
Learning Diffusion using Hyperparameters

A. The Hyperparametric Model, Discussion
As discussed in Section 2, the essence of the hyperpara-
metric model is that the diffusion probability of every edge
is dictated by the features of its endpoints. Node features
have been used in several studies and been proved to im-
pact network formation (see e.g. (Lazarsfeld & Merton;
McPherson et al., 2001)). Specifically, as a general prin-
ciple, we tend to be friends with people that are “similar”
to us, a phenomenon called homophily (“birds of a color
flock together”). A recent line of work (Anderson et al.,
2015) studies the effect of homophily in diffusion and in
cascading behavior in social networks. Of course in real
social networks there are connections between very diverse
people as well.

The hyperparametric model that we propose in this paper
can be viewed as an extension of these observations to the
IC model. The intuition is that two nodes with similar
features (interests, age, country of residence, etc.) will
in principle be more influential to each other than diverse
nodes, or similar medical characteristics between two nodes
will increase the likelihood of transmitting a disease. This
kind of observations are not captured by the traditional IC
model, as it is unaware of the individual characteristics of
each node and the homophily is present only in the network
structure.

A natural question that one can ask is whether the sigmoid
function is an appropriate function to use in order to en-
code the influence probabilities. In principle any function
that takes as input two vectors and outputs a value in [0, 1]
could work, however the definition of the sigmoid func-
tion is very relevant for our purposes, since we can adjust
the hyperparameters to capture the changes in the diffusion
probabilities as a result of the agreement or the disagree-
ment between the features of different nodes. Specifically,
if two nodes have similar value in an important feature, then
by choosing the respective coordinates of θ to be small we
are increasing the influence probability. Similarly we can
decrease the influence probability if the features are very
dissimilar. The hyperparametric assumption tells us that
there is a θ that is a good compromise over all the nodes in
the network. Additionally, assuming that the diffusion prob-
abilities are generated by the sigmoid function, our MLE
optimization problem reduces to logistic regression, which
is well-understood, in the case where every active node has
only one active parent.

B. Definitions
Definition 1 (PAC learnability). A hypothesis class H is
Probably Approximately Correct (PAC) learnable with re-
spect to some reward function r, if there exists a function
mH : (0, 1)2 → N and a learning algorithm A such that for

every ε, δ ∈ (0, 1) and every data-generating distribution D,
if we run A on m ≥ mH(ε, δ) i.i.d. samples generated by
D, it returns a hypothesis ĥ such that, with probability at
least 1− δ over the choice of the samples, it holds:

Es∼D[r(ĥ, s)] ≥ max
h∈H

Es∼D[r(h, s)]− ε.

Definition 2 (Rademacher Complexity). The Rademacher
complexity of a hypothesis classH, with respect to a reward
function r and a training set S of size m, drawn from a
distribution D is defined as:

R(H, S) =
2

m
E~σ∼{−1,1}m

[
sup
h∈H

m∑
i=1

σir(h, si)

]

where {−1, 1} symbolizes the uniform distribution with that
support.

Definition 3 (Covering Number (Shalev-Shwartz & Ben–
David, 2014)). Let A ⊆ Rd be a set of vectors. We say that
A is ε-covered by a setAε with respect to some norm p, if for
all ~a ∈ A there exists an ~aε ∈ Aε such that ||~a− ~aε||p ≤ ε.
The covering number of A is the cardinality of the smallest
Aε that ε-covers A.

Definition 4 (Lipschitz function). A function f : A → B
is ρ-Lipschitz over A, with respect to some norm α, if for
all x1, x2 ∈ A it holds:

|f(x1)− f(x2)| ≤ ρ ||x1 − x2||α .

C. The Distribution
As discussed in Section 2, a cascade C is a sequence of
disjoint subsets of nodes {V0, V1, . . . , Vn−1} that become
active in each time step, where V0 is the initial seed. Each
cascade C is associated with some probability P[C] that
depends on the seed-generating distribution D0, the struc-
ture of the graph and the diffusion probabilities of the edges
(P[C] = P[V0] · P[V1|V0] · · ·P[Vn−1|Vτ<n−1]).

