
WSNet: Compact and Efficient Networks Through Weight Sampling

Xiaojie Jin 1 2 Yingzhen Yang 2 Ning Xu 2 Jianchao Yang 3 Nebojsa Jojic 4 Jiashi Feng 1 Shuicheng Yan 5 1

Abstract
We present a new approach and a novel architec-
ture, termed WSNet, for learning compact and ef-
ficient deep neural networks. Existing approaches
conventionally learn full model parameters inde-
pendently and then compress them via ad hoc
processing such as model pruning or filter factor-
ization. Alternatively, WSNet proposes learning
model parameters by sampling from a compact set
of learnable parameters, which naturally enforces
parameter sharing throughout the learning process.
We demonstrate that such a novel weight sampling
approach (and induced WSNet) promotes both
weights and computation sharing favorably. By
employing this method, we can more efficiently
learn much smaller networks with competitive
performance compared to baseline networks with
equal numbers of convolution filters. Specifically,
we consider learning compact and efficient 1D
convolutional neural networks for audio classifi-
cation. Extensive experiments on multiple audio
classification datasets verify the effectiveness of
WSNet. Combined with weight quantization, the
resulted models are up to 180× smaller and theo-
retically up to 16× faster than the well-established
baselines, without noticeable performance drop.

1. Introduction
Despite remarkable successes in various applications, deep
neural networks (DNNs) usually suffer following two prob-
lems that stem from their inherent huge parameter space.
First, most of state-of-the-art deep architectures are prone to
over-fitting even when trained on large datasets (Simonyan
& Zisserman, 2015; Szegedy et al., 2015). Secondly, DNNs
usually consume large amount of storage memory and en-
ergy (Han et al., 2016), which makes it difficult to use them

1National University of Singapore, Singapore 2Snap Inc. Re-
search, Los Angeles, USA 3Bytedance Inc., Menlo Park, USA
4Microsoft Research, Redmond, USA 5360 AI Institute, Beijing,
China. Correspondence to: Xiaojie Jin <xjjin0731@gmail.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

in devices with limited memory and power (such as portable
devices or chips). Different from most existing works (Han
et al., 2015; Li et al., 2017; Jaderberg et al., 2014; Lebedev
et al., 2014; Hinton et al., 2015) on model compression
and acceleration that ignore the strong dependencies among
weights and learn filters independently based on existing
network architectures, this paper proposes to explicitly en-
force the parameter sharing among filters to more effectively
learn compact and efficient deep networks.

In this paper, we propose a Weight Sampling deep neu-
ral network (i.e. WSNet) to significantly reduce both the
model size and computation cost, achieving more than 100×
smaller size and up to 16× speedup at negligible perfor-
mance drop or even achieving better performance than the
baseline (i.e. conventional networks that learn filters inde-
pendently). Specifically, WSNet is parameterized by layer-
wise condensed filters from which each filter participating in
actual convolutions can be directly sampled, in both spatial
and channel dimensions. Since condensed filters have signif-
icantly fewer parameters than independently trained filters
as in conventional CNNs, learning by sampling from them
makes WSNet a more compact model compared to conven-
tional CNNs. In addition, to reduce the ubiquitous computa-
tional redundancy in convolving the overlapped filters and
input patches, we propose an integral image based method
to dramatically reduce the computation cost of WSNet in
both training and inference. The integral image method is
also advantageous because it enables weight sampling with
different filter size and minimizes computational overhead
to enhance the learning capability of WSNet.

In order to demonstrate the efficacy of WSNet, we con-
duct extensive experiments on challenging audio classifica-
tion tasks. On each test dataset, including ESC-50 (Piczak,
2015a), UrbanSound8K (Salamon et al., 2014), DCASE
(Stowell et al., 2015) and MusicDet200K (a self-collected
dataset, as detailed in Section 4), WSNet significantly re-
duces the model size of the baseline by 100× with com-
parable or even higher classification accuracy. When com-
pressing more than 180×, WSNet is only subject to negligi-
ble accuracy drop. At the same time, WSNet significantly
reduces the computation cost (up to 16×). Such results
strongly establish the capability of WSNet to learn compact
and efficient networks. Last but not the least, we provide
an intuitive method to extend WSNet from 1D CNNs to



WSNet: Compact and Efficient Networks Through Weight Sampling

2D CNNs. Experimental results on MNIST and CIFAR10
strongly evidence the potential capability of WSNet to learn
efficient networks on 2D CNNs.

2. Related Works
2.1. Deep Model Compression and Acceleration

Recent works in network compression adopt weight prun-
ing (Han et al., 2015; Collins & Kohli, 2014; Anwar et al.,
2017; Lebedev & Lempitsky, 2016; Kim et al., 2015; Luo
et al., 2017; Li et al., 2017), filter decomposition (Sindhwani
et al., 2015; Denton et al., 2014; Jaderberg et al., 2014),
hashed networks (Chen et al., 2015; 2016) and weight quan-
tization (Han et al., 2016). However, although those works
reduce model size, they also suffer from large performance
drop. Bucilu et al. (2006) and Ba & Caruana (2014) are
based on student-teacher approches which may be difficult
to apply in new tasks since they require training a teacher
network in advance. Denil et al. (2013) predicts parameters
based on a few number of weight values. Jin et al. (2016)
proposes an iterative hard thresholding method, but only
achieve relatively small compression ratios. Gong et al.
(2014) uses a binning method which can only be applied
over fully connected layers. Hinton et al. (2015) compresses
deep models by transferring the knowledge from pre-trained
larger networks to smaller networks.

