Supplementary Material for:
Regret Minimization for Partially Observable Deep Reinforcement Learning

Peter Jin Kurt Keutzer Sergey Levine

Al. Experimental Details

For each experiment, we performed 5 trials for each method
(some TRPO experiments on Pong are for 3 trials).

Al.1. Hyperparameters

Our hyperparameter choices for each method are listed be-
low. For all methods using Adam, we roughly tuned the
learning rate to find the largest that consistently converged
in unmodified variants of tasks.

Al.1.1. ARM

Please see Tables 1 and 2 for hyperparameters used with
ARM. Note that our choice of ARM hyperparameters yields
an equivalent number of minibatch gradient steps per sample
as used by deep Q-learning, i.e. | Adam minibatch gradi-
ent step per 4 simulator steps; c.f. Table 4 for the deep Q-
learning hyperparameters. We kept hyperparameters (other
than the learning rate and the number of steps n) constant
across tasks.

Table 1. Hyperparameters for ARM.

HYPERPARAMETER ATARI DOOM MINECRAFT
ADAM LEARNING RATE 1le™4 le® le™®
ADAM MINIBATCH SIZE 32 32 32
BATCH SIZE 12500 12500 12500
GRADIENT STEPS 3000 3000 3000
MOVING AVERAGE (T) 0.01 0.01 0.01
n-STEPS 1 5 5

Table 2. Hyperparameters for off-policy ARM.

HYPERPARAMETER Doom
ADAM LEARNING RATE le” 5
ADAM MINIBATCH SIZE 32
BATCH SIZE 1563
GRADIENT STEPS 400
IMPORTANCE WEIGHT CLIP 1
MOVING AVERAGE (T) 0.01
n-STEPS 5
REPLAY MEMORY MAX 25000

Al.1.2. A2C

Please see Table 3 for hyperparameters used with A2C. We
found that increasing the number of steps n used to calculate
the n-step returns was most important for getting A2C/A3C
to converge on Doom MyWayHome.

Table 3. Hyperparameters for A2C.

HYPERPARAMETER DooM
ADAM LEARNING RATE le™*
ADAM MINIBATCH SIZE 640
ENTROPY BONUS (B) 0.01
GRADIENT CLIP 0.5
n-STEPS 40
NUM. WORKERS 16

Al1.1.3.DQN

Please see Table 4 for hyperparameters used with deep Q-
learning. Dueling double DQN uses the tuned hyperpa-
rameters (van Hasselt et al., 2016; Wang et al., 2016). In
particular, we found that dueling double DQN generally per-
formed better and was more stable when learning on Atari
with the tuned learning rate 6.25 x 1075 ~ 6 x 1075 from
Wang et al. (2016), compared to the slightly larger learning
rate of 1 x 10~ used by ARM.

Table 4. Hyperparameters for dueling + double deep Q-learning.

HYPERPARAMETER ATARI DOOM MINECRAFET
ADAM LEARNING RATE 6e™® 1le® le™®
ADAM MINIBATCH SIZE 32 32 32
FINAL EXPLORATION 0.01 0.01 0.01
GRADIENT CLIP 10 — —
n-STEPS 1 5 5
REPLAY MEMORY INIT 50000 50000 12500
REPLAY MEMORY MAX 106 240000 62500
SIM STEPS/GRAD STEP 4 4 4
TARGET UPDATE STEPS 30000 30000 12500

Regret Minimization for Partially Observable Deep Reinforcement Learning

Al1.1.4. TRPO

Please see Table 5 for hyperparameters used with TRPO.
We generally used the defaults, such as the KL step size
of 0.01 which we found to be a good default. Decreasing
the batch size improved sample efficiency on Doom and
Minecraft without adversely affecting the performance of
the learned policies.

Table 5. Hyperparameters for TRPO.

HYPERPARAMETER ATARI DOOM MINECRAFT
BATCH SIZE 100000 12500 6250
CG DAMPENING 0.1 0.1 0.1
CG ITERATIONS 10 10 10
KL STEP SIZE 0.01 0.01 0.01

A1.2. Environment and Task Details

Our task-specific implementation details are described be-
low.

A1.2.1. ATARI

For the occluded variant of Pong, we set the middle re-
gion of the 160 x 210 screen with x,y pixel coordinates
[55...105),[34...194) to the RGB color (144,72,17).
The image of occluded Pong in Figure 4 from the main
text has a slightly darker occluded region for emphasis.

We use the preprocessing and convolutional network model
of Mnih et al. (2013). Specifically, we view every 4th emula-
tor frame, convert the raw frames to grayscale, and perform
downsampling to generate a single observed frame. The
input observation of the convnet is a concatenation of the
most recent frames (either 4 frames or 1 frame). The con-
vnet consists of an 8 x 8 convolution with stride 4 and 16
filters followed by ReLLU, a 4 x 4 convolution with stride
2 and 32 filters followed by ReLU, a linear map with 256
units followed by ReLU, and a linear map with |.A| units
where |A| is the action space cardinality (|.4] = 6 for Pong).

Al1.2.2. DooMm

Our modified environment “Doom Corridor+” is very
closely derived from the default “Doom Corridor” envi-
ronment in ViZDoom. We primarily make two modifica-
tions: (a) first, we restrict the action space to the three
keys { MoveRight, TurnLeft, TurnRight}, for a total
of 23 = 8 discrete actions; (b) second, we set the difficulty
(“Doom skill”’) to the maximum of 5.