Given a distribution D0 that generates the seed we want
to define a distribution D that generates samples of the
form s = ((X,u), y) as described in Section 2. We de-
fine D to be the distribution that picks a cascade C =
{V0, V1, . . . , Vn−1} with probability proportional to P[C]
and decomposes it into simpler samples of the form s =
((X,u), y). This decomposition is simple (we already de-
scribed it in Section 2): for every τ ∈ {0, 1, . . . , n − 1},
consider all the nodes v /∈ ∪τ−1

t=0 Vt that are within distance
of 1 from Vτ . For every v that became activated by Vτ (i.e.
v ∈ Vτ+1) create the sample ((Vτ , v), 1), and for every v

Learning Diffusion using Hyperparameters

that remained inactive create the sample ((Vτ , v), 0). Once
the entire list of samples for the cascade C is produced, D
returns one of them uniformly at random.

In other words, every possible sample s = ((X,u), y) is
assigned probability P[s] =

∑
C:s∈C

P[C]
samples in C by D.

Essentially, D can be thought as a distribution that agrees
withD0 in the creation of the cascade and then picks a single
sample out of it that is representative of the entire cascade.

D. Learnability with Respect to the Diffusion
Probabilities

The first thing that one might think of is to use the samples
provided in order to learn the diffusion probabilities of the
edges or the hyperparameter θ itself. However, it is easy to
see that this approach will fail. Consider a network with
only three nodes, u1, u2, v and two edges (u1, v), (u2, v)
with probabilities 1 and 0 respectively. Consider a sample
generating distribution D that always activates both u1 and
u2. Then, no matter how many samples drawn from D we
will see, we cannot learn pu1,v and pu2,v , while we can learn
the outcome, i.e. that node v will be influenced. A simple
modification shows that the same holds for the learnability
of the hyperparameter θ.

Hence, if one wants to achieve convergence to the true
diffusion probabilities or the true hyperparameter θ, extra
assumptions on the distribution D as well as the feature
vectors of the nodes are required. This is why in this work
we are instead interested in a PAC learning guarantee and
we use the log-likelihood function, defined in Section 2, as
our reward function that allows us to interpret and utilize
samples generated by any distribution D.

E. Ommited Lemmas and Proofs, Section 3.1
As we discussed in Section 3.1, the proof of the sample
complexity involves covering numbers, but we first need
to go through the following two lemmas, that prove the
Lipschitz continuity of the local influence function and the
log-likelihood. Intuitively, this means that a small change
in the argument (hyperparameter) will only impose a small
change in the respective log-likelihood function. Hence if
we can find a cover for the space of the hyper-parameters,
we can convert it into a cover of the space of log-likelihoods
with a small increase on its size.

Lemma 2 (Lipschitz Continuity of the Local Influence Func-
tion). The local influence function of any node v ∈ V ,
fθv (X), is ρ-Lipschitz for any X ⊆ V \ {v}, i.e. for all
θ, θ′ ∈ H : ||θ − θ′||1 ≤ ε ⇒ |fθv (X) − fθ′v (X)| ≤ ρε,
where ρ depends on λ.

Proof. Fix a node v ∈ V and an X ⊆ V \{v}. If we bound

the infinite norm of the gradient of fθv (X) by ρ then this
would imply that f is ρ-Lipschitz with respect to the dual
norm, i.e. the `1-norm.

∣∣∣θfθv (X)

θθ`

∣∣∣ =
∣∣∣ θ
θθ`

(
1−

∏
u∈X∩N(v)

(1− σ(θ, xuv))
)∣∣∣

=
∣∣∣ ∑
u∈X∩N(v)

θσ(θ, xuv)

θθ`

∏
u′∈X∩N(v):u′ 6=u

(1−σ(θ, xu′v))
∣∣∣

≤
∑

u∈X∩N(v)

∣∣∣θσ(θ, xuv)

θθ`

∣∣∣·∣∣∣ ∏
u′∈X∩N(v):u′ 6=u

(1−σ(θ, xu′v))
∣∣∣

≤
∑

u∈X∩N(v)

∏
u′∈X∩N(v):u′ 6=u

(1− λ)

= |X ∩N(v)|(1− λ)|X∩N(v)|−1

where we used the fact that
∣∣∣ θσ(θxuv)

θθ`

∣∣∣ ≤ 1, since the sig-
moid function σ is 1-Lipschitz as for the `∞ norm with
respect to θ. We also used the fact that the influence proba-
bilities are bounded away from 1.

