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Abstract
Exploration remains a significant challenge to re-

inforcement learning methods, especially in envi-

ronments where reward signals are sparse. Recent

methods of learning from demonstrations have

shown to be promising in overcoming exploration

difficulties but typically require considerable high-

quality demonstrations that are difficult to col-

lect. We propose to effectively leverage available

demonstrations to guide exploration through en-

forcing occupancy measure matching between the

learned policy and current demonstrations, and

develop a novel Policy Optimization from Demon-

stration (POfD) method. We show that POfD in-

duces implicit dynamic reward shaping and brings

provable benefits for policy improvement. Fur-

thermore, it can be combined with policy gradi-

ent methods to produce state-of-the-art results, as

demonstrated experimentally on a range of pop-

ular benchmark sparse-reward tasks, even when

the demonstrations are few and imperfect.

1. Introduction
Reinforcement Learning (RL) solves sequential decision

making problems based on the experiences collected by

interacting with environments. Thanks to the advances in

deep learning, various neural network powered RL methods

have made significant progress for multiple applications,

including Atari games (Mnih et al., 2015; Van Hasselt et al.,

2016; Mnih et al., 2016), robot locomotion tasks (Schul-

man et al., 2015; 2017) and the game of Go (Silver et al.,

2016; 2017). However, exploration problems, that how to

gain more experience with novel strategies to improve the

performance in the long run, are still challenging in deep

RL methods. When the reward signals are sparse and rare,

existing methods still struggle to explore effectively to learn

meaningful policies. This is because most of them rely
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on heuristic exploration strategies, e.g., ε-greedy for value

based methods (Van Hasselt et al., 2016) and noise-based

exploration for policy gradient methods (Sutton et al., 2000),

which are undirected and incapable of finding interesting

states explicitly.

Some recent works (Nair et al., 2017; Houthooft et al., 2016;

Plappert et al., 2017; Pathak et al., 2017) have been devoted

to tackling the exploration problems in RL. They are ba-

sically rooted in the following two ideas. 1) Reshape the

original reward function by encouraging the agent to visit

states never seen before, driven by intrinsic curiosity (Pathak

et al., 2017) or information gain (Houthooft et al., 2016).

2) Use demonstration trajectories sampled from an expert

policy to guide the learning procedure, by either putting

the demonstrations into a replay memory (Nair et al., 2017;

Hester et al., 2017; Večerı́k et al., 2017) or using them to pre-

train the policy in a supervised manner (Silver et al., 2016).

Learning from demonstrations has shown promising per-

formance in overcoming exploration difficulties in sparse-

reward environments. However, existing schemes cannot

fully leverage the power of the demonstration data, limited

by only treating them in the same way as self-generated data,

and usually require a tremendous number of high-quality

demonstrations which are difficult to collect at scale.

To address this problem, we propose to combine above

two ideas by developing a principled method that rewards

demonstration-like actions more during interaction with

environments, which thus encourages exploration for mean-

ingful states when feedback is sparse. The intuition is that,

when the reward signal is not available, the agent should

mimic the demonstrated behavior in early learning stages

for exploration. After acquiring sufficient skills, the agent

can explore new states on its own. This is actually a dy-

namic intrinsic reward mechanism that can be introduced

for reshaping native rewards in RL. To this end, we propose

a novel Policy Optimization from Demonstration (POfD)

method, which can acquire knowledge from demonstration

data to boost exploration, even though the data are scarce

and imperfect. We realize our idea with three technical nov-

elties. 1) We reformulate the policy optimization objective

by adding a demonstration-guided exploration term, which

measures the divergence between the current policy and

the expert one, forcing expert-alike exploration. We theo-

retically analyze the benefits brought by POfD to vanilla
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policy gradient ones, in terms of improvement over the

expected return. 2) We convert the proposed objective to

a new one defined on occupancy measure (Ho & Ermon,

2016) for better exploiting demonstrations and establish an

optimization-friendly lower bound. 3) We eventually draw

a connection between optimizing the derived lower bound

and generative adversarial training (Goodfellow et al., 2014),

and show that the optimization can thus easily proceed in

a manner of alternating between two sub-procedures. One

is fitting a discriminator measuring the similarity between

expert data and self-generated data to reshape the reward;

the other one is updating the policy with the gradient from

the reshaped reward function. POfD is general and compati-

ble with most policy gradient methods. We also show that

existing replay memory based learning from demonstration

methods (Hester et al., 2017; Večerı́k et al., 2017) can be

interpreted as degenerated cases of our method int terms of

how to leverage the demonstration data.

