set.

Constrained Optimization For this task, a property predictor F' is trained jointly with VAE to predict y(m) = logP(m) —
SA(m) from the latent embedding of m. F is a feed-forward network with one hidden layer of dimension 450 followed
by tanh activation. To optimize a molecule m, we start with its mean encoding z!, = p,,, and apply 80 gradient ascent
steps: zt, =zt 1+ oz% with @ = 2.0. 80 molecules are decoded from latent vectors {z:, } and their property is calculated.
Molecular similarity sim(m,m’) is calculated via Morgan fingerprint of radius 2 with Tanimoto similarity. For each
molecule m, we report the best modified molecule m' with sim(m,m’) > § for some threshold 8. In Figure 14, we present
three groups of modification examples with § = 0.2, 0.4, 0.6. For each group, we present top three pairs that leads to best
improvement y(m’) — y(m) as well as one pair decreased property (y(m') < y(m)). This is caused by inaccurate property

prediction. From Figure 14, we can see that tighter similarity constraint forces the model to preserve the original structure.
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Figure 10. 250 molecules sampled from prior distribution N'(0, I).
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Figure 11. Neighborhood visualization of molecule C[C@H]1CC(Nc2cnce(-c3nnen3C)c2)C[C@H](C)C1.
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Figure 12. Neighborhood visualization of molecule COc1cc(OC)cc([C@H]2CC[NH+](CCC(F)(F)F)C2)cl.
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Figure 13. Top 50 molecules found by Bayesian optimization using JT-VAE.
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Figure 14. Row 1-3: Molecule modification results with similarity constraint sim(m,m’) > 0.2, 0.4, 0.6. For each group, we plot the top
three pairs that leads to actual property improvement, and one pair with decreased property. We can see that tighter similarity constraint

forces the model to preserve the original structure.



