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Abstract

Sign random projections (SRP) is a technique
which allows the user to quickly estimate the an-
gular similarity and inner products between data.
We propose using additional information to im-
prove these estimates which is easy to implement
and cost efficient. We prove that the variance of
our estimator is lower than the variance of SRP.
Our proposed method can also be used together
with other modifications of SRP, such as Super-
Bit LSH (SBLSH). We demonstrate the effective-
ness of our method on the MNIST test dataset
and the Gisette dataset. We discuss how our pro-
posed method can be extended to random projec-
tions or even other hashing algorithms.

1. Introduction

One of the first appearances of SRP was in graph theory
(Goemans & Williamson, 1995) where the authors looked
at the probability of a random hyperplane separating two
vectors. This probability was used to come up with an
improved algorithm to approximate the maximum cut in
a graph. Today, this probability is also used for distance
based learning algorithms given high dimensional data.

Consider a data matrix X,,, with n observations, and p
features. Computing pairwise distances between each ob-
servation takes at least O(n?p) of time which is computa-
tionally costly when n, p are large.

It was a few years later when the fact that the probabil-
ity of the separation was proportional to the angle 6 be-
hind the vectors was used in a locality sensitive hashing
(LSH) scheme (Charikar, 2002). High dimensional data in
R? would be mapped to lower dimensional binary vectors
in R* under SRP, and the computed Hamming distance be-
tween the binary pairs would give an estimate of their an-
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gular similarity with high probability. The time taken under
this technique would be reduced to O(npk + n2k).

By going one step further and storing the norms of vectors
(Lietal., 2006), SRP could also be used to recover the inner
products between these vectors. This proved to be compet-
itive with conventional random projections under certain
conditions. Binary codes require 1 bit of storage per entry
under SRP, but storing real numbers as doubles could take
64 bits per entry under conventional random projections.
If the variance of the inner product estimates using SRP is
lower than the variance of the inner product estimates us-
ing conventional random projections for the same amount
of bits, then SRP would be highly preferred.

These results gave rise to an efficient Approximate Nearest
Neighbor (ANN) algorithm as computing Hamming dis-
tances in the lower dimensional space would be faster than
computing angles in the higher dimensional one. An exam-
ple of this could be image classification, where a 1024 x
1024 pixel image would mean working with vectors in RP,
p = 1048576. Transforming these vectors to binary codes
of length &, k < p would drastically reduce the time taken.

Moreover, these estimates can be used in conjunction with
the “kernel trick”, where (estimates of) inner products are
used within algorithms such as support vector machines
(SVM) to further reduce the computational cost.

1.1. Sign Random Projections

Given a data matrix X, y,, consider a random matrix
R, with entries i.i.d from N(0,1). We compute V =
sgn(XR), where we define

sgn(z) = { (1) i i(()) (D

and apply sgn to every element in X R. We set sgn(x) =
0 when z < 0 for convenience of notation in Figures 2
and 8.

Theorem 1.1. The estimate for the angle 6 between vectors
Xi,X; is given by the Hamming distance between v;,Vv;
multiplied by 7 /k.

Proof. This proof is given in (Goemans & Williamson,
1995). O
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This estimate of 8 is theAsum of k£ Bernoulli observations,
which has variance Var[f] = @. Figure 1 shows how

the theoretical variance of SRP varies with 6.

Plot of theoretical Var[é] against 6
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Figure 1. Theoretical variance of SRP based on angle 6 between
vectors X;, X;.

1.2. Super-Bit LSH

Super-Bit LSH (SBLSH) (Ji et al., 2012) was proposed to
reduce the variance of the estimates of angular similarity.
SBLSH was proven to have lower variance than SRP, when
the angle to estimate is within the interval [0, 5]. This al-
gorithm only takes place in the pre-processing stage to get
a different random matrix R. While SRP only involved
generating a random matrix R with £ columns, SBLSH di-
vided the k columns into L groups of N columns, and or-
thogonalized the NV vectors within each group. These new
vectors become the columns of the new matrix R. The sub-
sequent process is then the same as ordinary SRP.