We evaluate our POfD on physical locomotion tasks based

on Mujoco (Todorov et al., 2012) in sparse-reward envi-

ronments. We compare POfD against 5 state-of-the-art

baselines. The experiments clearly demonstrate that POfD

surpasses all the well-established baselines and performs

very well in these environments. Its performance is even

comparable with that achieved by policy gradient methods

in oracle dense-reward environments.

2. Related Work
Recently, learning from demonstration (LfD) (Schaal, 1997)

has received increasing attention as a promising way to

overcome exploration difficulties in RL (Subramanian et al.,

2016). Most LfD methods adopt value-based RL algorithms,

which are off-policy in nature. For instance, DQfD (Hester

et al., 2017) introduces LfD into DQN (Mnih et al., 2015) by

adding demonstration data into the replay buffer. It uses a

refined priority replay mechanism (Schaul et al., 2015) and

gives additional priority to the demonstration data. However,

DQfD is limited to applications with discrete action spaces.

DDPGfD (Večerı́k et al., 2017) extends LfD to continuous

action domains, which is built upon DDPG (Lillicrap et al.,

2015) similar to DQfD. Both DQfD and DDPGfD suffer the

problem of under-exploiting demonstration data, as detailed

in Sec. 5. Some existing methods leverage demonstration

data in different ways. Kim et al. (2013); Piot et al. (2014)

are based on policy iteration and use demonstration data

to shape the value function. Moreover, they require the

value of demonstrated state-action pairs to be larger than

the others with a margin. Those methods would suffer per-

formance decline when only imperfect demo data are given.

Aravind S. Lakshminarayanan (2016) considered LfD un-

der settings where the demonstration data are in paucity.

They proposed a hybrid framework that learns the policy

in which the probability of taking demonstrated actions is

maximized. Recently, Brys et al. (2015) introduced a reward

reshaping mechanism to encourage taking actions close to

the demonstrated ones. They share a similar motivation

with us but their method has a different course. They de-

fined a potential function based on multi-variate Gaussian to

model the distribution of state-actions. Different from our

POfD, all the above methods require a significantly large

amount of perfect demonstration data to achieve satisfactory

performance.

Imitation learning aims at mimicking expert behaviors,

which can be realized in multiple ways. Most recent suc-

cessful imitation learning algorithms are based on Inverse

Reinforce Learning (IRL) (Ng et al., 2000), which targets

at recovering the reward function of a given task from sam-

ples, without knowing the dynamics. Following this line,

Syed & Schapire (2008); Syed et al. (2008) casted IRL

problems as a two-player zero-sum game which is then

solved by alternating between fitting the reward function

and selecting the policy. However, their capacity is limited

to small-scale problems. Very recently, Generative Adver-

sarial Imitation Learning (GAIL) (Ho & Ermon, 2016) is

shown to be very effective in high-dimensional continuous

control problems. Instead of fitting the underlying reward

function as traditional IRL algorithms, GAIL uses a discrim-

inator to distinguish whether a state-action pair is from the

expert or the learned policy. Meanwhile, GAIL optimizes

the policy to confuse the discriminator. Though effective

for imitation learning, these algorithms cannot leverage the

valuable feedback given by the environments and usually

suffer sharp performance decline when the expert data are

imperfect. Our POfD overcomes such inherent limitations

by learning from feedbacks and can learn well-performing

policies even though the expert data are imperfect.

A similar and contemporary idea has also been introduced

in (Li et al., 2017; Zhu et al., 2018) to learn an agent with

hybrid imitation learning and reinforcement learning reward.

However, they only treat it as a heuristic method and provide

intuitive explanations. In contrast, we consider a novel prac-

tical setting and develop the reward reshaping mechanism

theoretically with monotonic improvement guarantee.

3. Background
3.1. Preliminaries

We consider the standard Markov Decision Process (MDP)

(Sutton & Barto, 1998). MDP is defined by a tuple

〈S,A,P, r, γ〉, where S and A are the state space and the

action space respectively, P(s′|s, a) is the transition distri-

bution of taking action a at state s, r(s, a) is the reward

function, and γ ∈ (0, 1) is the discount factor.

Given a stochastic policy π(a|s) = p(a|s;π) mapping from
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states to action probabilities, the performance of π is usually

evaluated by its expected discounted reward η(π):

η(π) = Eπ [r(s, a)] = E(s0,a0,s1,... )

[ ∞∑
t=0

γtr(st, at)

]
,

(1)

where (s0, a0, s1, . . . ) is a trajectory generated by execut-

ing policy π, i.e., s0 ∼ p0, at ∼ π(·|st) and st+1 ∼
P(·|st, at). Similarly, following the standard definitions,

the value function Vπ and action value function Qπ can

be written as Vπ(s) = Eπ[r(·, ·)|s0=s] and Qπ(s, a) =
Eπ[r(·, ·)|s0=s, a0=a]. Subtracting Qπ(s, a) by Vπ(s)
gives the advantage function Aπ(s, a) = Qπ(s, a)− Vπ(s)
that reflects the expected additional reward that the agent

will get after taking action a in state s.