Now, since the function h(x) = x(1− λ)x−1 is maximized
for x = − 1

ln(1−λ) , we get that fθv (X) is ρ-Lipschitz, for

ρ := −1
ln(1−λ) (1− λ)−

(
1

ln(1−λ)
+1
)

5.

The Lipschitzness of the local influence function fθv eas-
ily implies the Lipschitzness of the log-likelihood of the
respective sample.

Lemma 3 (Boundness and Lipschitz continuity of the log–
likelihood function). Fix a hyperparameter θ ∈ Rd :
||θ||∞ ≤ B. Then, for any valid sample s = (X, v, y)
it holds:

1. λ ≤ fθv (X) ≤ 1− λ|X∩N(v)|,

2. |L(s, θ)| ≤ |X ∩N(v)| · ln(1/λ),

3. L(s, θ) is ρ
λ|X∩N(v)| -Lipschitz in θ with respect to the

`1 norm.

Proof. 1. The lower bound is immediate. Since X con-
tains at least one neighbor of v and the minimum influ-
ence probability of any edge is λ, node v is influenced

5Notice that there is a smooth tradeoff here, if |X ∩N(v)| is
very small then a small change in θ will impose a small change
in fθv (X) since there are not many nodes trying to influence v. If
|X ∩N(v)| on the other hand is very large then there are so many
nodes trying to do so already, that a small change in θ will not
have a significant effect on fθv (X) either.

Learning Diffusion using Hyperparameters

by the seed X with probability at least λ. For the up-
per bound, note that in the best case, all the influence
probabilities between v and its neighbors would be the
maximum possible, i.e. 1 − λ. Now, remember that
fθv (X) = 1−

∏
u∈X∩N(v)(1− pu,v(θ))⇒ fθv (X) ≤

1−
∏
u∈X∩N(v) λ ≤ 1− λ|X∩N(v)|.

2. For a sample s = ((X, v), y) we have:

|L(s, θ)| = |y ln
(
fθv (X)

)
+ (1− y) ln

(
1− fθv (X)

)
|

≤ y| ln
(
fθv (X)

)
|+ (1− y)| ln

(
1− fθv (X)

)
|

≤ y| lnλ|+ (1− y)| ln
(
1− (1− λ|X∩N(v)|)

)
|

≤ | lnλ|X∩N(v)|| = |X ∩N(v)| · ln(1/λ)

where the second inequality holds since λ ≤ fθv (X) <
1 ⇒ lnλ ≤ ln

(
fθv (X)

)
< 0 ⇒ | lnλ| ≥

| ln
(
fθv (X)

)
|, and the third inequality since |X ∩

N(v)| ≥ 1⇒ λ|X∩N(v)| ≤ λ < 1.

3. Similarly to Lemma 2, we need to bound the `∞ norm
of the gradient of L with respect to θ. Hence:

||∇θL(s, θ)||∞
= ||∇θ[y ln

(
fθv (X)

)
+ (1− y) ln

(
1− fθv (X)

)
] ||∞

=
∣∣∣∣∣∣y · ∇θfθv (X)

fθv (X)
− (1− y) · ∇θf

θ
v (X)

1− fθv (X)

∣∣∣∣∣∣
∞

≤
(∣∣∣y· 1

fθv (X)

∣∣∣+∣∣∣(1−y)· 1

1− fθv (X)

∣∣∣)·||∇θfθv (X)||∞

≤ ρ
(y
λ

+
1− y

λ|X∩N(v)|

)
≤ ρ

λ|X∩N(v)|

where the bound on the gradient of f follows from
Lemma 2.

We are now ready to prove the covering number for the
space of the log-likelihood functions. We state Lemma 1
again for completion.

Lemma 1. Let S = {((Xi, vi), yi)}mi=1 be a non-empty set
of samples and let ∆S = maxs∈S |X∩N(v)| (maximum in-
degree of a node that was activated across all samples). The
covering number of the class of all log-likelihood functions
for S is O

((
Bρd
λ∆S ε

)d)
, i.e. we can choose a discrete cover

Hε ⊆ H of size O
((

Bρd
λ∆S ε

)d)
, such that for all θ ∈ H,

there exists a θε ∈ Hε with

sup
s∈S
|L(s, θ)− L(s, θε)| ≤ ε.