For the occluded variant of Corridor+, we set the middle
region of the 160 x 120 screen with x, y pixel coordinates
[30...130),[10...110) to black, i.e. (0,0, 0).

For Corridor+, we scaled rewards by a factor of 0.01. We
did not scale rewards for MyWayHome.

The Doom screen was rendered at a resolution of 160 x 120
and downsized to 84 x 84. Only every 4th frame was ren-
dered, and the input observation to the convnet is a con-
catenation of the last 4 rendered RGB frames for a total
of 12 input channels. The convnet contains 3 convolutions
with 32 filters each: the first is size 8 x 8 with stride 4, the
second is size 4 x 4 with stride 2, and the third is size 3 x 3
with stride 1. The final convolution is followed by a linear
map with 1024 units. A second linear map yields the output.
Hidden activations are gated by ReLUs.

A1.2.3. MINECRAFT

Our Minecraft tasks are based on the tasks introduced by
Matiisen et al. (2017), with a few differences. Instead of
using a continuous action space, we used a discrete action
space with 4 move and turn actions. To aid learning on
the last level (“L5”), we removed the reward penalty upon
episode timeout and we increased the timeout on “L5” from
45 seconds to 75 seconds due to the larger size of the envi-
ronment. We scaled rewards for all levels by 0.001.

We use the same convolutional network architecture for
Minecraft as we use for ViZDoom. The Minecraft screen
was rendered at a resolution of 320 x 240 and downsized to
84 x 84. Only every 5th frame was rendered, and the input
observation of the convnet is a concatenation of the last 4
rendered RGB frames for a total of 12 input channels.

A2. Off-policy ARM via Importance
Sampling

Our current approach to running ARM with off-policy data
consists of applying an importance sampling correction di-
rectly to the n-step returns. Given the behavior policy p
under which the data was sampled, the current policy 7,
under which we want to perform estimation, and an im-
portance sampling weight clip ¢ for variance reduction, the
corrected n-step return we use is:

k+n—1

k/

gk (Wllme) = Z oAl kunm(adw) ree (D)
k' =k =k
+ "V (0k 405 #)

where the truncated importance weight w,, ||, (alo) is de-

fined:
7Tt(a|0)>)
ulalo)) @

Wy, (alo) = min (c,

Note that the target value function V’ (0 ; ¢) does not re-
quire an importance sampling correction because V' already

Regret Minimization for Partially Observable Deep Reinforcement Learning

approximates the on-policy value function Vi, (0x4n;6:).
Our choice of ¢ = 1 in our experiments was inspired by
Wang et al., (2017). We found that ¢ = 1 worked well but
note other choices for ¢ may also be reasonable.

When applying our importance sampling correction, we
preserve all details of the ARM algorithm except for two
aspects: the transition sampling strategy (a finite memory
of previous batches are cached and uniformly sampled)
and the regression targets for learning the value functions.
Specifically, the regression targets vy and q,j (Equations
(11)—(14) in the main text) are modified to the following:

v = gk (pllme) 3)
ar = (1 = wyir, (arlor))rr + gi (e 4)
o1 = Q) 1 (or, an;wi—1) — Vi, (0 01-1) (5)
gy = max(0, ¢x) + g (6)

A3. Additional Experiments
A3.1. Recurrence in Doom MyWayHome

We evaluated the effect of recurrent policy and value func-
tion estimation in the maze-like MyWayHome scenario of
ViZDoom. For the recurrent policy and value function, we
replaced the first fully connected operation with an LSTM
featuring an equivalent number of hidden units (1024). We
found that recurrence has a small positive effect on the con-
vergence of A2C, but was much less significant than the
choice of algorithm; compare Figure 2 in the main text with
Figure 7 below.

10 Doom MyWayHome

0.8
0.6
0.4

o
\
0.2 |

)
Y%
“M'ﬂ"w

mean episode return

0.0
—— A2C (FF)

A2C (LSTM)

-0.2

0 1 2
sim steps le6

Figure 7. Comparing A2C with a feedforward convolutional net-
work (blue) and a recurrent convolutional-LSTM network (orange)
on the ViZDoom scenario MyWayHome.

A3.2. Atari 2600 games

Although our primary interest is in partially observable re-
inforcement learning domains, we also want to check that
ARM works in nearly fully observable and Markovian en-
vironments, such as Atari 2600 games. We consider two
baselines: double deep Q-learning, and double deep fitted
Q-iteration which is a batch counterpart to double DQN.

We find that double deep Q-learning is a strong baseline
for learning to play Atari games, although ARM still suc-
cessfully learns interesting policies. One major benefit of
Q-learning-based methods is the ability to utilize a large
off-policy replay memory. Our results on a suite of Atari
games are in Figure 8.

Regret Minimization for Partially Observable Deep Reinforcement Learning

Beam Rider Breakout Enduro
€ €
5300 S
g g
2 3
§200 g
o Q
) v
% c
©100 s
€ €
2 0% 1 2
steps le7 steps le7 steps le7
Seaquest Space Invaders
1000
c 12000 c 10000 c 500
=1 =1 | =1
g 10000 2 8000 e
g 8000 g | 8 600
3 8 6000 2
o 6000 o o
9] 2 4000 o 400
E 4000 5 §
€ 2000 £ 2000 g 200
0 0 2 %% 1 2
steps le7 steps le7 steps le7

Figure 8. Comparing double deep Q-learning (orange), double deep fitted Q-iteration (red), and ARM (blue) on a suite of seven Atari
games from the Arcade Learning Environment.