Reinforcement Learning (RL) (Sutton & Barto, 1998) is a

set of algorithms trying to infer a policy achieving maximal

reward η(π) with regard to some form of reward signals

r(s, a) from trajectories D = {τi} generated by executing

a current policy (on-policy methods) or some other policy

(off-policy methods). Each trajectory consists of a sequence

of state transitions τ = {(s0, a0), (s1, a1), . . . , (sT , aT )}.

The occupancy measure, defined as follows, characterizes

the distribution of action-state pairs when executing policy

π. It will play an important role in our analysis.

Definition 1. (Occupancy measure) Let ρπ(s) : S → R

denote the unnormalized distribution of state visitation by
following policy π in the environment:

ρπ(s) =

∞∑
t=0

γtP (st = s|π).

Then the unnormalized distribution of state-action pairs
ρπ(s, a) = ρπ(s)π(a|s) is called occupancy measure of
policy π.

Substituting ρπ(s, a) into Eqn. (1), we have the following

equivalent formulation for the expectation over policy π:

Eπ [r(s, a)] =

∞∑
t=0

∑
s

P (st = s|π)
∑
a

π(a|s)γtr(s, a)

=
∑
s

ρπ(s)
∑
a

π(a|s)r(s, a) (2)

=
∑
s,a

ρπ(s, a)r(s, a),

which provides an alternative way to compute the expected

discounted return. An important property of the occupancy

measure is that it uniquely specifies a policy, as described

in the following lemma.

Lemma 1. (Theorem 2 of (Syed et al., 2008)) Suppose ρ is
the occupancy measure for πρ(a|s) � ρ(s,a)∑

a′ ρ(s,a′) . Then πρ

is the only policy whose occupancy measure is ρ.

3.2. Problem Definition

In practice, most RL tasks and environments do not pro-

vide a well-designed reward function. Instead, only a little

sparse feedback indicating whether the goal is reached is

available. Existing RL algorithms usually fail to explore and

collect useful information in such sparse-reward settings. In

this work, we are interested in solving such a challenging

problem by developing a method capable of learning from

both (sparse) rewards and expert demonstrations.

In particular, in addition to sparse rewards from envi-

ronments as in traditional RL settings, the agent is also

provided with a few (and possibly imperfect) demonstra-

tions DE = {τ1, τ2, . . . , τN}, where the i-th trajectory

τi = {(si0, ai0), (si1, ai1), . . . , (siT , aiT )} is generated from

executing an unknown expert policy πE in the environment.

We aim to develop a method that can boost exploration

through effectively leveraging DE in such settings and max-

imize η(π) in Eqn. (1).

Throughout the paper, we use πE to denote the expert policy

that gives the relatively good η(π), and use ÊD to denote

empirical expectation estimated from the demonstrated tra-

jectories DE . We have the following reasonable and neces-

sary assumption on the quality of the expert policy πE .

Assumption 1. In early learning stages, we assume acting
according to expert policy πE will provide higher advantage
value with a margin as least δ over current policy π, i.e.,

EaE∼πE ,a∼π[Aπ(s, aE)−Aπ(s, a)] ≥ δ.

We do not need to assume the expert policy πE to be ad-

vantageous over all the policies, as our proposed POfD will

learn from both rewards and demonstrations and can possi-

bly learn a policy better than πE through exploration on its

own in later learning stages.

4. Method
4.1. Policy Optimization with Demonstrations

Suppose πθ is a θ-parameterized policy and is differentiable.

Policy gradient methods optimize the expected return η(πθ)
by updating θ with the gradient of η(πθ) w.r.t. θ (Sutton

et al., 2000; Williams, 1992). They usually start optimizing

the policy πθ by random exploration, which may cause

slow convergence when the state and action spaces have

high dimensionality, and may even lead to failure when the

environment feedback is sparse. We propose to address

this problem by forcing the policy to explore in the nearby

region of the expert policy πE (as shown in Fig.1), which is

specified by several demonstrated trajectories DE .