Empirical results with SBLSH showed that given some
K = k, the best division to ensure a variance reduction
is to have L = 1 group, with N = k orthogonal vectors.

While SBLSH achieves variance reduction, there are areas
where this algorithm could do better. For example, orthog-
onalizing batches of N vectors can be costly when the di-
mension of the data p is large, and therefore a longer pre-
processing period is needed. Furthermore, geometry theory
(Ball, 1997) states that any two normalized vectors sam-
pled in extremely high dimensions would be orthogonal
(with high probability) to each other, so SRP would achieve
roughly the same performance as SBLSH with large p.

2. Our Contributions

We propose an estimator for SRP by using additional in-
formation. Our estimator keeps to the same order of time
as SRP, and has a less costly pre-processing period than
SBLSH. We demonstrate that our estimator can be used in
conjunction with any modifications of SRP such as SBLSH
to get a more accurate estimate. We prove that the variance

of our estimator is lower than the ordinary SRP estimate.
We explain how we can build better and more accurate es-
timators from our work. Lastly, we demonstrate our results
on the MNIST test dataset and the Gisette dataset.

Our work was inspired by Deming (Deming & Stephan,
1940) and Li (Li & Church, 2007). Deming examined
the computation of maximum likelihood estimates for a
multinomial distribution when the marginal probabilities
are known. His result was used by Li to estimate two way
associations in word data by making use of information
known at the margins. We go one step further by adding
information to the dataset to construct our own margins.

2.1. Our Estimator

We denote 0, x; tO be the angle between the vectors x;, X;.
Given X,,«,,, we construct a vector e € R? and compute
and store the angles 0y, ¢, ..., 0, . We now proceed the
same way as SRP and generate the random matrix R, .
We store V = sgn(XR) as well as v, = sgn(e R).

Without loss of generality, suppose we want to compute
Ox, x,. Consider the vectors vi = (v11,...,v1k), V2 =
(va1, ..., v2k)s Ve = (Vei,...,0er) and the k 3-tuples
{(v1s,Vas,ves) Ye_,. Each 3-tuple is a binary string of
length 3. Suppose we categorize these tuples in a 2 x 2
contingency table, with the following four sets

A= {s|sgn(vas) = sgn(ves)} (2)
B ={s| sgn(vzs) # sgn(ves)} 3)
C ={s| sgn(vis) # sgn(ves)} 4
D ={s| sgn(vis) = sgn(ves)} (5)

n1 (either 011 or 100)
ns (either 111 or 000)

no (either 001 or 110)
ny (either 101 or 010)

T Q

Figure 2. Contingency Table For Our Estimator

In statistics, given a contingency table with samples drawn
from a large population, the goal is to find the probability
of each cell occurring in the population. The probability
of exactly observing n1, ns, ng, n4 counts with n = ny +
ng + ng + ny is given by

p=P[X; =n1,Xo=n2, Xz =n3, X4 =n4] (6)
_ n N1, no, N3, N4
= ( ny Ny N3 Ny )p1 P2 P3" Py @)

where each X; denotes the respective cell, and p; the prob-
ability of seeing an observation from that cell. The log like-
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lihood function is given by

4
l<p17p27p37p4) = C+an log(p]) (8)

=1

where C is some constant. The maximum likelihood es-
timates are given by p; = 7*. In SRP and SBLSH, we
compute % to estimate Oy, x; .

However, we already know the probability p; + ps of ob-
serving n; + n3 and the probability ps + py of observing

xge

n3 + n4. These probabilities are given by 1 — and
1- 9"719 respectively. We also know that ) . p; = 1.