In terms of deep model acceleration, the factorization and
quantization methods listed above can reduce computa-
tion latency in inference. FFT (Mathieu et al., 2013) and
LCNN (Bagherinezhad et al., 2016) are also used to speed
up computation in pratice. Comparatively, WSNet is supe-
rior because it learns networks that have both smaller model
size and faster computation versus baselines.

2.2. Efficient Model Design

WSNet presents a class of novel models with the appeal-
ing properties of a small model size and small computation
cost. Some recently proposed efficient model architectures
include the class of Inception models (Szegedy et al., 2015;
Ioffe & Szegedy, 2015; Chollet, 2016), the class of Resid-
ual models (He et al., 2016; Xie et al., 2017; Chen et al.,
2017) and the factorized networks which use fully factorized
convolutions. MobileNet (Howard et al., 2017) and Flat-
tened networks (Jin et al., 2014) are based on factorization
convolutions. ShuffleNet (Zhang et al., 2017) uses group
convolution and channel shuffle to reduce computational
cost. Compared with the above works, WSNet presents a
new model design strategy which is more flexible and gen-
eralizable: the parameters in deep networks can be obtained
conveniently from a more compact representation through
the proposed weight sampling method.

3. Method
3.1. Notations

Before diving into the details, we first introduce the nota-
tions used in this paper. The traditional 1D convolution layer
takes as input the feature map F ∈ RT×M and produces an
output feature map G ∈ RT×N where (T,M,N) denotes
the spatial length of input, the channel of input and the num-
ber of filters respectively. We assume that the output has the
same spatial size as input which holds true by using zero
padded convolution. The 1D convolution kernel K used in
the actual convolution of WSNet has the shape of (L,M,N)
where L is the kernel size. Let kn, n ∈ {1, · · ·N} denotes
a filter and ft, t ∈ {1, · · ·T} denotes a input patch that
spatially spans from t to t + L − 1, then the convolution
assuming stride one and zero padding is computed as:

Gt,n = ft · kn =

L−1∑
l=0

M−1∑
m=0

Ft+l,m ×Kl,m,n, (1)

where · stands for the vector inner product. Note we omit the
element-wise activation function to simplify the notation.

In WSNet, instead of learning each weight independently,
K is obtained by sampling from a learned condensed filter
Φ which has the shape of (L∗,M∗). The goal of training
WSNet is thus cast to learn more compact DNNs which
satisfy the condition of L∗M∗ < LMN . WSNet uses a
condensed filter per convolutional layer. To quantize the
advantage of WSNet in achieving compact networks, we
define the compactness of K in a learned layer in WSNet
w.r.t. the conventional layer with independently learned
weights as:

compactness =
LMN

L∗M∗
. (2)

In the following section, we demonstrate WSNet learn com-
pact networks by sampling weights in two dimensions: the
spatial dimension and the channel dimension.

3.2. Weight sampling

3.2.1. ALONG SPATIAL DIMENSION

In conventional CNNs, the filters in a layer are learned in-
dependently which presents two disadvantages. Firstly, the
resulted DNNs have a large number of parameters, which im-
pedes their deployment in computation resource constrained
platforms. Second, such over-parameterization makes the
network prone to overfitting and getting stuck in (extra intro-
duced) local minima. To solve these two problems, a novel
weight sampling method is proposed to efficiently reuse the
weights among filters. Specifically, in each convolutional
layer of WSNet, all convolutional filters K are sampled
from the condensed filter Φ, as illustrated in Figure 1. By
scanning the weight sharing filter with a window size of L



WSNet: Compact and Efficient Networks Through Weight Sampling

Channel Sampling

Spatial Sampling

Sampling Stride: S

Shapes of Filters

Figure 1: Illustration of WSNet that learns small condensed filters
with weight sampling along two dimensions: spatial dimension
(the bottom panel) and channel dimension (the top panel). The
figure depicts procedure of generating two continuous filters (in
pink and purple respectively) that convolve with input. In spatial
sampling, filters are extracted from the condensed filter with a
stride of S. In channel sampling, the channel of each filter is
sampled repeatedly for C times to achieve equal with the input
channel. Please refer to Section 3.2 for detailed explanations. All
figures in this paper are best viewed in zoomed-in pdf.

and stride of S, we could sample out N filters with filter
size of L. Formally, the equation between the filter size of
the condensed filter and the sampled filters is:

L∗ = L + (N − 1)S. (3)

The compactness along spatial dimension is LM∗N
L∗M∗ ≈ L

S .
Note that since the minimal value of S is 1, the minimal
value of L∗ (i.e. the minimum spatial length of the con-
densed filter) is L + N − 1 and the maximal achievable
compactness is therefore L.

3.2.2. ALONG CHANNEL DIMENSION

Although it is experimentally verified that the weight sam-
pling strategy could learn compact deep models with neg-
ligible loss of classification accuracy (see Section 4), the
maximal compactness is limited by the filter size L, as men-
tioned in Section 3.2.1.

In order to seek more compact networks without such limi-
tation, we propose a channel sharing strategy for WSNet to
learn by weight sampling along the channel dimension. As
illustrated in Figure 1 (top panel), the actual filter used in
convolution is generated by repeating sampling for C times.
The relation between the channels of filters before and after
channel sampling is:

M = M∗ × C, (4)

Therefore, the compactness of WSNet along the channel
dimension achieves C. As introduced later in Experiments
(Section 4), we observe that the repeated weight sampling
along the channel dimension significantly reduces the model
size of WSNet without significant performance drop. One

notable advantage of channel sharing is that the maximum
compactness can be as large as M (i.e. when the condensed
filter has channel of 1), which paves the way for learning
much more aggressively smaller models (e.g. more than
100× smaller models than baselines). We attribute the ef-
fectiveness of channel sharing to reducing the redundancy
along the channel dimension, especially in top layers. In
general architecture design, the number of filter channels
grows linearly with the layer depth. However, the spatial
size of kernels becomes smaller or remains unchanged. This
implies redundancy in higher layers mainly come from the
channel dimension.

