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Abstract

Orthogonal matching pursuit (OMP) is a widely
used algorithm for recovering sparse high dimen-
sional vectors in linear regression models. The
optimal performance of OMP requires a priori
knowledge of either the sparsity of regression vec-
tor or noise statistics. Both these statistics are
rarely known a priori and are very difficult to esti-
mate. In this paper, we present a novel technique
called residual ratio thresholding (RRT) to operate
OMP without any a priori knowledge of sparsity
and noise statistics and establish finite sample and
large sample support recovery guarantees for the
same. Both analytical results and numerical simu-
lations in real and synthetic data sets indicate that
RRT has a performance comparable to OMP with
a priori knowledge of sparsity and noise statistics.

1. Introduction
This article deals with the estimation of the regression vec-
tor β ∈ Rp in the linear regression model y = Xβ + w,
where X ∈ Rn×p is a known design matrix with unit Eu-
clidean norm columns, w is the noise vector and y is the
observation vector. Throughout this article, we assume that
the entries of the noise w are independent, zero mean and
Gaussian distributed with variance σ2. We consider the high
dimensional and sample starved scenario of n < p or n� p
where classical techniques like ordinary least squares (OLS)
are no longer applicable. This problem of estimating high
dimensional vectors in sample starved scenarios is ill-posed
even in the absence of noise unless strong structural assump-
tions are made on X and β. A widely used and practically
valid assumption is sparsity. The vector β ∈ Rp is sparse
if the support of β given by S = supp(β) = {k : βk 6= 0}
has cardinality k0 = card(S)� p.
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A number of algorithms like least absolute shrinkage and
selection operator (LASSO)(Tropp, 2006; Tibshirani, 1996),
Dantzig selector (DS)(Candes & Tao, 2007), subspace pur-
suit (SP)(Dai & Milenkovic, 2009), OMP (Pati et al., 1993;
Mallat & Zhang, 1993; Tropp, 2004; Cai & Wang, 2011),
elastic net (Zou & Hastie, 2005) etc. are proposed to effi-
ciently estimate β. Tuning the hyper parameters of afore-
mentioned algorithms to achieve optimal performance re-
quire a priori knowledge of signal parameters like sparsity
k0 or noise statistics like σ2 etc. Unfortunately, these pa-
rameters are rarely known a priori. To the best of our
knowledge, no computationally efficient technique to es-
timate k0 is reported in open literature. However, limited
success on the estimation of σ2 has been reported in liter-
ature (Dicker, 2014; Fan et al., 2012; Dicker & Erdogdu,
2016; Bayati et al., 2013). However, the performance of
these σ2 estimates when used for tuning hyper parameters
in LASSO, DS, OMP etc. are largely unknown. Generalised
techniques for hyper parameter selection like cross valida-
tion (CV)(Arlot et al., 2010), re-sampling (Meinshausen
& Bühlmann, 2010) etc. are computationally challenging.
Further, CV is reported to have poor variable selection be-
haviour(Chichignoud et al., 2016; Arlot et al., 2010). Indeed,
algorithms that are oblivious to signal and noise statistics are
also proposed in literature. This include algorithms inspired
or related to LASSO like square root LASSO(Belloni et al.,
2011), AV∞ (Chichignoud et al., 2016), approximate mes-
sage passing (Mousavi et al., 2013; Bayati et al., 2013) etc.
and ridge regression inspired techniques like least squares
adaptive thresholding (LAT), ridge adaptive thresholding
(RAT)(Wang et al., 2016) etc. However, most of existing sig-
nal and noise statistics oblivious sparse recovery techniques
have only large sample performance guarantees. Further,
many of these techniques assume that design matrix X is
sampled from a random ensemble, a condition which is
rarely satisfied in practice.

1.1. Contributions of this paper

This article present a novel technique called residual ratio
thresholding (RRT) for finding a “good” estimate of support
S from the data dependent/adaptive sequence of supports
generated by OMP. RRT is analytically shown to accom-
plish exact support recovery, (i.e., identifying S) under the
same finite sample and deterministic constraints on X like
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restricted isometry constants (RIC) or mutual coherence re-
quired by OMP with a priori knowledge of k0 or σ2. How-
ever, the signal to noise ratio (SNR=‖Xβ‖22/nσ2) required
for support recovery using RRT is slightly higher than that
of OMP with a priori knowledge of k0 or σ2. This extra
SNR requirement is shown to decrease with the increase in
sample size n. RRT and OMP with a priori knowledge of
k0 or σ2 are shown to be equivalent as n → ∞ in terms
of the SNR required for support recovery. RRT involves a
tuning parameter α that can be set independent of ambient
SNR or noise statistics. The hyper parameter α in RRT
have an interesting semantic interpretation of being the high
SNR upper bound on support recovery error. Also RRT
is asymptotically tuning free in the sense that a very wide
range of α deliver similar performances as n → ∞. Nu-
merical simulations indicate that RRT can deliver a highly
competitive performance when compared to OMP having
a priori knowledge of k0 or σ2, OMP with k0 estimated
using CV and the recently proposed LAT algorithm. Further,
RRT also delivered a highly competitive performance when
applied to identify outliers in real data sets, an increasingly
popular application of sparse estimation algorithms(Mitra
et al., 2010; 2013).