Proof. Remember that the unknown hyperparameter θ lies
inH = [−B,B]d. Hence, the space of the hyperparameter
is a d-dimensional hypercube and it is known that it can be

covered by
(
Bd
ε

)d
`1-balls of radius ε.

Also, in Lemma 3 we proved that for any sample s =
((X, v), y) and for all θ, θ′ ∈ H it holds:

|L(s, θ)− L(s, θ′)| ≤ ρ

λ|X∩N(v)| ||θ − θ
′||1

This says that if the hyperparameters are separated by a
distance of ε in the `1 space then, for any sample s the
likelihoods of it with respect to θ and θ′ are within a distance
of ρ

λ|X∩N(v)| ε ≤ ρ

λmaxs∈S |X∩N(v)| ε = ρ
λ∆S

ε from each other.
Clearly, an `1 cover of radius ε over the parameter space can
be translated to a cover of the space of likelihood functions.
In particular, if the parameter space is covered by R `1-
balls of radius ε and centers θ1, . . . , θR, then the likelihood
functions Lθ1 , . . . ,LθR form a ρ

λ∆S
ε-cover of the space of

all the likelihood functions. Thus one can easily see that in
order to have an ε-cover of the space of the log-likelihoods,
we require at most O

((
Bρd
λ∆S ε

)d)
discrete θs. Hence, given

the set S, the covering number of the class is O
((

Bρd
λ∆S ε

)d)
.

The covering number allows us to consider a discrete hy-
pothesis class instead of a continuous one, and hence we can
bound its Rademacher complexity, using Massart’s lemma
for finite hypothesis classes. Subsequently, we need to as-
sociate the Rademacher complexity of the discretized class
with the Rademacher complexity of the continuous one,
something that can be done using the following lemma.

Lemma 4 (Discretization Lemma). Let H be any hypoth-
esis class and S be a set of m samples drawn from some
distribution D, and suppose thatHε is an ε-cover of S, i.e.
for any h ∈ H there exists hε ∈ Hε such that:

sup
s∈S
|r(h, s)− r(hε, s)| ≤ ε

where r(·, ·) is some reward function (in our case the log-
likelihood). Then it holds:

R(S,H) ≤ R(S,Hε) + 2ε

Proof. For any h ∈ H, let hε be a hypothesis that covers
it. Then, by the definition of the Rademacher complexity it
holds:

R(S,H) = E~σ∼{−1,1}m

[
sup
h∈H

2

m

m∑
i=1

σir(h, si)

]

Learning Diffusion using Hyperparameters

Figure 7. Three different categories of a sample. Nodes in green
are active and in red inactive. In case (iii) we know that at least
one of the three edges became activated but not which one(s).

= E~σ

[
sup
h∈H

(2

m

m∑
i=1

σir(hε, si)

+
2

m

m∑
i=1

σi(r(h, si)− r(hε, si))
)]

≤ E~σ

[
sup
h∈H

2

m

m∑
i=1

σir(hε, si)

+ sup
h∈H

2

m

m∑
i=1

σi(r(h, si)− r(hε, si))

]

≤ E~σ

[
sup
hε∈Hε

2

m

m∑
i=1

σir(hε, si)

+ sup
h∈H

2

m

m∑
i=1

σi(r(h, si)− r(hε, si))

]

= R(S,Hε) + E~σ

[
sup
h∈H

2

m

m∑
i=1

σi(r(h, si)− r(hε, si))

]

≤ R(S,Hε) + E~σ

[
sup
h∈H

2

m

m∑
i=1

|r(h, si)− r(hε, si)|

]
≤ R(S,Hε) + 2ε

Lemma 5 (Massart’s lemma for finite hypothesis classes).
Let A = {~α1, ~α2, . . . , ~αN} be a finite set of vectors in Rm.
Then:

E~σ∼{−1,1}m
[

max
~α∈A

2

m

m∑
t=1

σtαt

]
≤ 2 ·max

α∈A
||~α||
√

2 logN

m

F. Solving the Optimization Problem
As we mentioned in Section 4 there are three distinct cases
for a sample s = ((X, v), y) in the training set S: (i) node
v was not influenced, (ii) node v was influenced and there
is only one neighbor of v in X (|X ∩N(v)| = 1) and (iii)

node v was influenced and there are more than one neighbors
of v in X (|X ∩N(v)| > 1), as shown in Figure F.