The maximum likelihood estimate (8) can be rewritten in
terms of ps3

ex e 0x e
l(p3) = n1 log (1 — Tz —pg) + ngqlog (1 — Tl —p3)

oxle + 9x2e
™

+ nzlog(ps) + n2 log (pg -1+ 9)

with the following first and second derivatives given by

dl nymw Ny T
R +
dps QX2e + 7T(pS - 1) 0x1e + 7T(p3 - 1)
nom ns
+ = (10)
exle + ere + 7T(p3 - 1) D3
d72l _ nym2 B ngm?
dp% (Oxye + m(p3 — 1))2 (Oxye +7(p3 — 1))2
2
Nom ns
- - an

(Bxye + Oxpe + 7(p3 —1))°  P3

To maximize I(p3) in (9), we need p5 which makes the first

derivative zero. The second derivative is always negative

which makes our value of p3 a maximum. We mention that
di

the denominators of the fractions in dp; are only equal to

zero when p; = 0, for i = 1,2, 3, 4. By using the relation-
. xoe Ox,e

ships py +ps = 1— 222 py4py =1—- 222 p4p, =2

and le7 = 1, we can express p;’s in terms of 6x, e, Ox,e

and 0:

0465, —Oxye Oy 000 —0

b1 o b2 = o
_ 27m—Oxje—Oxge—0 _ 0+0x,e—0Ox e
b3 = o pPs = o

Hence, the denominators of the fractions in dd—l are equal

zero when 6 = —0x,6 + Oxy0, 0 = Oy o + Oxzer 0 + Ox0 +
Ox,e = 27 or = Ox,e — Ox,e. These are the cases when
all three vectors X1, Xs, e lie on the same 2D-plane.

Newton Raphson can be used to find ps with the starting
value “2, which has quadratic convergence. We should
cross multiply the terms in the first derivative and use New-

ton Raphson on the numerator for numerical stability.

Once p3 is found, we compute p, by p3 — 1 + %,

and estimate 6y, x, by 0 = m(1 — po — p3). Algorithm 1
describes our algorithm for our estimator.

Algorithm 1 Algorithm For Our Estimator

Pre-processing stage
Initialize e ; Initialize R
Compute V = sgn(XR) ; Compute v, = sgn(e’ R)
for each x; € X do

| Compute and store Ox,e
end

Actual stage
for each v;,v; € V do

Count ny,ng, n3, ny as in Figure 2

Find ps which maximizes /(p3) in Equation 9
Compute py = p3 — 1 + %
Set éxin = ’/T(]. - ﬁg — ﬁg)

end

2.2. Theoretical Variance Of Our Estimator

Theorem 2.1. The variance of our maximum likelihood es-
timate 0 is given by
. 42
Varlf) = ————— (13)
k (171 to Tt 174)

Proof. Our estimate 0is given by
é = 7T(1 - ]32 - ZA?3) = _271—133 + 2m — (exle + exge) (14)

and its variance given by Var[f] = 472 Var|ps] where ps is

our maximum likelihood estimate. Thus we need to find

Var[ps]. It can be shown (Shao, 2003) that p3 converges
1

in distribution to a normal random variable N (ps, m).

I(ps3) is the expected Fisher information of p3. We have
that

I(ps) ZE{ dZZ}

dp3
_ E[nq]m? E[ng]m?
(0?{29 + 71'(])3 - 1))2 (0x1e + 7T(pZS - 1))2
E[ng]m? E[ns)

+ (15)
(eme + Ox,e + 77(1”3 - 1))2 P?;,

_ kpym? kpym?
(Oxze +m(p3 — 1)) (Ox,e +7(ps —1))?
kpom? k
el S+ (16)
(axle + oxze + '/T(pffo - 1)) b3
k k k k
=+ —+— 4+ — 17
b1 b2 P3 DP4
1 1 1 1
= (+++> (18)
pP1r P2 P3 P4
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and hence

1
1 1 1 1
WH+E+E+5)

We note that Var[ps] tends to 0 when any p; tends to 0. OJ

Var[ps] = (19

This maximum likelihood estimate can be biased with
small k, but the bias vanishes and the estimator enjoys good
performance when k is large. This is not surprising since
maximum likelihood estimators are consistent and asymp-
totically efficient estimators (Shao, 2003).