The above analysis for weight sampling along spa-
tial/channel dimensions can be conveniently generalized
from convolution layers to fully connected layers. For a
fully connected layer, we treat its weights as a flattened vec-
tor with channel of 1, along which the spatial sampling (ref.
Section 3.2.1) is performed to reduce the size of learnable
parameters. For more details, please refer the supplementary
material.

3.2.3. THE TRAINING OF CONDENSED FILTERS

WSNet is trained from the scratch in a similar way to con-
ventional deep convolutional networks by using standard
error back-propagation. Since every weight Kl,m,n in the
convolutional kernel K is sampled from the condensed filter
Φ along the spatial and channel dimension, the only differ-
ence is the gradient of Φi,j is the summation of all gradients
of weights that are tied to it. Therefore, by simply recording
the position mappingM : (i, j) → (l,m, n) from Φi,j to
all the tied weights in K, the gradient of Φi,j is calculated
as:

∂L
∂Φi,j

=
∑

s∈M(i,j)

∂L
∂Ks

(5)

where L is the conventional cross-entropy loss function. In
open-sourced machine learning libraries which represent
computation as graphs, such as TensorFlow (Abadi et al.,
2016), Equation (5) can be calculated automatically.

3.3. Denser Weight Sampling

The performance of WSNet might be adversely affected
when the size of condensed filter is decreased aggressively
(i.e. when S and C are large). To enhance the learning
capability of WSNet, we could sample more filters from the
condensed filter. Specifically, we use a smaller sampling
stride S̄ (S̄ < S) when performing spatial sampling. In or-
der to keep the shape of weights unchanged in the following
layer, we append a 1×1 convolution layer with the shape of
(1, n̄, n) to reduce the channels of densely sampled filters.
It is experimentally verified that denser weight sampling
can effectively improve the performance of WSNet in Sec-
tion 4. However, since it also brings extra parameters and



WSNet: Compact and Efficient Networks Through Weight Sampling

v2
...

I(u1+L-1,v1+L-1)

I(u1,v1)

v2+L-1

v1+L-1

u2 u1+L-1 u2+L-1

v1

u1

Figure 2: Illustration of efficient computation with integral image
in WSNet. The inner product map P ∈ RT×L∗

calculates the
inner product of each row in F and each column in Φ as in Eq. (7).
The convolution result between a filter k1 which is sampled from
Φ and the input patch f1 is then the summation of all values in the
segment between (u, v) and (u+ L− 1, v + L− 1) in P (recall
that L is the convolutional filter size). Since there are repeated
calculations when the filter and input patch are overlapped, e.g. the
green segment indicated by arrow when performing convolution
between k2 and s2, we construct the integral image I using P
according to Eq. (8). Based on I, the convolutional results between
any sampled filter and input patch can be retrieved directly in
time complexity of O(1) according to Eq. (9), e.g. the results of
k1 · s1 is I(u1 + L − 1, v1 + L − 1) − I(u1 − 1, v1 − 1). For
notation definitions, please refer to Sec. 3.1. The comparisons
of computation costs between WSNet and the baselines using
conventional architectures are introduced in Section 3.4.

computational cost to WSNet, denser weight sampling is
only used in lower layers of WSNet whose filter number (n)
is small. Besides, one can also conduct channel sampling
on the added 1×1 convolution layers to further reduce their
sizes.

3.4. Efficient Computation with integral image

According to Equation 1, the computation cost in terms of
the number of multiplications and adds (i.e. Mult-Adds) in
a conventional convolutional layer is:

TMLN (6)

However, as illustrated in Figure 2, since all filters in a
layer in WSNet are sampled from a condensed filter Φ
with stride S, calculating the results of convolution in the
conventional way as in Eq. (1) incurs severe computational
redundancies. Concretely, as can be seen from Eq. (1), one
item in the ouput feature map is equal to the summation of L
inner products between the row vector of f and the column
vector of k. Therefore, when two overlapped filters that are
sampled from the condensed filter (e.g. k1 and k2 in Fig. 2)
convolves with the overlapped input windows (e.g. f1 and
f2 in Fig. 2)), some partially repeated calculations exist (e.g.
the calculations highlight in green and indicated by arrow
in Fig. 2). To eliminate such redundancy in convolution and
speed-up WSNet, we propose a novel integral image method
to enable efficient computation via sharing computations.

We first calculate an inner product map P ∈ RT×L∗
which

channel
wrapping

v2+L-1

v1+L-1

u1+L-1 u2+L-1

v1

v2

u1 u2

Figure 3: A variant of the integral image method used in practice
which is more efficient than that illustrated in Figure 2. Instead of
repeatedly sampling along the channel dimension of Φ to convolve
with the input F, we wrap the channels of F by summing up C
matrixes that are evenly divided from F along the channels, i.e.
F̃(i, j) =

∑C−1
c=0 F(i, j + cM∗). Since the channle of F̃ is only

1/C of the channel of F, the overall computation cost is reduced
as demonstrated in Eq. (11).

stores the inner products between each row vector in the
input feature map (i.e. F) and each column vector in the
condensed filter (i.e. Φ):

P(u, v) =

{
Fu,: ·Φ:,v, u ∈ [0, T − 1] and v ∈ [0, L∗ − 1]

0, otherwise.