Notice that the likelihood functions corresponding in sam-
ples of the kinds (i) and (ii) are concave (by the definition
of the log-likelihood, equation (1)). Hence, if there were no
obfuscated samples the optimization problem would be con-
cave and thus efficiently solvable via iterative optimization
methods such as Gradient Descent.

Partitioning S into So that contains the obfuscated sam-
ples and S \ So that contains the samples of con-
cave likelihoods, we can express our objective function
as f̃(θ) := 1

m

∑
s∈S L(s, θ) = 1

m

∑
s∈S\So L(s, θ) +

1
m

∑
s∈So L(s, θ) =: f(θ) + ξ(θ). Optimizing f̃ can be

perceived as optimizing a concave function f under noise ξ
over a convex set.

The first approach to this problem is to ignore the obfuscated
samples (i.e. the noise) and optimize f instead of f̃ using
Gradient Descent. The success of this approach lies in
the fact that the log-likelihood of each sample is bounded
hence, if we have a small number of obfuscated samples the
maximizer of f will approximately maximize f̃ as well.

Lemma 6. Let mo denote the number of obfuscated sam-
ples in a training set S of m i.i.d. samples drawn from
D. If mom ≤ ε

∆S ln(1/λ) , and we use Gradient Descent on

f(θ) = 1
m

∑
s∈S\So L(s, θ) for T ≥

(
Bdρ
λ∆S ε

)2

iterations

with a learning rate of η =
√

B2λ2∆S

ρ2T , we can recover

θ̂ ∈ [−B,B]d such that:

f̃(θ̂) ≥ max
θ∈H

f̃(θ)− 2ε.

Proof. To simplify the notation in this proof let θ∗ =
arg maxθ f(θ) and θ̃ = arg maxθ f̃(θ).

The first thing to notice is that, as we argued before, f
is a concave function over a convex set, hence it can be
approximately optimized using GD (note that GD is used
for minimization problems but since f is concave, −f is a
convex function over a convex set and the minimum of −f
is the same as the maximum of f).

Also, since the function f is ρ
λ∆S

-Lipschitz with respect to

the `1 norm, it is ρ
√
d

λ∆S
-Lipschitz with respect to the `2 norm.

Additionally, it holds: ||θ||2 ≤ B
√
d.

Known results on the convergence of GD (see e.g. (Shalev-
Shwartz & Ben-David, 2014)), imply that running GD

for T ≥
(
Bdρ
λ∆S ε

)2

iterations using a learning rate of

η =
√

B2λ2∆S

ρ2T will return a θ̂ ∈ H such that:

f(θ̂) ≥ f(θ∗)− ε.

Learning Diffusion using Hyperparameters

Now, we will use the fact that the noise ξ is small to show
that the maximizer of the concave function f , is an approxi-
mate maximizer for the approximate concave function f̃ :

f̃(θ̃) = f(θ̃) + ξ(θ̃) ≤ f(θ∗) + ξ(θ̃)

≤ f(θ̂) + ε+ ξ(θ̃)

≤ f(θ̂) + ξ(θ̂)− ξ(θ̂) + ε

= f̃(θ̂)− ξ(θ̂) + ε

⇒ f̃(θ̂) ≥ f̃(θ̃)− mo

m
∆S ln

1

λ
− ε

≤ f̃(θ̃)− 2ε

where the first inequality holds since θ∗ is the maximizer
of f , the second because of the GD guarantee and the third
because the log-likelihood of any sample is always negative,
hence ξ(θ) < 0, for every θ ∈ H. From Lemma 3 we know
that ∀s ∈ S,∀θ ∈ H : |L(s, θ)| ≤ ∆S ln 1

λ . Hence, using
triangle inequality we can get:

∣∣∣ξ(θ̂)∣∣∣ =

∣∣∣∣∣ 1

m

∑
s∈So

L(s, θ̂)

∣∣∣∣∣ ≤ mo

m
∆S ln

1

λ
.