Theorem 2.2. The variance of our maximum likelihood es-

timate Var[0) is lower than the original variance Var(0oyis),
with equality iff i) p1 = py and py = p3, i.e. Ox,0 = Oxye =
5, 0)pr = ps =0, ie. 0 = 0oriii) pp = p3 =0, ie
0 =m.

Proof. We have that the variance of 0 under SRP is given

2
by 272 which can be rewritten as T 2112 (P2tps)

suffices to show that V' := Var[fy,) — Var[#] > 0 under the
constraints that ) . p; = 1. We can show that

L [(pl +pa)(p2 +03) (5 + 5o s T pr) — 4]
1 1 1 1
kGor + 2t oa o)

(20)
2 2
w2 [ L1 (py 4 pg) + B2295 (py 4 py) | on
= 1 1 1 1 )
kor +os v os T on)

which clearly is always positive, and equal to zero when
p1=paand py = p3,orp; =py =0o0rpy =p3=0. [

Plot of Py versus k
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Figure 3. Proportion Py of (0, 0x,e,0x,e) With variance reduc-
tion against number of columns, k.

While Theorem 2.2 guarantees we always achieve a lower
variance or do no worse than the original variance, we
should also account for the storage of Oy, ¢,1 < 7 < n.
If we store these values in 64 bits, then for a fixed k, we
should consider Var[é] with k columns versus Var[éorig]
with k£ 4 64 columns, as storing 64 extra bits is equivalent
to running and storing the results of SRP 64 more times.

We notice that

Var[éorig]k%z; — Var[é]k (22)
_ ™ (p1+pa)(p2 + ) A
a ke + 64 T71 11 (23)
E( it i)
w? [k(pl +p0)(p2 +03) (G- + o5 + 55+ 55) — 4k +64)
a kk+64)(L+ T4 T4 1)
(24)
_ 2 _ 2 -
b [ @122 (py 4 ) + 222202y 4 py) — 250]
= 1 1 1 1 )
k(k+64)(5; + 55 + 55 + ;)
(25)

which is only positive for certain configurations of
D1, D2, P3, Pa, Which depend on (0, 0x, e, Ox,e). However,
assuming that (6, 60x,e,0x,e) is uniformly distributed in
S := the set of all valid triplets (6, x, e, 0x,e), the pro-
portion of points (6, Ox, e, fx,e) With a variance reduction

volume({(0, O, e, Oxye) € S | Var[forig]k+64 — Var[d], > 0})

- volume(.S)

k=

(26)

rapidly increases to 0.95 at about £ = 1500 as seen in Fig-
ure 3. However, the distribution of our angles in practi-
cal applications are not uniform, as data must have some
structure, hence we can have a better proportion of “good
points” with smaller k, as we show in our experiments.

2.3. The choice of the extra vector e

While Theorem 2.2 gives us an inequality guaranteeing a
variance reduction or at least being no worse off, we also
consider how (6, O, e, Ox,e) affect our variance reduction.

Consider the 3D set of axes with z € [0, 7],y € [0, 7], 2 €
[0, 7]. We let = denote values of 0y, o, y denote values of
O, e» and z denote values of 6. Our goal is to visualize the
3D region that consists of valid values of (6, 0x, e, Ox,e)-

By visualizing any arbitrary three vectors on the unit sphere
S2, we can have any two angles 6;, 0; between these three
vectors vary between (0, 7), but the third angle 6, neces-
sarily needs to fulfill 0; + 6; + 0, < 27 and 0; 4 0; > 0.