(7)

The integral image for speeding-up convolution is denoted
as I. It has the same size as P and can be conveniently
obtained throught below formulation:

I(u, v) =


I(u− 1, v − 1) + P(u, v), u > 0, v > 0

P(u, 0), v = 0

P(0, v), u = 0

(8)

Based on I, all convolutional results can be obtained in time
complexity of O(1) as follows

Gt,n = I(t+L− 1, nS +L− 1)− I(t− 1, nS − 1) (9)

Recall that the n-th filter lies in the spatial range of
(nS, nS + L − 1) in the condensed filter Φ. Since G ∈
RT×N , it thus takes TN times of calculating Eq. (9) to get
G. In Eq. (7) ∼ Eq. (9), we omit the case of padding for
clear description. When zero padding is applied, we can
freely get the convolutional results for the padded areas even
without using Eq. (9) since I(u, v) = I(T, v − 1), u > T .

Based on Eq. (7) ∼ Eq. (9), the computation cost of the
proposed integral image method is

TML∗︸ ︷︷ ︸
Eq. (7)

+ TL∗︸︷︷︸
Eq. (8)

+ TN︸︷︷︸
Eq. (9)

= T (M + 1)L∗ + TN. (10)

Note the computation cost of P (i.e. Eq. (7)) is the dominat-
ing term in Eq. (10). Based on Eq. (6), Eq. (10) and Eq. (3),



WSNet: Compact and Efficient Networks Through Weight Sampling

the theoretical acceleration ratio is

TMLN

T (M + 1)L∗ + TN
≈ L

S

Recall that L is the filter size and S is the pre-defined stride
when sampling filters from the condensed filter Φ (ref. to
Eq. (3)).

In practice, we adopt a variant of the above method to further
boost the computation efficiency of WSNet, as illustrated
in Fig 3. In Eq. (7), we repeat Φ by C times along the
channel dimension to make it equal with the channel of
the input F. However, we could first wrap the channels of
F by accumulating the values with interval of L along its
channel dimension to a thinner feature map F̃ ∈ RT×M∗

which has the same channel number as Φ, i.e. F̃(i, j) =∑C−1
c=0 F(i, j + cM∗). Both Eq. (8) and Eq. (9) remain the

same. Then the computational cost is reduced to

TM∗(C − 1)︸ ︷︷ ︸
channel warp

+TM∗L∗︸ ︷︷ ︸
Eq. (7)

+ TL∗︸︷︷︸
Eq. (8)

+ TN︸︷︷︸
Eq. (9)

(11)

where the first item is the computational cost of warping the
channels of F to obtain F̃. Since the dominating term (i.e.
Eq. (7)) in Eq (11) is smaller than in Eq. (10), the overall
computation cost is thus largely reduced. By combining
Eq. (11) and Eq. (6), the theoretical acceleration compared
to the baseline is

MLN

M∗(C + L∗ − 1) + (L∗ + N)
(12)

Finally, we note that the integral image method applied
in WSNet naturally takes advantage of the property in
weight sampling: redundant computations exist between
overlapped filters and input patches. Different from other
deep model speedup methods (Sindhwani et al., 2015; Den-
ton et al., 2014) which require to solve time-consuming
optimization problems and incur performance drop, the in-
tegral image method can be seamlessly embeded in WSNet
without negatively affecting the final performance.

3.5. An Intuitive Extension of WSNet from 1D convnet
to 2D convnet

In this paper, we focus on WSNet with 1D convnets. Com-
prehensive experiments clearly demonstrate its advantages
in learning compact and computation-efficient networks.
We note that WSNet is general and can also be applied to
build 2D convnets. In 2D convnets, each filter has three di-
mensions including two spatial dimensions (i.e. along X and
Y directions) and one channel dimension. One straightfor-
ward extension of WSNet to 2D convnets is as follows: for
spatial sampling, each filter is sampled out as a patch (with
the same number of channels as in condensed filter) from

condensed filter. Channel sampling remains the same as in
1D convnets, i.e. repeat sampling in the channel dimension
of condensed filter. Following the notations for WSNet with
1D convnets (ref. to Sec. 3.1), we denote the filters in one
layer as K ∈ Rw×h×M×N where (w, h,M,N) denote the
width and height of each filter, the number of channels and
the number of filters respectively. The condensed filter Φ
has the shape of (W,H,M∗). The relations between the
shape of condensed filter and each sampled filter are:

W = w + (d
√
Ne − 1)Sw

H = h + (d
√
Ne − 1)Sh

M = M∗ × C

(13)

where Sw and Sh are the sampling strides along two spa-
tial dimensions and C is the compactness of WSNet along
channel dimension. The compactnesses (ref. to Eq. (2) for
denifinition) of WSNet along spatial and channel dimension
are WH

whN and C respectively. However, such straightforward
extension of WSNet to 2D convnets may not be optimum
and we believe there are more sophisticated and effective
methods for applying WSNet to 2D convnets and we would
like to explore in our future work. Nevertheless, we con-
duct preliminary experiments on 2D convents using above
intuitive extension and verify the effectiveness of WSNet in
image classification tasks (on MNIST and CIFAR10).

4. Experiments
4.1. Experimental Settings

Datasets and baseline networks We collect a large-scale
music detection dataset (MusicDet200K) from publicly
available platforms (e.g. Facebook, Twitter, etc.) for con-
ducting experiments. For fair comparison with previous
literatures, we also test WSNet on three standard, publicly
available datasets, i.e ESC-50, UrbanSound8K and DCASE.
Due to space limit, please refer to the details of used datasets
in supplementary material.