To this end, besides maximizing the expected return η(πθ)
through learning from sparse feedback during interac-

tion with environments, we also encourage the policy π
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Figure 1. Our proposed POfD explores in the high-reward regions

(red arrows), with the aid of demonstrations (the blue curve). It

thus performs better than random explorations (olive green dashed

curves) in sparse-reward environments.

to explore by “following” the demonstrations DE . We

therefore introduce demonstration-guided exploration term

LM (πθ, πE) = DJS(πθ, πE), which is defined over Jensen-

Shannon divergence between current policy πθ and the ex-

pert one πE , to the vanilla objective η(πθ). This gives a new

learning objective:

L(πθ) = −η(πθ) + λ1DJS(πθ, πE),

where λ1 is a trading-off parameter. However, the above

policy divergence measure between πθ and πE is infeasible

as πE is unknown. Fortunately, leveraging the one-to-one

correspondence between the policy and occupancy measure

as given by Lemma 1, we can instead define a divergence

over the occupancy measures ρπ(s, a) and ρπE
(s, a), which

is easier to optimize through adversarial training on demon-

strations, as we will show later. Based on their occupancy

measure LM � DJS(ρθ, ρE), where ρθ and ρE are short

for ρπθ
and ρπE

, our proposed demonstration guided learn-

ing objective is

L(πθ) = −η(πθ) + λ1DJS(ρθ, ρE). (3)

We here slightly abuse DJS to apply it to the unnormalized

distribution ρ. Later, we will establish a lower bound to it

without needing to directly optimize it.

4.2. Benefits of Exploration with Demonstrations

To better understand the new objective (3), we here prove

that introducing the guiding term DJS(ρθ, ρE) boosts the

advantage value for the learned policy, and brings non-

trivial benefits in terms of policy improvement for policy

gradient methods. To see this, we introduce following the

useful expression at first (Kakade & Langford, 2002) that

is commonly used in policy gradient methods (Schulman

et al., 2015; 2017; Kakade, 2002),

η(π) = η(πold) + Eτ∼π

[ ∞∑
t=0

γtAπold
(s, a)

]
. (4)

In the above, the expected return η(π) of policy π is ex-

pressed in terms of the advantage over the policy πold in the

previous iteration. Eqn. (4) can be rewritten as

η(π) = η(πold) +
∑
s

ρπ(s)
∑
a

π(a|s)Aπold
(s, a). (5)

To alleviate difficulties brought by complex dependency of

ρπ(s) over π, policy gradient methods usually optimize the

following surrogate objective, which is a local approxima-

tion to η(π) up to first order:

Jπold
(π) = η(πold) +

∑
s

ρπold
(s)

∑
a

π(a|s)Aπold
(s, a),

where ρπ is replaced by ρπold
and we ignore the change

in state distribution due to policy update. Policy gradient

methods are guaranteed to improve η(π) monotonically

by optimizing the above surrogate Jπold
(π) with a suffi-

ciently small update step πold → π such that Dmax
KL (π, πold)

is bounded (Schulman et al., 2015; 2017; Kakade, 2002).

In particular, TRPO (Schulman et al., 2015) imposes

hard constraints with fixed penalty on Dmax
KL (π, πold) while

PPO (Schulman et al., 2017) and natural policy gradi-

ent (Kakade, 2002) use Dmax
KL (π, πold) for regularization

with fixed or adaptive weights.

POfD additionally imposes a regularization DJS(πθ, πE)
between πθ and πE in order to encourage explorations

around regions demonstrated by the expert πE . We formally

show the benefits from leveraging the expert demonstration

in this way by giving the following theorem.

Theorem 1. Let α = Dmax
KL (πold, π) =

maxs DKL(π(·|s), πold(·|s)), β = Dmax
JS (πE , π) =

maxs DJS(π(·|s), πE(·|s)), and πE is an expert policy
satisfying Assumption 1. Then we have

η(π) ≥ Jπold(π)−
2γ(4βεE + αεπ)

(1− γ)2
+

δ

1− γ
,

where εE = maxs,a |AπE
(s, a)| , επ = maxs,a |Aπ(s, a)|.

We provide proof in the supplement. The above theorem

implies the benefits of adding matching regularization. Let

Mi(π) = Jπi(π)−CπE
Dmax

JS (π, πE)−CπD
max
KL(π, πi)+ δ̂

where CπE
= 8γεE

(1−γ)2 , Cπ = 2γεπ
(1−γ)2 , δ̂ = δ

1−γ . Then,

η(πi+1) ≥ Mi(πi+1),

η(πi) = Mi(πi) + CπE
Dmax

JS (πi, πE)− δ̂,

η(πi+1)− η(πi)

≥ Mi(πi+1)−Mi(πi)− CπE
Dmax

JS (πi, πE) + δ̂.

The above result is reminiscent of classic mono-

tonic improvement guarantees for policy gradient meth-

ods (Schulman et al., 2015; 2017; Kakade, 2002). How-

ever, POfD brings another factor to the improvement

−CπE
Dmax

JS (πi, πE) + δ̂. This implies that following the

demonstrations (i.e., having small Dmax
JS (πi, πE)) will fully

utilize the advantage δ̂ and bring improvement with a margin

over pure policy gradient methods.
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4.3. Optimization

In this subsection, we introduce a practical optimization

algorithm for Eqn. (3), which is compatible with any pol-

icy gradient methods. In particular, instead of performing

optimization on the difficult Jensen-Shannon divergence

directly, we optimize its lower bound given as follows.