Hence the 3D region of feasible 0, 0x, e, and Ox; o is the
intersection of the following regions given by {0 < x +
y+z<2r},{0<z<zx+y}{0<y<zx+z}
and {0 < z < y + z}, which is the tetrahedron with
(0,0,0), (m,7,0), (7,0,7) and (0,7, ) as its corners.
The four faces of the tetrahedron correspond to the cases

when Var[f] = 0 and the center (%,%,%) corresponds to

Var[o}max = Var[aorig]max = %c

Moreover, the regions which correspond to negligible or no

reduction in variance, i.e. Var[fg] — Var[f] < € occur near
the three lines {x + y = 7,z = 7}, { = y,z = 0} and
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Figure 4. Plots of Var[0ri,] — Var[0] with varying 6 values. Darker lines denote greater variance reduction.

{x =y = 3,0 <z < 7} The first two lines {z +y =
m,z =7}, {x =y, 2z = 0} are the cases where the original
variance Var[éorig] is zero, thus no variance reductions can
occur. The third line {x = y = 7,0 < z < 7} contains
the cases where the additional vector e doesn’t provide us
additional information as it’s orthogonal to x; and xs.

Figure 4 shows some plots of Var|[f,] — Var[f] over the
valid region of (0x, e, Ox,e) for some fixed §’s. We can see
that the variance reduction always occurs at the boundary
and no significant variance reductions near the center.

The choice of e has to be fixed for our dataset X. Esti-
mating all pairwise similarities with a fixed extra vector e
implies that some pairs x;,x; will enjoy good values of
Ox; es Ox, e t0 get substantial variance reduction if the point
(0, 0x, e, 0x,,e) stays away from the three lines. However,
bad pairs x;/, xX;» would not get substantial variance reduc-
tionif (0,0, _,0x, ) is near the three lines.

As a heuristic, we first normalize the vectors x;, then we
set e to be the first singular vector of X to maximize the
proportion of good pairs. The intuition behind this is that
among all the unit vectors v, v = vy := first singular
vector of X is a vector that will maximize

[ Xv|? = Z(Xi V)2 = E:cos2 Ox; v (27)

i

Intuitively, this means v; will make a small angle or an
angle near m with the majority of the x;’s, which implies
that the majority of (0,0, v,,0x, v,) Will stay far away
from the low variance reduction region {fx, v, =
7,0<60 <7}

GXi,Vz =

However, it may be the case that the best choice of e de-
pends on the data and the type of analysis to be done.

2.4. Analysis Of Our Estimator

We look at the computational cost of our estimator in the
pre-processing period and the evaluation period.

The computational cost could vary widely based on gen-
erating the extra vector e. If we want an exact value of
the first singular vector, this could be computationally ex-
pensive at O(min(np? n?p)). However, as Theorem 2.2
guarantees that any e would do no worse, we could get an
estimation of the first singular vector by probabilistic algo-
rithms (Halko et al., 2011), which can take O(n?s), where
§ < n is a parameter chosen based on the data.

Finding all angles between e and x;,1 < ¢ < n takes
O(np) time, which is the same as the cost of normaliz-
ing or scaling data. Storing these angles takes O(n) space,
which is an extra 64 bits per observation.

To estimate the angle between each vector pair, our estima-
tor takes O (k) time which is the same order of time as SRP
and SBLSH. Computing the values n; take O(k) time, and
using Newton Raphson costs O(1).

Hence, the overall computational complexity of our algo-
rithm is O(n?%s + npk +n2k) which is O(min{n?k, n?s}).

Our estimator only requires the probability of the random
hyperplane separating the two vectors X;,x;. Any deriva-
tives of SRP which have a different probability can still
utilize this estimator.
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3. Our Experiments

We run our algorithm on the MNIST test dataset (Lecun
et al., 1998) and Gisette dataset (Guyon et al., 2005; Lich-
man, 2013). The MNIST test dataset has n = 10, 000 ob-
servations, and p = 784 parameters. The Gisette dataset
has n = 13, 500 observations, and p = 5,000 parameters.
For both datasets, we normalize the vectors to unit length.

We demonstrate our estimator on both SRP and SBLSH
with the super bit depth being the number of columns of
the random projection matrix k to ensure the best accuracy.
We set the vector e to be the first singular vector of our
datasets for reproducibility.