To test the scability of WSNet to different network archi-
tectures (e.g. whether having fully connected layers or not),
two baseline networks are used in comparision. Their archi-
tectures are shown in Table 1 and Table 2 respectively.

Evaluation criteria To demonstrate that WSNet is capa-
ble of learning more compact and efficient models than
conventional CNNs, three evaluation criteria are used in our
experiments: model size, the number of multiply and adds
in calculation (mult-adds) and classification accuracy. For
the results of WSNet models, we also give the std of five
different runs.

Implementation details WSNet is implemented and
trained from scratch in Tensorflow (Abadi et al., 2016).



WSNet: Compact and Efficient Networks Through Weight Sampling

Table 1: Baseline-1: configurations of the baseline network used on MusicDet200K. Each convolutional layer is followed by a nonlinearity
layer (i.e. ReLU), batch normalization layer and pooling layer, which are omitted in the table for brevity. The strides of all pooling layers
are 2. The padding strategies adopted for both convolutional layers and fully connected layers are all “size preserving”.

Layer conv1 conv2 conv3 conv4 conv5 conv6 conv7 fc1 fc2

Filter sizes 32 32 16 8 8 8 4 1536 256
#Filters 32 64 128 128 256 512 512 256 128
Stride 2 2 2 2 2 2 2 1 1
#Params 1K 65K 130K 130K 260K 1M 1M 390K 33K
#Mult-Adds (108) 4.1 65.5 32.7 8.2 4.1 4.2 1.0 0.1 0.007

Table 2: Baseline-2: configuration of the baseline network used on ESC-50, UrbanSound8K and DCASE. This baseline is adapted from
SoundNet (Aytar et al., 2016) by applying pooling layers to all but the last convolutional layer. For brevity, the nonlinearity layer (i.e.
ReLU), batch normalization layer and pooling layer following each convolutional layer are omitted. The kernel sizes for pooling layers
following conv1-conv4 and conv5-conv7 are 8 and 4 respectively. The stride of every pooling layers is 2.

Layer conv1 conv2 conv3 conv4 conv5 conv6 conv7 conv8

Filter sizes 64 32 16 8 4 4 4 8
#Filters 16 32 64 128 256 512 1024 1401
Stride 2 2 2 2 2 2 2 2
#Params 1K 16K 32K 65K 130K 520K 2M 11M
#Mult-Adds (108) 2.3 9.0 4.5 2.3 1.2 1.2 1.2 2.3

Table 3: Ablative study of the effects of different settings of WSNet on the model size, computation cost (in terms of #mult-adds) and
classification accuracy on ESC-50. For clear description, we name WSNets with different settings by the combination of symbols S/C/D/Q.
“S” denotes the weight sampling along spatial dimension; “C” denotes the weight sampling along the channel dimension. “D” denotes
denser filter sampling. “Q” denotes weight quantization. The numbers in subscripts of S/C/D/Q denotes the maximum compactness (ref.
to Sec. 3.1 for the definition of compactness) on spatial/channel dimension in all layers, the ratio of the number of filters in WSNet versus
in the baseline and the ratio of WSNet’s size before and after weight quantization, respectively. The model size and the computational
cost are provided for the baseline. For the model size and #mult-adds of WSNet, we provide the ratio of the baseline’s model size versus
WSNet’s model size and the ratio of the baseline’s #Mult-Adds versus WSNet’s #Mult-Adds.

WSNet’s conv{1-4} conv5 conv6 conv7 conv8
Acc. Model size Mult-Addssettings S C D S C D S C D S C D S C D

Baseline 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 66.0 ± 0.2 13M (1×) 2.4e8 (1×)
BaselineQ4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 65.7 ± 0.2 4× 1×
S2 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 66.6 ± 0.3 2× 1×
S4 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 66.3 ± 0.1 4× 1.6×
S8 8 1 1 4 1 1 4 1 1 4 1 1 8 1 1 65.2 ± 0.1 7× 4.7×
C2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 66.8 ± 0.2 2× 1×
C4 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 66.5 ± 0.3 4× 1.6×
C8 1 8 1 1 4 1 1 4 1 1 4 1 1 8 1 65.8 ± 0.3 8× 2.8×
S4C4 4 4 1 4 4 1 4 4 1 4 4 1 4 4 1 65.6 ± 0.3 16× 6.3×
S8C8 4 4 1 4 8 1 4 8 1 4 8 1 8 8 1 65.2 ± 0.3 60× 18.1×
S8C4D2 4 4 2 4 4 1 4 4 1 4 4 1 8 4 1 66.5 ± 0.1 25× 2.3×
S8C4D2Q4 4 4 2 4 4 1 4 4 1 4 4 1 8 4 1 66.2 ± 0.1 100× 2.3×
S8C8D2 4 4 1 4 8 1 4 8 1 4 8 1 8 8 1 66.1 ± 0.0 45× 2.4×
S8C8D2Q4 4 4 2 4 8 1 4 8 1 4 8 1 8 8 1 65.8 ± 0.0 180× 2.4×



WSNet: Compact and Efficient Networks Through Weight Sampling

Following (Aytar et al., 2016), the Adam (Kingma & Ba,
2014) optimizer, a fixed learning rate of 0.001, and mo-
mentum term of 0.9 and batch size of 64 are used through-
out experiments. We initialized all the weights to zero
mean gaussian noise with a standard deviation of 0.01.
In the network used on MusicDet200K, the dropout ratio
for the dropout layers (Srivastava et al., 2014) after each
fully connected layer is set to be 0.8. The overall train-
ing takes 100,000 iterations. The codes are available at
https://github.com/AIROBOTAI/wsnet-v1.