Theorem 2. Let h(u) = log( 1
1+e−u ), h̄(u) = log( e−u

1+e−u )
and U(s, a) : S × A → R be an arbitrary function. Then
we have

DJS(ρπ, ρE) ≥
sup
U

(
Eρπ

[h(U(s, a))] + EρE
[h̄(U(s, a))]

)
+ log 4.

We defer the proof to supplement due to space limit. With

the above theorem, the occupancy measure matching objec-

tive LM can be written as

LM � sup
D∈(0,1)S×A

Eπθ
[log(D(s, a))] + EπE

[log(1−D(s, a))],

where D(s, a) = 1
1+e−U(s,a) : S × A → (0, 1) is an arbi-

trary mapping function followed by a sigmoid activation

function for scaling. The supremum ranging over D(s, a)
thus represents the optimal binary classification loss of dis-

tinguishing the current policy πθ and the expert policy πE

w.r.t. the state-action pairs sampled from ρθ and ρE .

To avoid potential overfitting risks, we introduce causal

entropy −H(πθ) as another regularization term, similar

to (Ziebart et al., 2008; Ziebart, 2010). Therefore, the overall

objective of our proposed POfD is formulated as

min
θ

L = −η(πθ)− λ2H(πθ)+

λ1 sup
D∈(0,1)S×A

Eπθ
[log(D(s, a))] + EπE

[log(1−D(s, a))].

It is actually a minimax problem closely related to

the learning target of Generative Adversarial Networks

(GANs) (Goodfellow et al., 2014). GANs aim to train a

generative model G to produce samples indistinguishable

from the ones from real distributions for a well-trained dis-

criminative model D. In our case, the true distribution is the

expert policy πE(a|s), or equivalently the expert occupancy

measure ρE(s, a). The generator to learn is the policy model

πθ(a|s). Suppose D is parameterized by w. By labeling

expert state-action pairs as true (“1”) and policy state-action

pairs as false (“0”), we get the following objective,

min
θ

max
w

L = −η(πθ)− λ2H(πθ)+

λ1 (Eπθ
[log(Dw(s, a))] + EπE

[log(1−Dw(s, a))]) .
(6)

Moreover, the minimax objective (6) can be simplified by

substituting Eqn. (1) and Eqn. (2) into it, resulting in a

dynamic reward reshaping mechanism over the original

reward signal:

min
θ

max
w

− Eπθ
[r′(s, a)]− λ2H(πθ)

+ λ1EπE
[log(1−Dw(s, a))],

(7)

where r′(s, a) = r(a, b)−λ1 log(Dw(s, a)) is the reshaped

reward function. This function augments the environment

reward with demonstration information. When the environ-

ment feedback is sparse or exploration is insufficient, the

augmented reward can force the policy to generate similar

trajectories as the expert policy πE . In other words, the

divergence of π and πE is minimized. Therefore, our algo-

rithm is able to explore the environment more efficiently.

The above objective can be optimized efficiently by alter-

nately updating policy parameters θ and discriminator pa-

rameters w. First, trajectories are sampled by executing

the current policy πθ and mixed with demonstration data to

train the discriminator by SGD. The gradient is given by

Eπ[∇w log(Dw(s, a))] + EπE
[∇w log(1−Dw(s, a))].

Then, fixing the discriminator Dw, i.e., a fixed reward func-

tion r′(s, a), the policy πθ is optimized with a chosen policy

gradient method. In particular, by policy gradient theorem

(Sutton et al., 2000), the reshaped policy gradient is:

∇θEπθ
[r′(s, a)] = Eπθ

[∇θ log πθ(a|s)Q′(s, a)],
where Q′(s̄, ā) = Eπθ

[r′(s, a)|s0 = s̄, a0 = ā].

The gradient for causal entropy regularization is given by

∇θEπθ
[− log πθ(a|s)] = Eπθ

[∇θ log πθ(a|s)QH(s, a)],

where QH(s̄, ā) = Eπθ
[− log πθ(a|s)|s0 = s̄, a0 = ā].

The optimization details are summarized in Alg. 1. It is com-

patible with any policy gradient methods, e.g., TRPO (Schul-

man et al., 2015) and PPO (Schulman et al., 2017).

5. Discussion on Existing LfD Methods
DQfD (Hester et al., 2017) and DDPGfD (Večerı́k et al.,

2017) are two latest LfD methods. They both leverage

demonstrations to aid exploration in RL, aiming to improve

RL in terms of either convergence speed or performance.