We run our experiments for the number of columns
k  (equivalently number of bits) ranging from
{64,128,...,3008} of our random matrix over 100
simulations for both datasets. The motivation for the
multiple of 64 stems from the fact that we are keeping an
extra 64 bits of information per vector for our estimator
by storing the extra angles. This can be thought of as
computing and storing an additional 64 more bits with
SRP, SBLSH without the use of our estimator. This means
that our plots for our estimator are “shifted” to the right
by 64 units to account for extra storage. Nevertheless, our
estimator still performs well even accounting for the extra
bits which we will show in our experiments.

We denote SRP and SBLSH to be our baselines, and
SRP-est, SBLSH-est to be SRP implemented with our
estimator, and SBLSH implemented with our estimator re-
spectively.

Our goal is to show that while our estimator depends on
one fixed e and varying Oy, ., 0,(].’5 for all vector pairs, we
can still get competitive variance reduction over all vector
pairs in estimating angular similarity.

Looking at all pairwise estimates also makes a fairer test,
as we do not want to only look at “good pairs of vec-
tors” where fs are within our region and far away from
the boundary. Hence we compute the average RMSE of all
pairwise estimates of the inner product. This ensures that
all good and bad pairs of vectors are accounted for and that
there is no cherry picking at all.

We compute the average RMSE of 49,995,000 pairwise an-
gular similarity estimates for the MNIST test dataset, as
well as the average RMSE of 91,118,250 pairwise angu-
lar similarity estimates for the Gisette dataset. We display
them in Figure 5 and Figure 6 respectively. The left side
of these plots show our RMSE averaged over 100 simula-
tions, while the right side of these plots show the standard
deviations of these RMSE.

In general, we see that SRP-est and SBLSH have lower
and similar average RMSE when computing all pairwise

angular similarities compared with SRP. In this case,
SBLSH may potentially outperform SRP-est with lower
average RMSE. However, as our estimator can be used with
any derivation of SRP, we have SBLSH-est giving an
even lower RMSE.

RMSE of MNIST data RMSE deviation of MNIST data

o
~
s — SRP IS — SRP
- SRP + estimator w e - SRP + estimator
o || —— SBLSH »n S —— SBLSH
L(}JJ g 7 ----- SBLSH + estimator = -~ SBLSH + estimator
= <
X © O o
= O+ c -
S o S
[ = o
> o '
8% : |
S o \/\
g
~ - ] E S
Sl : = ——
© 500 1500 2500 500 1500 2500

Number of bits k Number of bits k

Figure 5. The average RMSE of our pairwise angular similarities
for the MNIST dataset are shown in the left plot, and standard
deviations of the RMSE shown on the right plot.

RMSE of Gisette data RMSE deviation of Gisette data
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Figure 6. The average RMSE of our pairwise angular similarities
for the Gisette dataset are shown in the left plot, and standard
deviations of the RMSE shown on the right plot.

When we look at the deviations of the average RMSE of all
pairwise estimates, we see that SRP-est, SBLSH-est
tend to have lower standard deviations compared to SRP,
SBLSH.

To give some intuition to magnitude of the right and left
graphs of Figure 5 and Figure 6, we show the exact values
of the RMSE estimates and 3 standard deviations at £ =
1024 in Figure 7.

Overall, we see that as k is sufficiently large (k ~ 256), us-
ing our estimator in conjunction with SRP or SBLSH can
result in a lower RMSE (and lower deviations). Moreover,
if our observations are extremely high dimensional, our
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MNIST Gisette
SRP 0.0471 £ 0.0055 | 0.0466 4+ 0.0091
SRP-est 0.0451 £ 0.0049 | 0.0419 £ 0.0025
SBLSH 0.0386 + 0.0019 | 0.0446 4+ 0.0079
SBLSH-est | 0.0378 £ 0.0017 | 0.0405 & 0.0021

Figure 7. Average RMSE of pairwise estimates with bounds of 3
standard deviations at k = 1024.

estimator may be preferred to SBLSH due to lower com-
putational complexity in the pre-processing stage, since
SRP-est and SBLSH—est have about the same perfor-
mance.