4.2. Results and analysis

4.2.1. ESC-50

Ablation analysis We investigate the effects of each com-
ponent in WSNet on the model size, computational cost
and classification accuracy. The comparative study results
of different settings of WSNet are listed in Table 3. For
clear description, we name WSNets with different settings
by the combination of symbols S/C/D/Q. Please refer to the
caption of Table 3 for detailed meanings.

(1) Spatial sampling. We test the performance of WS-
Net by using different sampling stride S in spatial sampling.
As listed in Table 3, S2 and S4 slightly outperforms the
classification accuracy of the baseline, possibly due to re-
ducing the overfitting of models. When the sampling stride
is 8, i.e. the compactness in spatial dimension is 8 (ref. to
Section 3.2.1), the classification accuracy of S8 only drops
by 0.6%. Note that the maximum compactness along the
spatial dimension is equal to the filter size, thus for the
layer “conv{5-7}” which have filter sizes of 4, their com-
pactnesses are limited by 4 (highlighted by underlines in
Table 3). Above results clearly demonstrate that the spa-
tial sampling enables WSNet to learn significantly smaller
model with comparable accuracies w.r.t. the baseline.

(2) Channel sampling. Three different compactness
along the channel dimension, i.e. 2, 4 and 8 are tested
by comparing with baslines. It can be observed from Ta-
ble 3 that C2 and C4 and C8 have linearly reduced model
size without incurring noticeable drop of accuracy. In fact,
C2 and C4 can even improve the accuracy upon baselines,
demonstrating the effectiveness of channel sampling in WS-
Net. When learning more compact models, C8 demonstrates
better performance compared to S8 that has the same com-
pactness in the spatial dimension, which suggests we should
focus on the channel sampling when the compactness along
the spatial dimension is high.

We then simultaneously perform weight sampling on both
the spatial and channel dimensions. As demonstrated by the
results of S4C4 and S8C8, WSNet can learn highly compact
models without significant performance drop (less than 1%).

(3) Denser weight sampling. Denser weight sampling

is used to enhance the learning capability of WSNet with
aggressive compactness (i.e. when S and C are large) and
make up the performance loss caused by sharing too much
parameters among filters. As shown in Table 3, by sampling
2× more filters in conv{1-4}, S8C8D2 significantly outper-
forms the S8C8. Above results demonstrate the effectiveness
of denser weight sampling to boost the performance.

(4) Integral image for efficient computation. As evi-
denced in the last column in Table 3, the proposed integral
image method consistently reduces the computation cost of
WSNet. For S8C8 which is 60× smaller than the baseline,
the computation cost (in terms of #mult-adds) is signifi-
cantly reduced by 18.1 times. Due to the extra computation
cost brought by the 1×1 convolution in denser filter sam-
pling, S8C8D2 achieves lower acceleration (2.4×). Group
convolution (Xie et al., 2017) can be used to alleviate the
computation cost of the added 1×1 convolution layers. We
will explore this direction in our future work.

(5) Weight quantization. It can be observed from Ta-
ble 3 that by using 256 bins to represent each weight by
one byte (i.e. 8bits), S8C8D2Q4 and S8C4D2Q4 have much
smaller model size compared with baselines while incurring
negligible accuracy loss. The above result demonstrates that
the weight quantization is complementary to WSNet and
they can be used jointly to effectively reduce the model size
of WSNet. Please ref. to supplementary material for the
details of the weight quantization methods.

(6) WSNet versus narrowed baselines. To further verify
WSNet’s capacity of learning compact models, we compare
WSNet with baselines compressed in an intuitive way, i.e. re-
ducing the number of filters in each layer. If #filters in each
layer is reduced by T , the overall #parameters in baselines
is reduced by T 2 (i.e. the compression ratio of model size
is T 2). Due to space limitation, we defer the experimental
comparisons and analysis to supplementary material.

4.2.2. COMPARISON WITH STATE-OF-THE-ART

The comparison of WSNet with other state-of-the-arts on
ESC-50 is listed in Table 4. Compared with the SoundNet
trained with provided data, WSNets significantly outper-
form its classification accuracy by over 10% with more than
100× smaller models. After pre-training using a large num-
ber of unlabeled videos, SoundNet∗ achieves better accuracy
than WSNet. However, since the unsupervised pre-training
method is orthogonal to WSNet, we believe that WSNet
can achieve better performance by training in a similar way
as SoundNet (Aytar et al., 2016) on a large amount of un-
labeled video data. Due to space limit, for experimental
results on other datasets as well as the ablative study on
MusicDet200K, please refer to supplementary material.

https://github.com/AIROBOTAI/wsnet-v1


WSNet: Compact and Efficient Networks Through Weight Sampling

Table 4: Comparison with state-of-the-arts using 1D CNNs on
ESC-50. All results of WSNet are obtained by 10-folder valida-
tion. Please refer to Table 3 for the meaning of symbols S/C/D/Q.
SoundNet∗ use extra training data while other methods use only
provided training data.

