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Supplementary Materials

A Proofs for theoretical results

We here provide proofs for the theoretical results in Section 3 of the main text. For ease of understanding,
we repeat the assumptions and the statements w.r.t. those results. The notation follows that of the
main text.

Assumption 1. (i) ` has a unique global maximum at θ∞ ∈ Θ, and π(θ∞) > 0; (ii) π is continuous
at θ∞, ` has continuous second derivatives in the neighborhood of θ∞, and the Hessian of ` at θ∞ is
strictly negative-definite.

Proposition 1. Let Θ ⊂ Rd be a Borel measurable set, k : Θ×Θ→ R be a continuous, bounded kernel,
and H be its RKHS. If Assumption 1 holds, then we have

lim
N→∞

‖µPN − k(·, θ∞)‖H = 0.

Proof. Because Assumption 1 is equivalent to Assumptions A1, A2 and A3 in Lele et al. (2010), we can
use the Corollary to Lemma A.2 on p.1624 of Lele et al. (2010); this guarantees the weak convergence
of PN to δθ∞ , the Dirac distribution at θ∞. Therefore,

lim
N→∞

‖µPN − k(·, θ∞)‖2H = lim
N→∞

〈µPN , µPN 〉H − 2 lim
N→∞

〈µPN , k(·, θ∞)〉H
+ 〈k(·, θ∞), k(·, θ∞)〉H

= lim
N→∞

∫ ∫
k(θ, θ′)dPN (θ)dPN (θ′)

−2 lim
N→∞

∫
k(θ, θ∞)dPN (θ) + k(θ∞, θ∞)

= k(θ∞, θ∞)− 2k(θ∞, θ∞) + k(θ∞, θ∞) (1)
= 0,

where (1) follows from the weak convergence of PN to δθ∞ and k is continuous and bounded. Here we
have used Theorem 2.8 (ii) in Billingsley (1999) for the first term in (1).

Assumption 2. (i) There exists a constant C > 0 such that k(θ, θ) = C for all θ ∈ Θ. (ii) It holds
that k(θ, θ′) < C for all θ, θ′ ∈ Θ with θ 6= θ′.
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Proposition 2. Let Θ ⊂ Rd be a compact set and k : Θ×Θ→ R be a continuous, bounded kernel. Let
θN := argminθ̃∈Θ

∥∥∥µPN − k(·, θ̃)
∥∥∥
H
. If Assumptions 1 and 2 hold, then we have θN → θ∞ as N →∞.

Proof. By the reproducing property and Assumption 2, we have

‖µPN − k(·, θ̃)‖2H = ‖µPN ‖
2
H − 2µPN (θ̃) + k(θ̃, θ̃)

= ‖µPN ‖
2
H − 2

∫
k(θ̃, θ)dPN (θ) + C.

Since
∫
k(θ̃, θ)dPN (θ) is a continuous function of θ̃ (which follows from the continuity of k and the

dominated convergence theorem), it follows that ‖µPN − k(·, θ̃)‖2H is a continuous function of θ̃, and
so is ‖µPN − k(·, θ̃)‖H. Thus, since Θ is compact, θN = argminθ̃∈Θ

∥∥∥µPN − k(·, θ̃)
∥∥∥
H

exists. Using the
above identity, we then have

θN = argmin
θ̃∈Θ

∥∥∥µPN − k(·, θ̃)
∥∥∥2

H

= argmin
θ̃∈Θ

‖µPN ‖
2
H − 2µPN (θ̃) + C

= argmax
θ̃∈Θ

µPN (θ̃).

By the reproducing property, the Cauchy-Schwartz inequality, and Assumption 2, we have for all θ ∈ Θ

|µPN (θ)− k(θ, θ∞)| = |〈k(·, θ), µPN − k(·, θ∞)〉|
≤

√
k(θ, θ) ‖µPN − k(·, θ∞)‖H

=
√
C ‖µPN − k(·, θ∞)‖H (2)

Let ε be an arbitrary positive number and Uε(θ∞) be an open ε-neighborhood of θ∞. From Assumption
2 (ii) and the continuity of k, there is δ > 0 such that

max
θ∈Θ\Uε(θ∞)

k(θ, θ∞) ≤ C − δ. (3)

It follows from Eq.(2) and Proposition 1 that there is N0 ∈ N such that

max
θ∈Θ
|µPN (θ)− k(θ, θ∞)| ≤ δ/3 (4)

holds for all N ≥ N0. This implies, in particular, that for all N ≥ N0

µPN (θ∞) ≥ k(θ∞, θ∞)− δ/3 = C − δ/3. (5)

On the other hand, using Eqs.(3) and (4), we have

max
θ∈Θ\Uε(θ∞)

µPN (θ) ≤ C − 2

3
δ (6)

for all N ≥ N0.