The remainder of this article is organised as follows. In
section 2 we discuss OMP algorithm. RRT algorithm is
presented in Section 3. Section 4 presents theoretical per-
formance guarantees for RRT. Section 5 presents numerical
simulation results. All the proofs are provided in the supple-
mentary material.

1.2. Notations used

‖x‖q =

(
p∑
k=1

|xk|q
) 1
q

is the lq norm of x ∈ Rp. 0n is

the n × 1 zero vector and In is the n × n identity matrix.
span(X) is the column space of X. X† = (XTX)−1XT

is the Moore-Penrose pseudo inverse of X. XJ denotes
the sub-matrix of X formed using the columns indexed by
J . N (u,C) represents a Gaussian random vector (R.V)
with mean u and covariance matrix C. B(a, b) denotes a
Beta R.V with parameters a and b. a ∼ b implies that a
and b are identically distributed. [p] represents the floor
operator. φ represents the null set. For any two sets J1 and
J2, J1/J2 denotes the set difference. a P→ b represents the
convergence of R.V a to R.V b in probability.

2. Orthogonal Matching Pursuit (OMP)
OMP (Algorithm 1) starts with a null support estimate
and in each iteration it adds that column index to the cur-
rent support which is the most correlated with the previ-
ous residual rk−1, i.e., tk = arg max

j
|XT

j r
k−1|. Then a

LS estimate of β restricted to the current support Skomp is

Algorithm 1 Orthogonal matching pursuit
Input: Observation y, matrix X
Initialize Somp0 = φ. k = 1 and residual r0 = y
repeat

Identify the next column tk = arg max
j
|XT

j r
k−1|

Expand current support Skomp = Sk−1
omp ∪ tk

Restricted LS estimate: β̂Skomp = X†Skomp
y.

β̂{1,...,p}/Skomp = 0p−k.

Update residual: rk = y −Xβ̂ = (In −Pk)y.
Increment k ← k + 1.

until stopping condition (SC) is true
Output: Support estimate Ŝ = Skomp. Vector estimate β̂

computed as an intermediate estimate of β and this esti-
mate is used to update the residual. Note that Pk in Al-
gorithm 1 refers to XSkompX

†
Skomp

, the projection matrix

onto span(XSkomp). Since the residual rk is orthogonal to
span(XSkomp), XT

j r
k = 0 for all j ∈ Skomp. Consequently,

tk+1 /∈ Skomp, i.e., the same index will not be selected in two
different iterations. Hence, Sk+1

omp ⊃ Skomp, i.e. the support
sequence is monotonically increasing. The monotonicity of
Skomp in turn implies that the residual norm ‖rk‖2 is a non
increasing function of k, i.e, ‖rk+1‖2 ≤ ‖rk‖2.

Most of the theoretical properties of OMP are derived assum-
ing a priori knowledge of true sparsity level k0 in which case
OMP stops after exactly k0 iterations(Tropp, 2004; Wang,
2015). When k0 is not known, one has to rely on stopping
conditions (SC) based on the properties of the residual rk

as k varies. For example, one can stop OMP iterations
once the residual power is too low compared to the ex-
pected noise power. Mathematically, when the noise w is l2
bounded, i.e., ‖w‖2 ≤ ε2 for some a priori known ε2, then
OMP can be stopped if ‖rk‖2 ≤ ε2. For a Gaussian noise

vector w ∼ N (0n, σ
2In), εσ = σ

√
n+ 2

√
n log(n) satis-

fies(Cai & Wang, 2011)

P(‖w‖2 ≤ εσ) ≥ 1− 1

n
, (1)

i.e., Gaussian noise is l2 bounded with a very high probabil-
ity. Consequently, one can stop OMP iterations in Gaussian
noise once ‖rk‖2 ≤ εσ .

A number of deterministic recovery guarantees are proposed
for OMP. Among these guarantees the conditions based on
RIC are the most popular. RIC of order j denoted by δj is
defined as the smallest value of δ such that

(1− δ)‖b‖22 ≤ ‖Xb‖22 ≤ (1 + δ)‖b‖22 (2)

hold true for all b ∈ Rp with ‖b‖0 = card(supp(b)) ≤ j.
A smaller value of δj implies that X act as a near orthogonal
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matrix for all j sparse vectors b. Such a situation is ideal
for the recovery of a j-sparse vector b using any sparse
recovery technique. The latest RIC based support recovery
guarantee using OMP is given in Lemma 1(Liu et al., 2017).

Lemma 1. OMP with k0 iterations or SC ‖rk‖2 ≤
‖w‖2 can recover any k0 sparse vector β provided
that δk0+1 < 1/

√
k0 + 1 and ‖w‖2 ≤ εomp =

βmin
√

1− δk0+1

 1−
√
k0 + 1δk0+1

1 +
√

1− δ2
k0+1 −

√
k0 + 1δk0+1

.