Here we provide a new perspective that interprets DQfD

and DDPGfD through occupancy measure matching, which

thus connects them with our POfD.

DQfD The DQfD method is built upon Deep Q-Networks

(DQN) (Mnih et al., 2015). As a Q-learning algorithm, DQN

models the Q value with a w-parameterized neural network

Qw(s, a). The objective for optimizing Qw is

JDQN = E[(Rt(n)−Qw(st, at))
2
], where

Rt(n) =

t+n−1∑
i=t

γi−tri +max
a

γnQw(st+n, a).
(8)
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Algorithm 1 Policy optimization with demonstrations

Input: Expert demonstrations DE = {τE1 , . . . , τEN }, ini-

tial policy and discriminator parameters θ0 and w0, regu-

larization weights λ1, λ2, maximal iterations I .

for i = 1 to I do
Sample trajectories Di = {τ}, τ ∼ πθi .

Sample expert trajectories DE
i ⊂ DE .

Update discriminator parameters from wi to wi+1 with

the gradient

ÊDi
[∇w log(Dw(s, a))]+ÊDE

i
[∇w log(1−Dw(s, a))]

Update the rewards in Di with

r′(s, a) = r(a, b)−λ1 log(Dwi(s, a)), ∀(s, a, r) ∈ Di

Update the policy with policy gradient method (e.g.,

TRPO, PPO) using the following gradient

ÊDi [∇θ log πθ(a|s)Q′(s, a)]− λ2∇θH(πθi)

end for

DQfD takes advantage of demonstration data by putting

them into a replay memory D and keeping them throughout

the Q-learning process. Here we show minimizing Eqn. (8)

with expert demonstration and self-generated off-policy data

is actually equivalent to imposing an occupancy measure

matching regularization to the original DQN objective 1.

Let DE denote the replay memory containing expert data

only. Then the objective (8) for DQfD can be separated as

JDQfD = ÊD[(Rt(n)−Qw(st, at))
2
]+

αÊDE [(Rt(n)−Qw(st, at))
2
],

(9)

where α is specified by the ratio of samples from D and DE .

Based on Eqn. (2), Qw(s, a) = E[r(·, ·)|s0=s, a0=a] =
ρπ(s, a)r(s, a), and QE(s, a) = ρE(s, a)r(s, a). Thus

ÊDE [(Rt(n)−Qw(st, at))
2
]

= ÊDE

[
(ρ̂E(s, a)− ρπ(s, a))

2
r2(s, a)

]
,

(10)

which can be interpreted as a regularization forcing current

policy’s occupancy measure to match the expert’s empirical

occupancy measure, weighted by the potential reward we

will get from that state-action pair. For high reward state-

action pairs, there is a greater penalty on the discrepancy

between ρ̂E and ρπ .

1 DQfD has two training stages and an extra supervised loss
JE(Q) = maxa∈A [A(s, a) + �(aE , a)−Q(s, aE)]. In the pre-
training stage, DQfD trains on the demonstrations with JE . In
the RL training stage, JE becomes less significant. Since we
are interested in the Q-learning part of DQfD and how it utilizes
demonstration data, we focus on analyzing objective (8).

DDPGfD Similar to DQfD, DDPGfD leverages the

demonstration data by putting them into the replay memory.

But DDPGfD is based on an actor-critic framework (Lilli-

crap et al., 2015). Aside from a Q-network Qw, DDPGfD

introduces another policy network parameterized by θ to

model a deterministic policy πθ(s). Its Q-network is opti-

mized off-policy with Eqn. (8), while its policy network is

optimized directly with the following gradient of Q-value

Qw(s, a) w.r.t. the action a = πθ(s):

∇θJDDPGfD ≈ Es,a[∇aQw(s, a)∇θπθ(s)], a = πθ(s).

The above equation shows that the update of policy πθ

is not directly dependent on the demonstration data DE ,

but depends on the learned Q-network Qw solely. Since

DDPGfD shares the same objective function for Qw as

DQfD, as well as the same way of leveraging demonstrations

as shown in Eqn. (9) and Eqn. (10). Thus we can draw a

similar conclusion, i.e. demonstrations in DDPGfD induce

an occupancy measure matching regularization.

Although the above replay memory based LfD methods can

benefit RL algorithms to some extent in sparse-reward envi-

ronments, they can not sufficiently exploit the demonstration

data due to following limitations. First, such a paradigm

utilizes expert trajectories only by treating them as learning

reference, whose effect may be significantly underexploited

when demonstrations are few, as verified by our experiments.