Model Acc. (%) Model size

Piczak ConvNet (Piczak, 2015b) 64.5 28M
SoundNet (Aytar et al., 2016) 51.1 13M
SoundNet∗ (Aytar et al., 2016) 72.9 13M

WSNet (S8C4D2) 66.5 ± 0.10 0.52M
WSNet (S8C4D2Q4) 66.25 ± 0.25 0.13M
WSNet (S8C8D2) 66.1 ± 0.15 0.29M
WSNet (S8C8D2Q4) 65.8 ± 0.25 0.07M

4.3. Discussions

We argue that there are two reasons for the success of WS-
Net: (1) The epitome methods (Benoı̂t et al.; Aharon & Elad,
2008; Jojic et al.) have been successfully deployed in sparse
coding literatures, where the coding dictionaries are formed
by overlapping patches in the epitome which has few free
parameters. This indicates effective representations of com-
plex signals can be generated from a low-dimensional space
(with high parameter efficiency). It thus motivates us to
learn compact (or epitomic) filters in deep neural networks,
i.e. all filters which participate in the actual convolution are
generated from the condensed filters. (2) Weight quantiza-
tion techniques were successfully applied for compressing
deep models where multiple weights are encoded into the
same value. WSNet goes further to overcome limitations of
existing quantization methods through capturing the com-
mon correlations among learned filters. For example, filters
of the first layer in SoundNet (Aytar et al., 2016) (as illus-
trated in Figure 5 in (Aytar et al., 2016)) all learn similar
constituent patterns, e.g. the descending/ascending slope
lines. The proposed weight sampling method enables WS-
Net to learn shared patterns by explicitly sampling filters
from the condensed filter with overlapping. At the same
time, the non-overlapped parts of sampled filters are able to
learn different features which endows WSNet with strong
learning capabilities. This is the main reason that why WS-
Net can learn much smaller networks without noticeable
performance drop compared to baselines. Moreover, as the
sampled filters are overlapped, we could use an integral im-
age based method to speed up WSNets (ref. to Section 3.4).
In this way, WSNet is able to learn both smaller and faster
networks effectively.

4.4. Experimental results of WSNet on 2D CNNs

Since both WSNet and HashNet (Chen et al., 2015; 2016)
explore weights tying, we compare them on MNIST and
CIFAR10. For fair comparison, we use the same baselines
used in (Chen et al., 2015; 2016). All hyperparameters

Table 5: Test error rates (in %) of WSNet and HashNet on CI-
FAR10 and MNIST. The baselines used for MNIST/CIFAR10 are
simple 3-layer fully connected network and 5-layer convolutional
network respectively. The model size is provided for the base-
line. For the model size of WSNet/HashNet, we provide the ratio
(i.e. n) of the baseline’s model size versus the model size of WS-
Net/HashNet. For WSNet, we set the layer-wise compactness to
be n. Specifically, for each convolutional layer in WSNet, we set
its compactness along spatial/channel dimension to be

√
n/
√
n,

respectively.

Model Model size Error rate Model size Error rate

CIFAR10 MNIST

baseline 1.2M (×) 14.91 800K (1×) 1.37

HashNet 16× 21.42 8× 1.43
HashNet 64× 30.79 64× 2.41

WSNet 16× 17.82 8× 1.29
WSNet 64× 23.59 64× 1.97

during training follow (Chen et al., 2015; 2016). For each
dataset, we hold out 20% of training samples to form a
validation set. The comparison results between WSNet and
HashNet on MNIST/CIFAR10 are listed in Table 5, from
which one can observe that when learning networks with
the same sizes, WSNet achieves significantly lower error
rates than HashNet on both datasets. Above results clearly
demonstrate the advantages of WSNet in learning compact
models.

Furthermore, we also conduct experiment on CIFAR10 with
the state-of-the-art ResNet50 (He et al., 2016) as baseline.
ResNet50 achieves top-1 accuracy of 93.03% with #params
of 0.85M. For WSNet, we set Sw = Sh = 2 and C = 4.
The experimental settings follow those in (He et al., 2016).
WSNet is able to achieve 9× smaller model size with slight
performance drop (0.5%). Such promising results further
demonstrate the effectiveness of WSNet.

5. Conclusion
In this paper, we present a class of Weight Sampling net-
works (WSNet) which are highly compact and efficient. A
novel weight sampling method is proposed to sample fil-
ters from condensed filters which are much smaller than
the independently trained filters in conventional networks.
The weight sampling in conducted in two dimensions of
the condensed filters, i.e. by spatial sampling and channel
sampling. Taking advantage of the overlapping property of
the filters in WSNet, we propose an integral image method
for efficient computation. Extensive experiments on four
audio classification datasets including MusicDet200K, ESC-
50, UrbanSound8K and DCASE clearly demonstrate that
WSNet can learn compact and efficient networks with com-
petitive performance.



WSNet: Compact and Efficient Networks Through Weight Sampling

Acknowledgements Jiashi Feng was partially supported
by NUS startup R-263-000-C08-133, MOE Tier-I R-263-
000-C21-112, NUS IDS R-263-000-C67-646, ECRA R-
263-000-C87-133 and MOE Tier-II R-263-000-D17-112.

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,

C., Corrado, G. S., Davis, A., Dean, J., Devin, M., et al. Ten-
sorflow: Large-scale machine learning on heterogeneous dis-
tributed systems. arXiv preprint arXiv:1603.04467, 2016.

Aharon, M. and Elad, M. Sparse and redundant modeling of image
content using an image-signature-dictionary. SIAM Journal on
Imaging Sciences, 1(3):228–247, 2008.

Anwar, S., Hwang, K., and Sung, W. Structured pruning of
deep convolutional neural networks. J. Emerg. Technol. Com-
put. Syst., 13(3):32:1–32:18, February 2017. ISSN 1550-4832.
doi: 10.1145/3005348. URL http://doi.acm.org/10.
1145/3005348.