Since P(‖w‖2 < εσ) ≥ 1− 1/n when w ∼ N (0n, σ
2In),

it follows from Lemma 1 that OMP with k0 iterations or
SC ‖rk‖2 ≤ εσ can recover any k0-sparse vector β with
probability greater than 1 − 1/n provided that δk0+1 <
1/
√
k0 + 1 and εσ ≤ εomp. Lemma 1 implies that OMP

with a priori knowledge of k0 or σ2 can recover support S
once the matrix satisfies the regularity condition δk0+1 <
1/
√
k0 + 1 and the SNR is high. It is also known that

this RIC condition is worst case necessary. Consequently,
Lemma 1 is one of the best deterministic guarantee for OMP
available in literature. Note that the mutual incoherence
condition given by µX = max

j 6=k
|XT

j Xk| < 1/(2k0 − 1)

also ensures exact support recovery at high SNR. Note that
the a priori knowledge of k0 or σ2 required to materialise
the recovery guarantees in Lemma 1 are not available in
practical problems. Further, k0 and σ2 are very difficult to
estimate. This motivates the proposed RRT algorithm which
does not require a priori knowledge of k0 or σ2.

3. Residual Ratio Thresholding (RRT)
RRT is a novel signal and noise statistics oblivious tech-
nique to estimate the support S based on the behaviour of
the residual ratio statistic RR(k) = ‖rk‖2/‖rk−1‖2 as k
increases from k = 1 to a predefined value k = kmax > k0.
As aforementioned, identifying the support using the be-
haviour of ‖rk‖2 requires a priori knowledge of σ2. How-
ever, as we will show in this section, support detection using
RR(k) does not require a priori knowledge of σ2. Since the
residual norms are non negative and non increasing, RR(k)
always satisfy 0 ≤ RR(k) ≤ 1.

3.1. Minimal superset and implications

Consider running kmax > k0 iterations of OMP and let
{Skomp}kmaxk=1 be the support sequence generated by OMP.
Recall that Skomp is monotonically increasing.

Definition 1:- The minimal superset in the OMP support
sequence {Skomp}kmaxk=1 is given by Skminomp , where kmin =

min({k : S ⊆ Skomp}). When the set {k : S ⊆ Skomp} = φ,
we set kmin =∞ and Skminomp = φ.

In words, minimal superset is the smallest superset of
support S present in a particular realization of the sup-
port estimate sequence {Skomp}kmaxk=1 . Note that both kmin
and Skminomp are unobservable random variables. Since
card(Skomp) = k, Skomp for k < k0 cannot satisfy S ⊆
Skomp and hence kmin ≥ k0. Further, the monotonicity of
Skomp implies that S ⊂ Skomp for all k ≥ kmin.
Case 1:- When kmin = k0, then Sk0omp = S and Skomp ⊃ S
for k ≥ k0, i.e., S is present in the solution path. Further,
when kmin = k0, it is true that Skomp ⊆ S for k ≤ k0.
Case 2:- When k0 < kmin ≤ kmax, then Skomp 6= S for all
k and Sompk ⊃ S for k ≥ kmin, i.e., S is not present in the
solution path. However, a superset of S is present.
Case 3:- When kmin = ∞, then Skomp 6⊇ S for all k, i.e.,
neither S nor a superset of S is present in {Skomp}kmaxk=1 .
To summarize, exact support recovery using any OMP
based scheme including the signal and noise statistics
aware schemes is possible only if kmin = k0. Whenever
kmin > k0, it is possible to estimate true support S without
having any false negatives. However, one then has to suf-
fer from false positives. When kmin =∞, any support in
{Skomp}kmaxk=1 has to suffer from false negatives and all sup-
ports Skomp for k > k0 − 1 has to suffer from false positives
also. Note that the matrix and SNR conditions required for
exact support recovery in Lemma 1 automatically implies
that kmin = k0. We formulate the proposed RRT scheme
assuming that kmin = k0.

3.2. Behaviour of RR(k0)

Next we consider the behaviour of residual ratio statistic
at the k0 iteration, i.e., RR(k0) = ‖rk0‖2/‖rk0−1‖2 under
the assumption that ‖w‖2 ≤ εomp and δk0+1 < 1/

√
k0 + 1

which ensures kmin = k0 and Skomp ⊆ S for all k ≤ k0.
Since Xβ = XSβS ∈ span(XS), (In − Pk)Xβ 6= 0n
if S 6⊆ Skomp and (In − Pk)Xβ = 0n if S ⊆ Skomp.
This along with the monotonicity of Skomp implies the
following. (In − Pk)Xβ 6= 0n for k < kmin = k0

and (In − Pk)Xβ = 0n for k ≥ kmin = k0. Thus
rk = (In − Pk)y = (In − Pk)XSβS + (In − Pk)w
for k < kmin = k0, whereas, rk = (In − Pk)w for
k ≥ kmin = k0. Consequently, at k = k0, the numerator
‖rk0‖2 ofRR(k0) contains contribution only from the noise
term ‖(In−Pk0)w‖2, whereas, the denominator ‖rk0−1‖2
in RR(k0) contain contributions from both the signal term
i.e., (In−Pk)XSβS and the noise term (In−Pk)w. This
behaviour of RR(k0) along with the fact that ‖w‖2

P→ 0 as
σ2 → 0 implies the following theorem.