Eqs.(5) and (6) show that the maximum of µPN is attained in Uε(θ∞), that is, θN ∈ Uε(θ∞), for all
N ≥ N0, which completes the proof.
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Remark 1. For simplicity, we assume in Proposition 2 that θ is compact, but this condition can be
relaxed. For example, we may instead assume the following weaker condition: For any open neighborhood
U of θ∞, there is a positive constant δ such that supθ∈Θ\U k(θ, θ∞) ≤ k(θ∞, θ∞)− δ.
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B Demonstration of the auto-correction mechanism for a mis-
specified prior

Figure 1: Each figure shows a histogram of simulated parameters for the mean of the Gaussian
distribution in each iteration, as produced with the proposed method. “The sum of the weights” on the
top of each figure is the sum of the weights given by kernel ABC at each iteration, as defined by Eq. (3)
of the main text.

We demonstrate here how the auto-correction mechanism of the proposed method works; for an
explanation of this mechanism, see Section 3 of the main text. We performed an experiment similar to
the one in Section 4.2 of the main text, but under a simpler setting. The task was to estimate the mean
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0 of a univariate Gaussian distribution, Normal(0, 40), provided 100 i.i.d. observations from it. The
variance 40 was assumed to be known. For the prior distribution over the mean, we used the uniform
distribution on [2000, 3000], which is severely misspecified. For the proposed method, we recomputed
the bandwidth of a Gaussian kernel for each iteration, by using the median heuristic with simulated
data. In each iteration, 300 pseudo-observations were generated for the proposed method.

Figure 1 shows the results for the first 4 iterations. The top figure is a histogram of the parameters
generated from the prior distribution, which, because of the misspecification of the prior, do not
cover the true mean 0. The resulting sum of the weights is 0.00064, implying that the simulated
pseudo-observations are far apart from the observed data. (As explained in the caption of Figure 1,
“The sum of the weights” on the top of each figure is the sum of the weights w1, . . . , wn given by kernel
ABC at each iteration, as defined by Eq. (3) of the main text.) The second figure is a histogram of the
parameters generated by kernel herding in the first iteration. These parameters were generated so as
to explore the parameter space, in response to the auto-correction mechanism explained in Section 3
of the main text. Since the simulated parameters were now scattered around the true mean 0, kernel
ABC began to perform well from the next iteration. After only 4 iterations, the simulated parameters
concentrated around the true mean.

C Supplementary to the population dynamics experiment in
Section 4.3

We offer here supplementary materials for the experiment on the blowfly population dynamics in Section
4.3 of the main text.

C.1 Errors for individual parameters

Table 1: Results for blowfly population dynamics in Sec. 4.3

Algorithm P N0 σd σp τ δ data cputime
KR-ABC 0.28(0.13) 0.03(0.05) 0.93(0.55) 1.22(0.64) 0.17(0.14) 0.17(0.15) 43.85(37.24) 101.143(13.25)
KR-ABC (less) 0.15(0.13) 0.10(0.07) 1.11(0.12) 1.45(0.26) 0.23(0.41) 0.27(0.45) 67.57(47.11) 32.98(1.21)
K2-ABC 1.27(1.75) 0.20(0.23) 0.98(0.42) 1.46(1.10) 0.31(0.19) 0.61(0.82) 67.45(77.86) 23.47(1.59)
K-ABC 0.48(0.13) 0.14(0.06) 1.28(0.87) 1.42 (0.40) 0.22 (0.02) 0.27(0.25) 89.37(29.22) 30.66(2.57)
SMC-ABC (mean) 0.58 (0.15) 0.11(0.06) 1.03(0.46) 1.98(0.32) 0.28(0.15) 1.01(0.11) 170.41 (47.91) 38.50(2.34)
SMC-ABC (MAP) 0.51(0.28) 0.19(0.10) 0.89(0.33) 1.89(0.33) 0.53(0.46) 1.01(0.10) 163.19(42.51) 38.50(2.34)
ABC-DC 0.48(0.22) 0.25(0.13) 1.36(0.88) 1.55(0.12) 0.54(0.31) 1.17(0.11) 134.12(58.92) 29.94(4.57)
BO 0.83 (0.84) 0.16(0.24) 1.44(0.76) 1.09(0.50) 0.22(1.05) 0.45(0.41) 108.18(67.08) 3217.40(157.31)
MSM 0.65(0.16) 0.26(0.19) 1.50(0.59) 1.01(0.57) 0.14(0.13) 0.51(0.15) 89.17(33.20) 25.46(8.26)