Our experiments also do verify the theory that when k is
large, our maximum likelihood estimates are unbiased and
outperforms SRP and SBLSH.

4. Building Better Estimators When £ Is
Large

Suppose we repeat the process in building our estimator
and generate vectors e;,es. We can compute and store
the angles O, for all 1 < i < n,1 < j < 2,
and compute V = sgn(XR),v., = sgn(elR),v., =
sgn(el' R). To compute 0y, ,, then we look at the k 4-
tuples {('Uls; V2s, Veyss UGQS)}’;Zl'

We then have a2 x 2 x 2 contingency table, which we give
in Figure 8 in terms of ny to ng.

n1 (either 1001 or 0110)
ns (either 1110 or 0001)

ng (either 1100 or 0011)
ng (either 1010 or 0101)

n3 (either 0111 or 1000)
ny (either 1111 or 0000)

ny (either 1101 or 0010)
ng (either 1011 or 0100)

Figure 8. Contingency Table(s) for Estimator 2

Similar to Estimator 1, we now compute the probabilities
of the six margins consisting of My = ns + ng, Ms =
no +n3, M3 = ny +ng, My = ny +ns, M5 = ny +
ng, Mg = ny4 + ng. We require the following theorem for
this computation.

Theorem 4.1. Suppose we have three vectors X1,Xa2,Xs,
with angles 0;; being the angle between x;,x;. Given a

random hyperplane, the probability that all the vectors are
Zi]‘ eij

on one side of the hyperplane is given by 1 — =4
Proof. We can find some subspace spanned by orthogonal
vectors by, bo, bs such that x1, X2, X3 are represented in
terms of these b;s. We can therefore think of this sub-

space as a “copy” of R3. WLOG, let X1, X2, X3 be unit vec-
tors corresponding to points A, B, C on the unit sphere S?,
which define a spherical triangle ABC' with sides a = 65 3,
b = 61 3 and c = 0 2, as the radius of the sphere is 1.

For the 2D plane containing the origin, A and B, consider
its unique normal vector pointing at the same hemisphere
containing C. We let C’ be the point of intersection be-
tween that normal vector and the unit sphere. We define
A’ and B’ similarly and thus A’B’C’ is the polar triangle
corresponding to the spherical triangle ABC'. For any 2D
plane containing the origin, it corresponds to a unique nor-
mal vector pointing at the same hemisphere that contains
A'B'C’.

It is clear any 2D plane containing the origin that intersects
the spherical triangle ABC' if and only if it separates one
x; from the other two vectors (modulo the measure zero
case when the plane contains two corners of the spherical
triangle ABC). It is also clear that the corresponding nor-
mal vector of such a 2D plane intersects the sphere outside
the polar triangle A’ B’C’. Hence, we have that

P[the 3 vectors are not all on the same side of the hyperplane]

_ Area of hemisphere — Area of polar triangle A'B’C’

Area of hemisphere

(28)
o)
[P[all the 3 vectors are on one side of the hyperplane]

_ Area of polar triangle A'B’'C’
N Area of hemisphere

(29)

Since the polar triangle A’B’C” is a spherical triangle as
well, its area is given by ZA' + /B’ + Z/C" — . A stan-
dard result in spherical trigonometry shows the polar trian-
gle A’B'C" is related to the spherical triangle ABC' by

/Al=1r—a, /B =7-b, /C'=1m—-c (30)

Putting everything together, we have

IP[all the 3 vectors are on one side of the hyperplane]
_Area of polar triangle A’ B’'C’

31
Area of hemisphere 3D
LA + /B + £C —
e T (32)
2
:W—a+7r—b+7r—c—7r (33)
27
27 — 03— 013 — 6
_ U 2,3 1,3 1,2 (34)
27
0 0o 5 + 0 -
—1_ 1,2+ 2,3+ 1,3. (35)
2w
O]
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Theorem 4.1 allows us to express p;s in Figure 8 in terms
of Ox, 615 Ox; 625 Oxs,e1 5 Oxs .05, 0, and we can estimate 6 by
optimizing the new log-likelihood function