Theorem 1. Assume that the matrix X satisfies the RIC
constraint δk0+1 < 1/

√
k0 + 1 and kmax > k0. Then

a). RR(kmin)
P→ 0 as σ2 → 0.

b). lim
σ2→0

P(kmin = k0) = 1.
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Algorithm 2 Residual ratio thresholding
Input: Observation y, matrix X
Step 1: Run kmax iterations of OMP.
Step 2: Compute RR(k) for k = 1, . . . , kmax.
Step 3: Estimate kRRT = max{k : RR(k) ≤
ΓαRRT (k)}
Output: Support estimate Ŝ = SkRRTomp . Vector esti-
mate β̂(SkRRTomp ) = X†

SkRRTomp

y, β̂({1, . . . , p}/SkRRTomp ) =

0p−kRRT .

3.3. Behaviour of RR(k) for k > kmin

Next we discuss the behaviour of RR(k) for k > kmin.
By the definition of kmin we have S ⊆ Skomp which im-
plies that rk = (In − Pk)w for k ≥ kmin. The ab-
sence of signal terms in numerator and the denominator
of RR(k) = ‖(In−Pk)w‖2

‖(In−Pk−1)w‖2 for k > kmin implies that
even when ‖w‖2 → 0 or σ2 → 0, RR(k) for k > kmin
does not converge to zero. This behaviour of RR(k) for
k > kmin is captured in Theorem 2 where we provide ex-
plicit σ2 or SNR independent lower bounds on RR(k) for
k > kmin.

Theorem 2. Let Fa,b(x) denotes the cumulative distribu-
tion function of a B(a, b) random variable. Then ∀σ2 > 0,

ΓαRRT (k) =

√
F−1
n−k

2 ,0.5

(
α

kmax(p− k + 1)

)
satisfies

P(RR(k) > ΓαRRT (k),∀k > kmin) ≥ 1− α. (3)

Theorem 2 states that the residual ratio statistic RR(k) for
k > kmin is lower bounded by the deterministic sequence
{ΓαRRT (k)}kmaxk=kmin+1 with a high probability (for small val-
ues of α). Please note that kmin is itself a R.V. Note that
the sequence ΓαRRT (k) is dependent only on the matrix di-
mensions n and p. Further, Theorem 2 does not make any
assumptions on the noise variance σ2 or the design matrix
X. Theorem 2 is extremely non trivial considering the fact
that the support estimate sequence {Skomp}

kmax
k=1 produced

by OMP is adaptive and data dependent.

Lemma 2. The following important properties of ΓαRRT (k)
are direct consequences of the monotonicity of CDF and the
fact that a Beta R.V take values only in [0, 1].
1). ΓαRRT (k) is defined only in the interval α ∈
[0, kmax(p− k + 1)].
2). 0 ≤ ΓαRRT (k) ≤ 1.
3). ΓαRRT (k) is a monotonically increasing function of α.
4). ΓαRRT (k) = 0 when α = 0 and ΓαRRT (k) = 1 when
α = kmax(p− k + 1).

3.4. Residual ratio thresholding framework

From Theorem 1, it is clear that P(kmin = k0) and

P(Sompk0
= S) increases with increasing SNR (or decreas-

ing σ2), whereas, RR(kmin) decreases to zero with in-
creasing SNR. At the same time, for small values of α
like α = 0.01, RR(k) for k > kmin is lower bounded by
ΓαRRT (k) with a very high probability at all SNR. Hence,
finding the last index k such that RR(k) ≤ ΓαRRT (k), i.e.,
kRRT = max{k : RR(k) ≤ ΓαRRT (k)} gives k0 and equiv-
alently Sk0omp = S with a probability increasing with in-
creasing SNR. This motivates the proposed signal and noise
statistics oblivious RRT algorithm presented in Algorithm
2.
Remark 1. An important aspect regarding the RRT in Algo-
rithm 2 is the choice of kRRT when the set {k : RR(k) ≤
ΓαRRT (k)} = φ. This situation happens only at very low
SNR. When {k : RR(k) ≤ ΓαRRT (k)} = φ for a given
value of α, we increase the value of α to the smallest value
αnew > α such that {k : RR(k) ≤ ΓαnewRRT (k)} 6= φ. Math-
ematically, we set kRRT = max{k : RR(k) < ΓαnewRRT (k)},
where αnew = min

a>α
{a : {k : RR(k) ≤ ΓαRRT (k)} 6= φ}.