Second, to be compatible with collected data during training,

the demonstrated trajectories are required to be associated

with rewards for each state transition. However, the rewards

in demonstrations may differ from the ones used for learning

the policy in the current environment (Ziebart et al., 2008),

or they may be unavailable.

By reformulating the original objective (9) into (10), we find

that, instead of mixing expert data with self-generated data,

putting an occupancy measure matching regularization can

avoid the requirement of rewards in demonstrations, as what

POfD does. In this way, LfD will no longer be restricted to

the off-policy RL setting.

6. Experiments
In this section, we aim at investigating 1) whether POfD

can aid exploration when provided with a few demonstra-

tions, even though the demonstrations are imperfect, and

2) whether POfD can succeed and achieve high empirical

return, especially when feedback of the environment is ex-

tremely sparse. To comprehensively assess our method, we

conduct extensive experiments on eight widely used physi-

cal control tasks, ranging from low-dimensional ones such

as cartpole (Barto et al., 1983) and mountain car (Moore,

1990) to high-dimensional and naturally sparse environ-

ments based on OpenAI Gym (Brockman et al., 2016) and

Mujoco (Todorov et al., 2012). The specifications of envi-
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ronments we used are given in Table 1.

Settings In view of the property of each individual en-

vironment, we apply four ways for sparsifying their built-

in dense rewards for evaluating performance of different

methods in sparse-reward environments, detailed as follows.

TYPE1: a reward of +1 is given when the agent reaches

the terminal state, and otherwisely 0. This is also employed

by (Houthooft et al., 2016) for MountainCar. TYPE2: a

reward of +1 is given when the agent survives for a while

(e.g., 200 steps for CartPole). TYPE3: a reward of +1 is

given for every time the agent moves forward over a specific

number of units in Mujoco environments. TYPE4: spe-

cially designed for InvertedDoublePendulum, a reward +1
is given when the second pole stays above a specific height

of 0.89. Instead of providing dense rewards to state-action

pairs at every step, the environment directly tells the agent

the target state, e.g. reaching a goal and moving forward,

through providing sparse rewards. This is more practical

and hence we do not consider extensive reward engineering.

For clearer distinction, we call the original simulator dense
environments, while the ones with altered reward are called

sparse environments.

Without specification, we use only one single imperfect tra-

jectory as demonstrations. To collect demonstrations, we

train an agent insufficiently by running TRPO (Schulman

et al., 2015) in the corresponding dense environment. Then,

an imperfect trajectory is randomly sampled by executing

the agent. Our POfD is evaluated using two metrics. First,

for each sparse environment, the method is run for 5 times

with different random initialization and we investigate train-

ing curves to understand how POfD facilitates exploration.

Second, empirical returns in numerical values are calculated

by averaging over 500 cumulated rewards for the learned

policy. We compare POfD against five strong baselines,

including 1) training the policy with TRPO (Schulman et al.,

2015) in dense environments which is referred to as expert;
2) training the policy with TRPO in sparse environments;

3) applying GAIL (Ho & Ermon, 2016) to learn the policy

from demonstrations, under the same setting as our POfD; 4)

DQfD and 5) DDPGfD, which are the state-of-the-art LfD

algorithms for discrete and continuous actions respectively.

Implementation Details Due to space limit, we defer im-

plementation details to the supplementary material.

Results We first test the performance of POfD in sparse

control environments with discrete actions, including Cart-
Pole and MountainCar. The learning curves are plotted in

Fig. 2, while the averaged cumulated rewards are given in

Table 1. From the numerical results in Table 1, we can see

that our method achieves performance comparable with the

policy learned under dense environments, e.g., -98.38 vs

Figure 2. Learning curves of our POfD versus strong baselines

under sparse environments with discrete action space.

-98.75 for CartPole, even though POfD only has access to

sparse rewards and a single demonstration trajectory that

is much worse than the expert. The learning curves in

Fig. 2 demonstrate that both TRPO and DQfD fail to ex-

plore sufficiently to obtain informative feedback from the

sparse environments. The demonstration data insufficiency

severely limits the learning ability of DQfD which usually

requires as many demonstration data as self-generated ones.

Furthermore, GAIL succeeds in CartPole but converges to

the imperfect demonstration data in MontainCar. Our POfD

outperforms GAIL by a significant margin in terms of both

convergence rate and final performance.

Then POfD as well as the baselines are evaluated in sparse

locomotion control tasks, including Hopper, HalfCheetah,

Walker2d and InvertedDoublePendulum. Similarly, the nu-

merical results are listed in Table 1 while the learning course

is visualized in Fig. 3. Throughout the four experiments,

POfD achieves expert-level performance in terms of cumu-

lated rewards. Moreover, POfD surpasses TRPO in dense

environments substantially in multiple environments. For

example, observing results of Walker2D, POfD obtains an

averaged return of 7687.47, while the expert is only 6717.08.