8
l=C+ Z n; log(p;) (36)

i=1
by using stored values of Oy, e, Ox; e Oxs,e11 Oxs,00-

In fact, we could keep on generating vectors eq, ..., ez to
create more estimators if we know the probabilities of vec-
tors x1, ..., X, being on one side of the hyperplane, which
can be found via geometry theory. Algorithm 2 shows the
general estimation algorithm.

Algorithm 2 General Algorithm For Our Estimators

Pre-processing stage

Initialize eq, . . ., e, ; Initialize R

Compute V' = sgn(XR)

Compute all v, = sgn(el'R)

for each x; € X do
Compute and store Oy, e,
Compute and store e _e,

end

Actual stage

for each v;,v; € V do
Count nq, 12, n3, . .
Factorize log-likelihood into disjoint parts
Find parameters p, which maximizes these log likeli-
hoods
Express 6 in terms of required p;.

end

.y Ngs+1

We note that these estimators only prove to be competitive
when £ is large, as the maximum likelihood estimates will
be biased with small k. Intuitively, consider what it means
if we set an arbitrary k& = 64, and we have 8 cells. For
some p; = %7 a < b, the observed % would not be close
to p; unless k is large. For example, our original estimator
quickly outperforms SRP and SBLSH when k is around
256 for our datasets. An estimator with vectors e; and e;
would outperform our original estimator when k is an order
of magnitude greater.

We conclude that constructing such estimators are only
useful if we have extremely large %, which may not be prac-
tical in some cases.

5. Future Work And Applications Of Our
Estimator

From our theoretical analysis, any e generated always gives
a reduction in variance or do no worse than the original es-
timate. In our experiments, we have set e to be the first
singular vector as our heuristic. However, € may be depen-

dent on the problem to be solved. Finding & which theoret-
ically yields the most variance reduction based on a partic-
ular problem may be a good avenue of future research.

However, this strategy of adding information to a dataset to
take advantage of margins gives rise to many possibilities
to further reduce the variance of several other estimates of
distances, and we briefly describe some of them here.

Conventional random projections - Conventional ran-
dom projections are used to estimate the inner products,
Euclidean distances or [, distances (Li et al., 2012) with
even values of p between vectors. The estimates are contin-
uous, so a control variate (Kang, 2017) approach together
with adding additional information may yield good results.

Stable random projections - Stable random projections
are used to estimate [, distances between vectors. Simi-
lar to conventional random projections, we could add extra
information and use a control variate technique to further
improve these estimates.

Minwise hashing - b-bit minwise hashing (Li & Konig,
2010) is used to estimate the resemblance of binary vectors,
while weighted minwise hashing algorithms (Shrivastava,
2016; Ioffe, 2010) are used to estimate the Jaccard similar-
ity between vectors. We can add an extra information e that
is a binary vector (or weighted vector) to better improve the
estimates of the resemblance (or Jaccard similarity).

Conditional random sampling - Conditional random
sampling (Church et al., 2006) is a local sampling strategy
which is used to estimate Hamming distances and x? dis-
tances between vectors, amongst other distances. Adding
extra information could also improve these estimates.

6. Conclusion

We have demonstrated that our estimator works well with
SRP and SBLSH, as well as showed how to construct sim-
ilar estimators of the same form.

Our estimator can also be easily implemented on existing
applications which use SRP or a modification of SRP with-
out running SRP again. As we are only counting the mar-
gins, we can set e to be an existing vector X4, and compute
the respective angles 0, «,, s 7 i.

While we have demonstrated an estimator with good per-
formance, we feel that the idea behind the construction of
this estimator (and subsequent estimators) is more impor-
tant. We hope this idea can be extended to many other prac-
tical applications as well.
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