Since α = p kmax gives ΓαRRT (1) = 1 and RR(1) ≤ 1, a
value of αnew ≤ pkmax always exists. αnew can be easily
computed by first pre-computing {ΓaRRT (k)}kmaxk=1 for say
100 prefixed values of a in the interval (α, pkmax].
Remark 2. RRT requires performing kmax iterations of
OMP. All the quantities required for RRT including RR(k)
and the final estimates can be computed while performing
these kmax iterations itself. Consequently, RRT has com-
plexity O(kmaxnp). As we will see later, a good choice of
kmax is kmax = [0.5(n + 1)] which results in a complex-
ity order O(n2p). This complexity is approximately n/k0

times higher than the O(npk0) complexity of OMP when
k0 or σ2 are known a priori. This is the computational cost
being paid for not knowing k0 or σ2 a priori. In contrast, L
fold CV requires running (1− 1/L)n iterations of OMP L
times resulting in a O(L(1 − 1/L)n2p) = O(Ln2p) com-
plexity, i.e., RRT is L times computationally less complex
than CV.
Remark 3. RRT algorithm is developed only assuming that
the support sequence generated by the sparse recovery al-
gorithm is monotonically increasing. Apart from OMP, al-
gorithms such as orthogonal least squares(Wen et al., 2017)
and OMP with thresholding(Yang & de Hoog, 2015) also
produce monotonic support sequences. RRT principle can
be directly applied to operate these algorithms in a signal
and noise statistics oblivious fashion.

4. Analytical Results for RRT
In this section we present support recovery guarantees for
RRT and compare it with the results available for OMP
with a priori knowledge of k0 or σ2. The first result in
this section deals with the finite sample and finite SNR
performance for RRT.
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Theorem 3. Let kmax ≥ k0 and suppose that the matrix
X satisfies δk0+1 < 1√

k0+1
. Then RRT can recover the

true support S with probability greater than 1− 1/n− α
provided that εσ < min(εomp, εrrt), where

εrrt =
ΓαRRT (k0)

√
1− δk0βmin

1 + ΓαRRT (k0)
. (4)

Theorem 3 implies that RRT can identify the support S at a
higher SNR or lower noise level than that required by OMP
with a priori knowledge of k0 and σ2. For small values of α
like α = 0.01, the probability of exact support recovery, i.e.,
1− α− 1/n is similar to that of the 1− 1/n probability of
exact support recovery in Lemma 1. Also please note that
the RRT framework does not impose any extra conditions
on the design matrix X. Consequently, the only appreciable
difference between RRT and OMP with a priori knowledge
of k0 and σ2 is in the extra SNR required by RRT which is
quantified next using the metric εextra = εomp/εrrt. Note
that the larger the value of εextra, larger should be the SNR
or equivalently smaller should be the noise level required for
RRT to accomplish exact support recovery. Substituting the
values of εomp and εrrt and using the bound δk0 ≤ δk0+1

gives

εextra ≤
1 + 1

ΓαRRT (k0)

1 +

√
1−δ2k0+1

1−
√
k0+1δk0+1

. (5)

Note that

√
1−δ2k0+1

1−
√
k0+1δk0+1

=
(

1−δk0+1

1−
√
k0+1δk0+1

)√
1+δk0+1

1−δk0+1
≥

1. Consequently,

εextra ≤ 0.5

(
1 +

1

ΓαRRT (k0)

)
. (6)

Since 0 ≤ ΓαRRT (k0) ≤ 1, it follows that

0.5
(

1 + 1
ΓαRRT (k0)

)
is always greater than or equal to one.

However, εextra decreases with the increase in ΓαRRT (k0).
In particular, when ΓαRRT (k0) = 1, there is no extra SNR
requirement.
Remark 4. RRT algorithm involves two hyper parameters
viz. kmax and α. Exact support recovery using RRT re-
quires only that kmax ≥ k0. However, k0 is an unknown
quantity. In our numerical simulations, we set kmax =
min(p, [0.5(rank(X) + 1)]). This choice is motivated by
the facts that k0 < [0.5(rank(X)+1)] is a necessary condi-
tion for exact support recovery using any sparse estimation
algorithm(Elad, 2010) when n < p and min(n, p) is the
maximum possible number of iterations in OMP. Since eval-
uating rank(X) requires extra computations, one can al-
ways use rank(X) ≤ n to set kmax = min(p, [0.5(n+1)]).
Please note that this choice of kmax is independent of the
operating SNR, design matrix and the vector to be estimated
and the user is not required to tune this parameter. Hence, α
is the only user specified hyper parameter in RRT algorithm.

4.1. Large sample behaviour of RRT

Next we discuss the behaviour of RRT as n→∞. From (6),
it is clear that the extra SNR required for support recovery
using RRT decreases with increasing ΓαRRT (k0). However,
by Lemma 2 increasing ΓαRRT (k0) requires an increase in
the value of α. However, increasing α decreases the proba-
bility of support recovery given by 1 − α − 1/n. In other
words, one cannot have exact support recovery using RRT
at lower SNR without increasing the probability of error
in the process. An answer to this conundrum is available
in the large sample regime where it is possible to achieve
both α ≈ 0 and ΓαRRT (k0) ≈ 1, i.e., no extra SNR require-
ment and no decrease in probability of support recovery.
The following theorem states the conditions required for
ΓαRRT (k0) ≈ 1 for large values of n.