The margin becomes more remarkable considering the re-

turn of demonstration data we use is only 1701.13, strongly

proving that our intrinsic reward reshaping mechanism ben-

efits the exploration a lot. Observing the learning process

of different methods, it is clear that TRPO consistently fails

to explore the environments when the feedback is sparse,

except for HalfCheetah. This may be because there is no

terminal state in HalfCheetah, thus a random agent can

perform reasonably well as long as the time horizon is suf-

ficiently long. This can be observed in the figure where

the improvement of TRPO emerges very late (after 400

iterations). DDPGfD and GAIL share some common draw-

back: they both converge to the imperfect demonstration

data as training proceeds. For HalfCheetah, GAIL fails to

converge and DDPGfD converges to an even worse point.

This is well expected because the policy and value networks

are prone to over-fitting when the data are few. Thus the
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Table 1. Environment specifications and results. All results are measured in the corresponding dense environment expect for Reacher

which is evaluated in a naturally sparse environment.

Environment S A Sparsification
Empirical Return

Demonstration Expert Ours

MountainCar-v1 R
2 {0, 1, 2} TYPE1 −165.0 −98.75 −98.35± 9.35

CartPole-v0 R
4 {0, 1} TYPE2 49 500 500± 0

Hopper-v1 R
11

R
3 TYPE3 (1 unit) 793.86 3571.38 3652.23± 263.62

HalfCheetah-v1 R
17

R
6 TYPE3 (15 unit) 1827.77 4463.46 4771.15± 646.96

Walker2d-v1 R
17

R
6 TYPE3 (1 unit) 1701.13 6717.08 7687.47± 394.97

DoublePendulum-v1 R
11

R TYPE4 520.23 8399.86 9116.08± 1290.74

Humanoid-v1 R
376

R
17 TYPE3 (1 unit) 2800.05 9575.40 9823.43± 2015.48

Reacher-v1 R
11

R
2 TYPE1 0.73 0.75 0.86± 0.34

Figure 3. Learning curves of our POfD versus baselines under sparse environments with continuous action space.

training process of GAIL and DDPGfD is severely biased

by the imperfect data. Eventually, our proposed method

can effectively explore the environment with the help of

demonstration-based intrinsic reward reshaping, and suc-

ceeds consistently across different tasks both in terms of

learning stability and convergence speed.

Humanoid is a locomotion task about teaching a human-like

robot to walk naturally. This task has a state space of dimen-

sion as high as 376, rendering it much harder than the above

investigated tasks. The experimental results in Table 1 indi-

cate that POfD still achieves expert-level performance. The

learning curves in Fig. 3 demonstrate that all the other three

baseline methods, i.e., TRPO, GAIL and DDPGfD, fail to

learn good policies from such a reward-sparse environment.

In particular, the LfD baselines, i.e., GAIL and DDPGfD,

cannot even reach the demonstration performance (the yel-

low horizontal line in the figure). In stark contrast, POfD

converges fast and stably to the expert level performance.

Such results strongly support that POfD can generalize well

to challenging tasks with high-dimensional state spaces.

The last environment we use for evaluation is Reacher. It

is an environment where rewards are naturally sparse and

is difficult to solve. The target of this task is to control the

robot arm to touch the target red ball. The environment

reward is sparse: every time the arm reaches the ball and

holds for a while (e.g., 5 time steps), it receives a reward of

+1; otherwise it gets zero reward. For every instantiation of

the environment, the location of the target ball is randomly

generated. This increases the task difficulty significantly.

In Gym implementation, it is significantly simplified by

crafting a distance-to-target based reward function and we

only use it to generate demonstrations. In the experiments,

we randomly select 15 trajectories as demonstration data.

The numerical results in Table 1 show that the performance

of our POfD (0.86) is much better than the expert (0.75).

The learning curves in Fig 3 also demonstrate that all the

other baseline methods fail on this task.

7. Conclusion
We considered the problems of reinforcement learning

within sparse-reward environments, and proposed a gen-

eral learning from demonstration method, i.e., POfD to gain

stronger exploration ability. POfD is compatible with any

policy gradient methods. We explicitly analyzed how POfD

improves the policy by leveraging the benefits of demonstra-

tion for exploration. A simple dynamic reward reshaping

based optimization algorithm for POfD was provided that

connects to the generative adversarial training and can be

applied efficiently. The POfD was shown to be effective in

encouraging the agent to explore around the nearby region

of the expert policy and learning better policies, through ex-

tensive experimental results. To our best knowledge, POfD

is the first one that can acquire knowledge from few and

imperfect demonstration data to aid exploration in environ-

ments with sparse feedback.
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