Table 1 shows the separate errors made by each method for individual parameters. This was omitted
from the main text due to space constraints.
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C.2 Prior distribution for the parameters of the blowfly population dynam-
ics

We describe here the prior distribution for the parameters θ := (P ∈ N, N0 ∈ N, σd ∈ R+, σp ∈
R+, τ ∈ N, δ ∈ R+) in the blowfly population dynamics, the parameters that we used in our experiment.
Let εp, εN0

, εσd , εσp , ετ , εδ ∼ Normal(0, 1) be independent standard Gaussian random variables. The
prior can then be specified by defining the parameters as such random variables as

P = exp(2 + 2εp),

N0 = exp(5 + 0.5εN0
),

σd = exp(−0.5 + εσd),

σp = exp(−0.5 + εσp),

τ = exp(2 + ετ ),

δ = exp(−1 + 0.4εδ).

Note that the parameters P,N0, τ are to be rounded appropriately, as they are defined as being natural
numbers.

D Supplementary materials for the experiments on alpha stable
distributions in Section 4.4

D.1 Computation time

We offer here supplementary materials for the experiment on multivariate alpha stable distributions in
Section 4.4 of the main text.
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Figure 2: Computation time (in seconds) for the experiments in Section 4.4. We omit here the
computation time of Bayesian optimization, but it was more than 1500 seconds for all the dimensions.

Figure D.1 shows computation time for each method in the experiments on multivariate alpha stable
distributions in Section 4 of the main text, which information was omitted from the main body because
of space constraints.

D.2 Definition of the deterministic map for sampling

We describe here the deterministic map τθ used in sampling multivariate alpha stable distributions
(Chambers et al., 1976), where θ := (α, β, µ, σ) ∈ (0, 2]×[−1, 1]×R×[0,∞). Given U1 ∼ Unif(−π/2, π/2)
and U2 ∼ Exp(1), the mapping τθ(U1, U2) ∈ R is defined as

τθ(U1, U2) := στα,β(U1, U2) + µ,

where

τα,β(U1, U2) :=

{
Sα,β

sin[α(U1+Bα,β)]

[cos(U1 )]1/α
(

cos[U1−α(U1+Bα,β)]
U2

)(1−α)/α, α 6= 1

X = 2
π [(π2 + βU1 ) tanU1 − βlog(U2 cosU1

π
2 +βU1

)], α = 1.

}

Bα,β :=
tan−1(β tan πα

2 )

α
, Sα,β :=

(
1 + β2 tan2 πα

2

)1/2α

.
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E Supplementary material for the pedestrian simulator experi-
ment in Section 4.6

We present here supplementary material w.r.t. the pedestrian simulator experiment in Section 4.6.

E.1 Example of simulation results obtained with CrowdWalk

Figure 3: Example of simulation results obtained with Crowdwalk

Figure 3 shows an example of simulation results with the pedestrian flow simulator CrowdWalk
(Yamashita et al., 2010). The map is of Ginza, one of the largest commercial districts in Tokyo. Both
green and red points indicate pedestrians, each of which is moving at an individual speed. Red points
are pedestrians who are walking particularly slowly; these pedestrians are forced to walk slowly because
the areas in which they are walking are crowded.
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E.2 Parameters for the pedestrian simulator

Table 2: Parameters for the pedestrian simulator, including the fixed ones

Group θ(S) θ(G) θ(P ) θ(R) θ(N) θ(T )

1 1 0 15, 29 5400, 1800 100 30
2 5 2 24, 43 5400, 5400 100 60
3 8 3 28, 48 5400, 5400 100 90
4 4 7 2, 0 1800, 3600 100 120
5 3 2 8, 9 5400, 5400 100 150
6 6 9 26, 14 5400, 3600 0 180
7 10 11 4, 41 1800, 3600 0 210
8 2 9 50, 18 1800, 3600 0 240
9 0 6 40, 33 3600, 5400 0 270
10 11 5 20, 25 1800, 3600 0 300

Table 2 shows the parameters of the 10 candidate groups in a mixture model used for parameter
estimation. Note that the parameters θ(N) and θ(T ) were unknown for each method since they were the
parameters to be estimated. Groups 1 to 5 are the components of the true model, but this fact was also
unknown for each method. The numbers in θ(S), θ(G) and θ(P ) indicate certain locations on the map
(e.g., the Mitsukoshi Department Store, the Apple Store, and Ginza Station), which are predefined in
terms of two-dimensional coordinates. The parameter θ(P ) indicates certain places where pedestrians in
a single group visit. In this experiment, pedestrians in each group visited 2 intermediate places during
the travel from the starting location to the goal; θ(R) represent the respective durations of time (in
seconds) at the intermediate places. (Note that the units for starting time θ(T ) are in minutes.)