Theorem 4. Define klim = lim
n→∞

k0/n, plim =

lim
n→∞

log(p)/n and αlim = lim
n→∞

log(α)/n. Let

kmax = min(p, [0.5(n + 1)]). Then ΓαRRT (k0) =√
F−1
n−k0

2 ,0.5

(
α

kmax(p− k0 + 1)

)
satisfies the following

asymptotic limits.
Case 1:-). lim

n→∞
ΓαRRT (k0) = 1, whenever klim < 0.5,

plim = 0 and αlim = 0.
Case 2:-). 0 < lim

n→∞
ΓαRRT (k0) < 1 if klim < 0.5,

αlim = 0 and plim > 0. In particular, lim
n→∞

ΓαRRT (k0) =

exp( −plim1−klim ).
Case 3:- lim

n→∞
ΓαRRT (k0) = 0 if klim < 0.5, αlim = 0 and

plim =∞.

Theorem 4 states that all choices of (n, p, k0) satisfying
plim = 0 and klim < 0.5 can result in lim

n→∞
ΓαRRT (k0) = 1

provided that the parameter α satisfies αlim = 0. Note that
αlim = 0 for a wide variety of α including α = constant,
α = 1/nδ for some δ > 0, α = 1/ log(n) etc. It is inter-
esting to see which (n, p, k0) scenario gives plim = 0 and
klim < 0.5. Note that exact recovery in n < p scenario
is possible only if k0 ≤ [0.5(n + 1)]. Thus, the assump-
tion klim < 0.5 will be satisfied in all interesting problem
scenarios.

Regime 1:- lim
n→∞

ΓαRRT (k0) = 1 in low dimensional regres-

sion problems with p fixed and n → ∞ or all (n, p) →
(∞,∞) with lim

n→∞
p/n ≤ 1.

Regime 2:- lim
n→∞

ΓαRRT (k0) = 1 in high dimensional case

with p increases sub exponentially with n as exp(nδ) for
some δ < 1 or p increases polynomially w.r.t n, i.e., p = nδ

for some δ > 1. In both cases, plim = lim
n→∞

log(nδ)/n = 0

and plim = lim
n→∞

log(exp(nδ))/n = 0.

Regime 3:- lim
n→∞

ΓαRRT (k0) = 1 in the extreme high di-

mensional case where (n, p, k0) → (∞,∞,∞) satisfy-
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ing n ≥ ck0 log(p) for some constant c > 0. Here

plim = lim
n→∞

log(p)/n ≤ lim
n→∞

1

ck0
= 0 and klim =

lim
n→∞

1/c log(p) = 0. Note that the sampling regime

n ≈ 2k0 log(p) is the best known asymptotic guarantee
available for OMP(Fletcher & Rangan, 2012).
Regime 4:- Consider a sampling regime where (n, p) →
(∞,∞) such that k0 is fixed and n = ck0 log(p), i.e., p is
exponentially increasing with n. Here plim = 1/(ck0) and
klim = 0. Consequently, lim

n→∞
ΓαRRT (k0) = exp

(
−1
ck0

)
<

1. A good example of this sampling regime is (Tropp &
Gilbert, 2007) where it was shown that OMP can recover
a (not every) particular k0 dimensional signal from n ran-
dom measurements (in noiseless case) when n = ck0 log(p).
Note that c ≤ 20 for all k0 and c ≈ 4 for large k0. Even
if we assume that only n = 4k0 log(p) measurements
are sufficient for recovering a k0 sparse signal, we have
lim
n→∞

ΓαRRT (k0) = exp(−0.125) = 0.9512 for k0 = 5 (i.e.,

εextra ≤ 1.0257) and lim
n→∞

ΓαRRT (k0) = exp(−0.125) =

0.9753 for k0 = 10 (i.e.,εextra ≤ 1.0127).

Note that ΓαRRT (k0)→ 1 as n→∞ implies that εextra →
1 and min(εomp, εrrt)→ 1. This asymptotic behaviour of
ΓαRRT (k0) and εextra imply the large sample consistency of
RRT as stated in the following theorem.

Theorem 5. Suppose that the sample size n → ∞ such
that the matrix X satisfies δk0+1 <

1√
k0+1

, εσ ≤ εomp and
plim = 0. Then,
a). OMP running k0 iterations and OMP with SC ‖rk‖2 ≤
εσ are large sample consistent, i.e.. lim

n→∞
P(Ŝ = S) = 1.

b). RRT with hyper parameter α satisfying lim
n→∞

α = 0 and
αlim = 0 is also large sample consistent.