Aytar, Y., Vondrick, C., and Torralba, A. Soundnet: Learning
sound representations from unlabeled video. In NIPS, 2016.

Ba, J. and Caruana, R. Do deep nets really need to be deep? In
NIPS, 2014.

Bagherinezhad, H., Rastegari, M., and Farhadi, A. Lcnn:
Lookup-based convolutional neural network. arXiv preprint
arXiv:1611.06473, 2016.

Benoı̂t, L., Mairal, J., Bach, F., and Ponce, J. Sparse image
representation with epitomes. In CVPR.

Bucilu, C., Caruana, R., and Niculescu-Mizil, A. Model compres-
sion. In KDD, 2006.

Chen, W., Wilson, J., Tyree, S., Weinberger, K., and Chen, Y.
Compressing neural networks with the hashing trick. In ICML,
2015.

Chen, W., Wilson, J. T., Tyree, S., Weinberger, K. Q., and Chen,
Y. Compressing convolutional neural networks in the frequency
domain. In KDD, 2016.

Chen, Y., Li, J., Xiao, H., Jin, X., Yan, S., and Feng, J. Dual path
networks. arXiv preprint arXiv:1707.01629, 2017.

Chollet, F. Xception: Deep learning with depthwise separable
convolutions. arXiv preprint arXiv:1610.02357, 2016.

Collins, M. D. and Kohli, P. Memory bounded deep convolutional
networks. arXiv preprint arXiv:1412.1442, 2014.

Denil, M., Shakibi, B., Dinh, L., de Freitas, N., et al. Predicting
parameters in deep learning. In NIPS, 2013.

Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y., and Fergus, R.
Exploiting linear structure within convolutional networks for
efficient evaluation. In NIPS, 2014.

Gong, Y., Liu, L., Yang, M., and Bourdev, L. Compressing
deep convolutional networks using vector quantization. arXiv
preprint arXiv:1412.6115, 2014.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both weights
and connections for efficient neural network. In NIPS, 2015.

Han, S., Mao, H., and Dally, W. J. Deep compression: Compress-
ing deep neural network with pruning, trained quantization and
huffman coding. In ICLR, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for
image recognition. In CVPR, 2016.

Hinton, G., Vinyals, O., and Dean, J. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531, 2015.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W.,
Weyand, T., Andreetto, M., and Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications.
arXiv preprint arXiv:1704.04861, 2017.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In ICML,
2015.

Jaderberg, M., Vedaldi, A., and Zisserman, A. Speeding up con-
volutional neural networks with low rank expansions. arXiv
preprint arXiv:1405.3866, 2014.

Jin, J., Dundar, A., and Culurciello, E. Flattened convolutional
neural networks for feedforward acceleration. arXiv preprint
arXiv:1412.5474, 2014.

Jin, X., Yuan, X., Feng, J., and Yan, S. Training skinny deep
neural networks with iterative hard thresholding methods. arXiv
preprint arXiv:1607.05423, 2016.

Jojic, N., Frey, B. J., and Kannan, A. Epitomic analysis of appear-
ance and shape.

Kim, Y.-D., Park, E., Yoo, S., Choi, T., Yang, L., and Shin, D. Com-
pression of deep convolutional neural networks for fast and low
power mobile applications. arXiv preprint arXiv:1511.06530,
2015.

Kingma, D. and Ba, J. Adam: A method for stochastic optimiza-
tion. In ICLR, 2014.

Lebedev, V. and Lempitsky, V. Fast convnets using group-wise
brain damage. In CVPR, 2016.

Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., and Lempitsky,
V. Speeding-up convolutional neural networks using fine-tuned
cp-decomposition. arXiv preprint arXiv:1412.6553, 2014.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P.
Pruning filters for efficient convnets. In ICLR, 2017.

Luo, J.-H., Wu, J., and Lin, W. Thinet: A filter level pruning
method for deep neural network compression. In ICCV, 2017.

Mathieu, M., Henaff, M., and LeCun, Y. Fast training of convolu-
tional networks through ffts. arXiv preprint arXiv:1312.5851,
2013.

Piczak, K. J. Esc: Dataset for environmental sound classification.
In ACM MM, 2015a.

Piczak, K. J. Environmental sound classification with convolu-
tional neural networks. In MLSP, 2015b.

Salamon, J., Jacoby, C., and Juan Pable, B. A dataset and taxonomy
for urban sound research. In ACM MM, 2014.

http://doi.acm.org/10.1145/3005348
http://doi.acm.org/10.1145/3005348


WSNet: Compact and Efficient Networks Through Weight Sampling

Simonyan, K. and Zisserman, A. Very deep convolutional networks
for large-scale image recognition. In ICLR, 2015.

Sindhwani, V., Sainath, T., and Kumar, S. Structured transforms
for small-footprint deep learning. In NIPS, 2015.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and
Salakhutdinov, R. Dropout: A simple way to prevent neural
networks from overfitting. JMLR, 15(1):1929–1958, 2014.

Stowell, D., Giannoulis, D., Benetos, E., Lagrange, M., and Plumb-
ley, M. D. Detection and classification of acoustic scenes and
events. IEEE Transactions on Multimedia, 17(10):1733–1746,
2015.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V., and Rabinovich, A. Going deeper
with convolutions. In CVPR, 2015.

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. Aggregated
residual transformations for deep neural networks. In CVPR,
2017.

Zhang, X., Zhou, X., Lin, M., and Sun, J. Shufflenet: An extremely
efficient convolutional neural network for mobile devices. arXiv
preprint arXiv:1707.01083, 2017.


