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A. Implementation Details

Our algorithm is implemented with Theano (Theano Development Team, 2016) based on the code provided in (Ho &
Ermon, 2016). For all experiments, we use a three-layer fully connected neural network with Tanh nonlinear activation
functions as our policy network. The number of hidden units is 64 for MountainCar and CartPole, and 100 for the others.
The value network share the same architecture with the policy network and are optimized with Adam (Kingma & Ba, 2014).
The other hyperparameters are provided in supplement. We use the DQfD' code for experiments on MountainCar and
CartPole and implement DDPGfD based on the public DDPG code”. The hyperparameter setting in the experiments, is
given in Table 1.

Table 1. Hyperparameters

Environment A1 A2 Iterations  Batch Size
MountainCar-v1 0.1 0.0 300 5,000
CartPole-v0 0.1 0.0 300 5,000
Hopper-v1 0.1 0.0 500 20,000
HalfCheetah-v1 0.01 0.0 1000 20,000
Walker2d-v1 0.01 0.0 500 20,000
DoublePendulum-v1 0.1 0.0 500 20,000
Humanoid-v1 0.1 0.0 1500 50,000
Reacher-v1 0.01 0.001 500 10,000

B. Proofs

B.1. Proof of Policy Improvement Bound

Lemma 1. Given two distributions p(z), q(x) over random variable x, we have D3..,(p,q) < 4D ;5(p, q).

Proof. By the definition of JS-divergence, we have
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Rearranging, the result follows. O
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Definition 1. (coupled policies (Schulman et al., 2015)) 7,7 are a-coupled policies if it defines a joint distribution (a, @)
such that P(a # a|s) < a for all s. w and T will denote the marginal distributions of a and a, respectively.

S,

Theorem 1. (Proposition 4.7 in (Levin & Peres, 2017)) Suppose px and py are distributions with Drv (px,py) = «,
Then there exists a joint distribution (X,Y') whose marginals are px,py, for which X =Y with probability 1 — c.

Corollary 1. Combining Definition 1 and Theorem 1, we have two policies  and 7, if maxs Dy (7(als), 7 (als)) < a,
then m, T are a-coupled policies.

Lemma 2. (Adopted from (Schulman et al., 2015)) Suppose 71, 7o are two stochastic policies defined on S x A, we have
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where the expectation B .., indicates that trajectory T are generated by executing m (al|s).

Proof. Note that A, (s,a) = Egyp(.|s,a) [7(8;a) + Vi, (s") — Vi, (s)]. Therefore,
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Rearranging, the result follows. O

Given two arbitrary stochastic policies 71, 72, define the expected advantage of 71 over 7 at state s as A™1/™ (s):
Al (5) = EaNﬂ(-\S) [Aﬂz (57 a)] “)
Lemma 3. (Adopted from (Schulman et al., 2015)) Given that 71, 7o are a-coupled policies, for all s,
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Lemma 4. Given that 7y, w5 are a-coupled policies, for all s, Then
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Proof. Consider generating a trajectory using ;. Specifically, at each time step i we sample (a}, a})|s; following 75 and
o respectively, then aj is executed to generated the trajectory, while a5 is ignored. Let n; denote the number of times that
aj # ab for i < t,i.e., the number of times 7, and my disagree before time step ¢.
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Since 7, 72 are a-coupled, P(n; = 0) = (1 — «)*, thus P(n; # 0) =1 — (1 — )", and
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Lemma 5. Given three arbitrary stochastic policies 7, T, T, the following equation hold.
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Proof. Applying Lemma 2 to policy 7 and 7 g, we have
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Rearranging, the first equality holds. Similarly, writing 7(7 ) and () in terms of 7 respectively gives
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Subtracting n(7) by n(7g) in Eqn.(12) gives
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Thus the second equality holds. O

Now we are ready to derive the bound given in Theorem 1. Since « = DR (7, 7), and § = D™ (g, 7), thus we

know 7, 7 are a-coupled and 7, 7 are S-coupled through Corollary 1. Furthermore, we suppose expert policym g satisfy
Assumption 1, which means
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Applying Lemma 2 to 7 and 7, then substituting Eqn. (4) into 7 gives
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Then, subtracting n(7) by J.(7) gives
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where €p = maxs o |Aq,(s,a)|, e = maxs,|As(s,a)]. Applying D%, (p,q) < Dkr(p,q) (Pollard, 2013) and
D2, (p,q) <4D;s(p,q) (Lemma 1), Theorem 1 is proved.

(24)

B.2. Proof of Theorem 2

Proof. Let f(v) = vlog(v) — (v+1)log(v + 1), f* be the conjugate function given by f*(t) = Sup,cdom, {vt fo)} It
is obvious that f(v) is a continuous function on (0, +00), the second derivative of f(v) is given by f” = — ’U+1) > 0,which

means f(v) is a convex function. Therefore, we can rewrite f in terms of its convex conjugate function f* as f(v) =
[ (v) = suPyegom,. {tv — f*(t)}. Substituting f** into D g, we have
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where the inequality line is given by the Jensen’s inequality and replacing ¢ by T'(s,a), T = {T'(s,a) : S x A — domy~ },
i.e., function T'(s, a) is valid if and only if range, = dom-.
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Now we show that T'(s, a) can be formed with h(U (s, a)). We first derive the specific form and domain of f*.

fr(t) = sup {vt — f(v)}

vedomy

= sup {vt —vlog(v) + (v+1)log(v+ 1)}.
vedomy

Let g(v) = vt — vlog(v) + (v + 1) log(v + 1), then the supremum of g(v) is achieved when ¢’ = 0, which gives t =
log ;7 € (—00,0). Substituting this into f* results in f* = log —L. On the other hand, U(s,a) € R, h(u) € (—00,0),
thus range = dom~.

[ (T(s,0)) = — [*(W(U(5,0)))
=log(1 — eflog(1+e*U<S‘a>))

e—U(s,a)

:log m = ]’L([](S7 a)).
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