Theorem 5 implies that at large sample sizes, RRT can
accomplish exact support recovery under the same SNR and
matrix conditions required by OMP with a priori knowledge
of k0 or σ2. Theorem 5 has a very important corollary.
Remark 5. Theorem 1 implies that all choices of α satisfying
α→ 0 and αlim = 0 deliver similar performances as n→
∞. Note that the range of adaptations satisfying α → 0
and αlim = 0 include α = 1/ log(n), α = 1/nδ for δ > 0
etc. Since a very wide range of tuning parameters deliver
similar results as n → ∞, RRT is in fact asymptotically
tuning free.
Remark 6. Based on the large sample analysis of RRT, one
can make the following guidelines on the choice of α. When
the sample size n is large, one can choose α as a function of
n that satisfies both lim

n→∞
α = 0 and αlim = 0. Also since

the support recovery guarantees are of the form 1−1/n−α,
it does not make sense to choose a value of α that decays
to zero faster than 1/n. Hence, it is preferable to choose
values of α that decreases to zero slower than 1/n like

α = 1/ log(n), α = 1/
√
n etc.

4.2. A high SNR operational interpretation of α

Having discussed the large sample behaviour of RRT, we
next discuss the finite sample and high SNR behaviour of
RRT. Define the events support recovery error E = {Ŝ 6=
S} and false positive F = card(Ŝ/S) > 0 and missed
discovery or false negativeM = card(S/Ŝ) > 0. The fol-
lowing theorem characterizes the likelihood of these events
as SNR increases to infinity or σ2 → 0.

Theorem 6. Let kmax > k0 and the matrix X satisfies
δk0+1 < 1/

√
k0 + 1. Then,

a). lim
σ2→0

P(M) = 0.

b). lim
σ2→0

P(E) = lim
σ2→0

P(F) ≤ α.

Theorem 6 states that when the matrix X allows for exact
support recovery in the noiseless or low noise situation,
RRT will not suffer from missed discoveries. Under such
favourable conditions, α is a high SNR upper bound on
both the probability of error and the probability of false
positives. Please note that such explicit characterization of
hyper parameters are not available for hyper parameters in
Square root LASSO, RAT, LAT etc.

5. Numerical Simulations
In this section, we provide extensive numerical simulations
comparing the performance of RRT with state of art sparse
recovery techniques. In particular, we compare the per-
formance of RRT with OMP with k0 estimated using five
fold CV and the least squares adaptive thresholding (LAT)
proposed in (Wang et al., 2016). In synthetic data sets,
we also compare RRT with OMP running exactly k0 itera-

tions and OMP with SC ‖rk‖2 ≤ σ
√
n+ 2

√
n log(n)(Cai

& Wang, 2011). These algorithms are denoted in Figures
1-4 by “CV”, “LAT”, “OMP1” and “OMP2” respectively.
RRT1 and RRT2 represent RRT with parameter α set to
α = 1/ log(n) and α = 1/

√
n respectively. By Theorem 5,

RRT1 and RRT2 are large sample consistent.

5.1. Synthetic data sets

The synthetic data sets are generated as follows. We con-
sider two models for the matrix X. Model 1 sample each en-
try of the design matrix X ∈ Rn×p independently according
toN (0, 1). Matrix X in Model 2 is formed by concatenating
In with a n× n Hadamard matrix Hn, i.e., X = [In,Hn].
This matrix guarantee exact support recovery using OMP at
high SNR once k0 <

1+
√
n

2 (Elad, 2010). The columns of X
in both models are normalised to have unit l2-norm. Based
on the choice of X and support S , we conduct 4 experiments.
Experiments 1-2 involve matrix of model 1 with (n, p) given
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Figure 1. Experiment 1: Box plots of l2 error ‖β̂ − β‖2 (left), false positives (middle) and false negatives (right) .
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Figure 2. Experiment 2: Box plots of l2 error ‖β̂ − β‖2 (left), false positives (middle) and false negatives (right) .
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Figure 3. Experiment 3: Box plots of l2 error ‖β̂ − β‖2 (left), false positives (middle) and false negatives (right) .
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Figure 4. Experiment 4: Box plots of l2 error ‖β̂ − β‖2 (left), false positives (middle) and false negatives (right) .

Data Set Outliers reported in literature RRT CV LAT
Stack Loss 1, 3, 4, 21 1, 3, 4, 21 1, 3, 4, 21 4, 21
n = 21 and p = 4 (Rousseeuw & Leroy, 2005) plus 10 observations
including intercept
(Rousseeuw & Leroy, 2005)
AR2000 9, 21, 30, 31, 38, 47 9, 14, 21, 30 9, 21, 30, 31, 38, 47 9, 14, 21
n = 60 and p = 3 31, 38, 47, 50 plus 41 observations 30, 31, 38
(Atkinson & Riani, 2012) (Atkinson & Riani, 2012) 47, 50
Brain Body Weight 1, 6, 14, 16, 17, 25 1, 6, 16, 25 1, 6, 16, 25 1, 6, 16, 25
n = 27 and p = 1
(Rousseeuw & Leroy, 2005) (Rousseeuw & Leroy, 2005)
Stars 11, 20, 30, 34 11, 20, 30, 34 11, 20, 30, 34 11, 20, 30, 34
n0 = 47 and p0 = 1 plus 31 observations
(Rousseeuw & Leroy, 2005) (Rousseeuw & Leroy, 2005)