Finally, the last inequality holds because of the assumption
that: mom ≤

ε
∆S ln(1/λ) .

Note that in real social networks ∆S is constant so the
running time of GD is O

(
d2

ε2

)
. However, even in cases

where we have a few nodes with super-constant degree, we
can consider the respective samples as noise (hence add
them to So) and still run GD in polynomial time at the price
of slightly increased error, due to the increase in the noise.

Corollary 1 (Efficient Learnability). Let G = (V,E)
be a directed graph and D be a distribution that gen-
erates samples of the form s = ((X, v), y). Let ∆ =
maxs∼D |X ∩N(v)|. Then, for any ε, δ ∈ (0, 1) , if we use
Maximum Likelihood Estimation on a training set of size
m ≥ m(ε, δ) = O

(
∆2 log2(1/λ)d log(Bρd/λ∆ε)+log(1/δ)

ε2

)
samples drawn i.i.d. from D, and mo

m ≤ ε
∆S ln(1/λ) , then

with probability at least 1− δ (over the draw of the training
set) it holds:

sup
θ∈H

Es∼D[L
(
s, θ
)
]− Es∼D[L

(
s, θ̂
)
] ≤ 3ε.

Moreover, the MLE runs in time polynomial in d and ε.

Proof. Follows from the proof of Theorem 1 and the
fact that θ̂ approximately optimizes the cummulative log-
likelihood over S up to an additive term of 2ε, according to
Lemma 7.

We now focus on the second approach: optimize f̃ directly.

Corollary 2 (Using (Belloni et al., 2015)). Let mo denote
the number of obfuscated samples in a training set S of
m i.i.d. samples. Then if mo

m ≤ ε
d∆S ln(1/λ) , there is a

randomized algorithm that can recover θ̂ ∈ [−B,B]d such
that:

E
[
f̃(θ̂)

]
≥ max

θ∈H
f̃(θ)− 2ε.

Proof. From Lemma 3 we know that ∀s ∈ S,∀θ ∈ H :
|L(s, θ)| ≤ ∆S ln 1

λ . Hence, using triangle inequality we
can get:

|ξ(θ)| =

∣∣∣∣∣ 1

m

∑
s∈So

L(s, θ)

∣∣∣∣∣ ≤ mo

m
∆S ln

1

λ
.

So, for mo
m ≤ ε

d∆S ln(1/λ) it holds |ξ(θ)| ≤ ε
d , for all

θ ∈ H. Also note that the convex set H = [−B,B]d is
well-rounded, according to the definition of (Belloni et al.,
2015), because it is contained between the d-dimensional
ball of radius B and the one of radius B

√
d, and that there

is a trivial membership oracle toH (just check whether all
coordinates of a vector are in [−B,B]).

Finally, note that since L is ρ
λ∆ -Lipschitz with respect to

the `1 norm, f is also ρ
λ∆ -Lipschitz with respect to the `1

norm and, as a consequence, dρ
λ∆−Lipschitz with respect to

the `∞ norm. Hence, all the requirements of the algorithm
of (Belloni et al., 2015) are satisfied, and we can apply
Simulated Annealing to recover a vector of hyperparameters
θ̂ ∈ H such that on expectation it holds:

f̃(θ̂) ≥ max
θ∈H

f̃(θ)− 2ε

which completes the proof.

Since for large enough training set S, the value mo
m will

converge to the real probability po of seeing an obfuscated
sample, the results above essentially tell us that if po is
small enough we can still optimize the function and recover
the hyperparameter despite the non-concavity of the objec-
tive function. Hence po quantifies the “difficulty” of the
optimization problem. It depends on the distribution that
generates the samples and it can be bounded in simple cases.

The following lemma provides an upper bound on that prob-
ability for the case where each node is chosen to participate
in X independently with probability pX . More involved
analysis is possible for different sample-generating distribu-
tions.