E.3 Estimated parameters with the proposed method

Tables 3 and 4 show the estimated values for the parameters θ(N)
i and θ(T )

i , respectively, for each of
independent 20 trials. Recall that i in θ(N)

i and θ(T )
i is the index of 10 groups, i.e„ i = 1, . . . , 10. Results

show that the proposed method was able to estimate the parameters of the 5 true groups in most cases.
Note that the estimated values of θ(T )

i for i = 6, . . . , 10 were rather arbitrary. This is reasonable since
the corresponding numbers of pedestrians θ(N)

i in these groups were estimated to be zero or very small,
and thus these groups could be treated as being nonexistent.
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Table 3: Estimated values of θ(N)
i with KR-ABC for each of 20 trials

Trial θ
(N)
1 θ

(N)
2 θ

(N)
3 θ

(N)
4 θ

(N)
5 θ

(N)
6 θ

(N)
7 θ

(N)
8 θ

(N)
9 θ

(N)
10

1 95 132 102 1 79 32 2 9 13 31
2 100 105 105 84 100 0 0 0 0 0
3 98 102 90 81 101 0 16 0 7 0
4 93 98 99 101 95 0 0 0 0 9
5 103 12 84 9 88 27 2 33 19 3
6 87 105 108 100 92 0 6 0 0 0
7 90 102 104 102 97 0 0 0 0 0
8 116 79 93 118 88 0 0 0 0 1
9 97 91 101 110 94 0 0 1 0 0
10 102 127 0 0 97 0 38 70 51 12
11 102 105 94 87 100 0 0 0 0 7
12 0 2 100 228 103 0 0 0 1 64
13 98 97 96 108 95 0 0 0 1 0
14 103 98 94 94 102 3 0 0 0 1
15 105 176 106 0 9 78 2 14 3 2
16 96 134 100 0 95 0 70 0 0 0
17 98 106 96 87 98 4 1 4 0 2
18 798 101 97 97 98 0 2 1 1 0
19 109 54 55 181 68 0 0 31 0 0
20 98 90 101 102 99 3 2 0 0 0
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Table 4: Estimated values of θ(T )
i with KR-ABC for each of 20 trials

Trial θ
(T )
1 θ

(T )
2 θ

(T )
3 θ

(T )
4 θ

(T )
5 θ

(T )
6 θ

(T )
7 θ

(T )
8 θ

(T )
9 θ

(T )
10

1 35 56 63 289 158 91 252 216 325 209
2 25 52 87 121 152 186 152 22 193 460
3 28 53 93 119 145 110 89 201 146 18
4 29 60 92 120 147 356 188 147 249 0
5 27 66 88 229 138 85 130 54 181 236
6 22 53 85 121 151 338 208 309 31 135
7 33 61 91 120 147 2 175 214 124 396
8 26 68 95 129 136 25 375 161 81 266
9 26 59 91 125 157 18 373 0 251 0
10 30 53 452 243 151 285 69 89 175 216
11 30 57 92 111 153 279 158 369 273 169
12 213 173 92 125 154 130 77 0 456 0
13 29 54 93 125 152 346 294 327 214 490
14 34 59 89 116 150 275 36 490 37 109
15 28 54 88 135 362 70 0 319 456 0
16 29 50 88 285 146 0 403 98 286 300
17 27 54 86 121 149 22 72 310 21 93
18 30 59 89 119 146 221 107 361 218 260
19 27 74 101 119 123 211 272 206 265 275
20 30 54 87 127 146 286 452 199 267 119

F Linear time estimator for the energy distance

In a way similar to that with Gretton et al. (2012, Section 6), we define here a linear-time estimator for
the energy distance (Székely and Rizzo, 2013). Let x1 . . . , xn ∼ P and y1, . . . , yn ∼ Q be i.i.d. samples
from the two distributions P and Q, and let n2 := bn/2c. The linear estimator can then be defined as

1

n2

n2∑
i=1

h((x2i−1, y2i−1), (x2i, y2i)),

where

h((x2i−1, y2i−1), (x2i, y2i)) := ‖x2i−1 − y2i‖+ ‖x2i − y2i−1‖ − ‖x2i−1 − x2i‖ − ‖y2i−1 − y2i‖.

It can be easily shown that this is unbiased and converges to the population energy distance between
P and Q at a rate of Op(n−1/2), as Gretton et al. (2012, Theorem 15) showed for a linear estimator
in MMD. The above linear estimator can be computed at a cost of O(n), which is less than the cost
of O(n2) required for an ordinary quadratic estimator. (Note, however, that the linear estimator has
higher variance than a quadratic one.)
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