Table 1. Outliers detected by various algorithms. RRT with both α = 1/ log(n) and α = 1/
√
n delivered similar results. Existing results

on Stack loss, Brain and Body weight and Stars data set are based on the combinatorially complex least median of squares (LMedS)
algorithm. Existing results on AR2000 are based on extensive graphical analysis.
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by (200, 300) and (200, 900) respectively with support S
sampled randomly from the set {1, . . . , p}. Experiment 3
and 4 involve matrix of model 2 with (n = 128, p = 256).
For experiment 3, support S is sampled randomly from
the set {1, . . . , p}, whereas, in experiment 4, support S is
fixed at {1, 2, . . . , k0}. The noise w is sampled according
toN (0n, σ

2In) with σ2 = 1. The non zero entries of β are
randomly assigned βj = ±1. Subsequently, these entries
are scaled to achieve SNR = ‖Xβ‖22/n = 3. The num-
ber of non zero entries k0 in all experiments are fixed at
six. We compare the algorithms in terms of the l2 error, the
number of false positives and the number of false negatives
produced in 100 runs of each experiment.

From the box plots given in Figures 1-4, it is clear that
RRT with both values of α perform very similar to OMP1.
They differ only in one run of experiment 3 where RRT1
and RRT2 suffer from a false negative. Further, RRT1 and
RRT2 outperform CV and LAT in all the four experiments
in terms of all the three metrics considered for evaluation.
This is primarily because LAT and CV are more prone to
make false positives, whereas RRT1 and RRT2 does not
report any false positives. OMP2 consistently made false
negatives which explains its poor performance in terms of
l2 error. We have observed that once the SNR is made
slightly higher, OMP2 delivers a performance similar to
OMP1. Also note that RRT with two significantly different
choices of α viz. α = 1/

√
n and α = 1/ log(n) delivered

similar performances. This observation is in agreement with
the claim of asymptotic tuning freeness made in Remark
5. Similar trends are also visible in the simulation results
presented in supplementary materials.

5.2. Outlier detection in real data sets

We next consider the application of sparse estimation tech-
niques including RRT to identify outliers in low dimen-
sional or full column rank (i.e., n > p) real life data
sets, an approach first considered in (Mitra et al., 2010;
2013). Consider a robust regression model of the form
y = Xβ + w + gout with usual interpretations for X, β
and w. The extra term gout ∈ Rn represents the gross er-
rors in the regression model that cannot be modelled using
the distributional assumptions on w. Outlier detection prob-
lem in linear regression refers to the identification of the
support Sg = supp(gout). Since X has full rank, one can
always annihilate the signal component Xβ by projecting
onto a subspace orthogonal to span(X). This will result in
a simple linear regression model of the form given by

ỹ = (In −XX†)y = (In −XX†)gout + (In −XX†)w,
(7)

i.e., identifying Sg in robust regression is equivalent to a
sparse support identification problem in linear regression.
Even though this is a regression problem with n observa-

tions and n variables, the design matrix (In−XX†) in (7) is
rank deficient (i.e., rank(In−XX†) = n−rank(X) < n).
Hence, classical techniques based on LS are not useful for
identifying Sg. Since card(Sg) and variance of w are un-
known, we only consider the application of RRT, OMP with
CV and LAT in detecting Sg . We consider four widely stud-
ied real life data sets and compare the outliers identified
by these algorithms with the existing and widely replicated
studies on these data sets. More details on these data sets are
given in the supplementary materials. The outliers detected
by the aforementioned algorithms and outliers reported in
existing literature are tabulated in TABLE 1.

Among the four data sets considered, outliers detected by
RRT and existing results are in consensus in two data sets
viz. Stack loss and Stars data sets. In AR2000 data set,
RRT identifies all the outliers. However, RRT also include
observations 14 and 50 as outliers. These identifications can
be potential false positives. In Brain and Body Weight data
set, RRT agrees with the existing results in 4 observations.
However, RRT misses two observations viz. 14 and 17
which are claimed to be outliers by existing results. LAT
agrees with RRT in all data sets except the stack loss data
set where it missed outlier indices 1 and 3. CV correctly
identified all the outliers identified by other algorithms in all
four data sets. However, it made lot of false positives in three
data sets. To summarize, among all the three algorithms
considered, RRT delivered an outlier detection performance
which is the most similar to the results reported in literature.

6. Conclusions
This article proposed a novel signal and noise statistics in-
dependent sparse recovery technique based on OMP called
residual ratio thresholding and derived finite and large sam-
ple guarantees for the same. Numerical simulations in real
and synthetic data sets demonstrates a highly competitive
performance of RRT when compared to OMP with a priori
knowledge of signal and noise statistics. The RRT tech-
nique developed in this article can be used to operate sparse
recovery techniques that produce a monotonic sequence of
support estimates in a signal and noise statistics oblivious
fashion. However, the support estimate sequence generated
by algorithms like LASSO, DS, SP etc. are not monotonic
in nature. Hence, extending the concept of RRT to operate
sparse estimation techniques that produce non monotonic
support sequence in a signal and noise statistics oblivious
fashion is an interesting direction of future research.
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