Lemma 7. Let G = (V,E) be a graph and s = ((X, v), y)
be a sample where each node of V is chosen to participate
in X independently with probability pX . The probability
po that s is obfuscated, is upper bounded by 1−

(
1− pX ·

Learning Diffusion using Hyperparameters

(1− λ)
)∆ − pX(1− pX)∆−1 · λ, where ∆ is the maximum

degree in the graph.

Proof. We want to bound the probability that we will get
an obfuscated sample, i.e. a sample for which y = 1 and
|X ∩N(v)| > 1 assuming that v /∈ X . It holds:

P[y = 1|v /∈ X] = P[(y = 1) ∩ (|N(v) ∩X| > 1)|v /∈ X]

+P[(y = 1) ∩ (|N(v) ∩X| ≤ 1)|v /∈ X]

⇓
P[(y = 1) ∩ (|N(v) ∩X| > 1)|v /∈ X] = P[y = 1|v /∈ X]

−P[(y = 1) ∩ (|N(v) ∩X| ≤ 1)|v /∈ X]

So to compute the probability of getting an obfuscated sam-
ple, we need to compute the probability of a node becoming
active given that it does not belong in X, and the probability
of becoming active while having at most one parents in X
(given that it does not belong in X).

Let’s fist upper bound the probability of node v becoming
active. Remember that each node is selected to participate in
X with probability pX , and that for the influence probability
of each edge e ∈ E holds pe ∈ [λ, 1− λ]. Hence:

P[y = 1|v /∈ X] = 1−
∏

u∈N(v)

(
1− P[u activates v]

)
= 1−

∏
u∈N(v)

(
1− pX · pu,v

)
≤ 1−

(
1− pX · (1− λ)

)∆
It remains to lower bound the probability that v becomes
active while having only one active parent. It is:

P[(y = 1) ∩ (|N(v) ∩X| ≤ 1)|v /∈ X]

= P[(y = 1) ∩ (|N(v) ∩X| = 0)|v /∈ X]

+P[(y = 1) ∩ (|N(v) ∩X| = 1)|v /∈ X]

= 0 + P[(y = 1) ∩ (|N(v) ∩X| = 1)|v /∈ X]

=
∑

u∈N(v)

pX(1− pX)|N(v)|−1 · pu,v

= pX(1− pX)|N(v)|−1 ·
∑

u∈N(v)

pu,v

≥ pX(1− pX)∆−1 · λ

Putting everything together we get the desired upper bound:

P[(y = 1) ∩ (|N(v) ∩X| > 1)|v /∈ X] ≤

1−
(
1− pX · (1− λ)

)∆ − pX(1− pX)∆−1 · λ

G. Omitted Details from the Experiments
Synthetic Graphs: As we discussed in Section 5.1 differ-
ent graph models yield graphs with different topological
properties. The ones we selected for our experiments are
the following:

• Barabási-Albert: The degree distribution of this model is
a power law and hence captures interesting properties of
the real-world social networks. We took 10 initial vertices
and added 10 edges at each step, using the preferential
attachment model, until we reached 1000 vertices.

• Kronecker graphs: This model for social networks was
introduced in (Leskovec et al., 2005). The adjacency
matrix of a Kronecker graph is generated by repeated
applications of the Kronecker product to an initial seed
matrix. In this case we started from a star graph with
4 vertices and computed the Kronecker product till we
reached 1000 vertices.

• Configuration model: The configuration model allows us
to construct a graph with a given degree distribution. We
chose 1000 vertices and a power-law degree distribution
with parameter α = 2.
• Erdös-Rényi: We used the celebrated G(n,m) model

to create a graph with 1000 vertices and 20000 edges.
G(n,m) does not capture some of the properties of real
social networks, however it is a very impactful model
with variety of applications in several areas of science.

Training Set. We randomly activate an initial seed X of
size 10% of the size of the network. X is chosen large to
ensure that there exist nodes with multiple active parents
and study whether convergence occurs even when (2) is
indeed non-concave. We choose one node v reachable from
the seed X uniformly at random. If v becomes influenced
by X its label y is set to 1, and to 0 otherwise. The seed
X , together with v and the label y form one sample s =
((X, v), y) as described in Section 3. We generate 100,000
such samples and attempt to solve the optimization problem
(2) using SGD, initializing the hyperparameters to 0 and
using a learning rate of 1/

√
T , where T is the number of

iterations.

