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A Outline

In Section [C] we prove our lower bound for the feasible identification problem (Theorem [T). In Section
D] we prove the upper bound for MD-UCBE (Theorem [2). In Section [E] we prove the upper bound for
MD-SAR (Theorem [3)). In Section[F we prove Proposition [I]and the upper bound for MD-APT (Theorem
H). In Section[G] we prove the key lemmas that unify our analyses of the three algorithms, namely, Lemmas
[[l 2l and 3] In Section [H] we prove some useful technical lemmas. In Section [l, we extend our results
to the feasible arm identification problem where P is convex. Finally, in Section [J| we present additional
experimental results.

Regarding the lower and upper bound proofs (Theorems|T] and[), we note that we may assume that
the realizations for each arm are drawn before the game has begun. Therefore, the empirical mean of an arm
after ¢ pulls is well-defined even if that arm has not been pulled ¢ times.

B Notation

Let T; denote the number of pulls of arm ¢ after 7" rounds. Let X; ;; denote the tth realization of the jth
(e)

P

coordinate of v;. For the sake of brevity, we write A; instead of A

C Lower Bound Proof

We note that the proof of Theoremhas some similarities to the proof of Theorem 1 of|Locatelli et al.|[2016].
The most important technical differences are (i) our novel lower bound construction with multidimensional
distributions and (ii) our simple “chaining” argument that iteratively applies the well-known change-of-
measure equation (6) in|Audibert and Bubeck|[2010] to relate B° and B'.

Proof of Theorem[I} Step 1: All of the problems have the same complexity. The difference between
problem B and B¢ is the ith arm, i.e., the distributions v; and V{ . Since u; € P and u; ¢ P, by definition
of H, it suffices to show that dist(u;, 0P) = dist(p}, P). By Lemma [H.1| there is m € [M] such that
Tm € {x : al, & = b,,} and 7, is the projection of p; onto {x : a’,x = b,,}. Let 7/ denote the projection
of p onto {x : al,x = b,,}. We claim that 7; = 7/. Using the closed form solution of the projection of a



vector onto a hyperplane [Boyd and Vandenberghe, 2004],

T = i + (al, g — b)) an,,

7 = pi + (b — app)am
= pi + 2(1i = pi) + (b — ag, (i + 2(7i — pi))anm
=27 — pi — (b — @, i),
= Ti,

establishing the claim.
Then,

dist(pj, P) = dist(py, {z : @, @ < bp}) = |p; — 7|, = dist(p}, P)
where the last inequality follows since 7; € P. Thus,
dist(ps;, P) = | — 7], = [pi — 7ill, = dist(ps, OP).

Thus, B, ..., BX have the same problem complexity.
Step 2: Change of Measure For all i € [K], since dist(u;, 0P) > e, there exists d; > 0 such that
dist(p;, 0P) = d; + €. We note that

e — MHQ =27 — pilly = 2(d; +€) = A; +d; < 24, (1)

Note that we can write v; as a product distribution v, 1 ® ;2 ® ... ® v; p where v; ; ~ N(u; ;,1) and
Vi =1 QU o ® ... Qv p where v; ; ~ N(u; ;,1). Let] < D and define

(1
D =) @, ®. QU @V, ®Vii1 ®. .. ®vip.
Let B denote the product distribution

V1®~-~®Vi71®7/£’(l)®Vi+l®~-~®VK-

Define

1

*(Mk,l - Mk,l)2

KLkJ = KL(V;CJ, VkJ) = B

where we used the KL-divergence between two multivariate Gaussian random variables. Next, define for
1<k<K,1<l<D,and1 <t<T,

—~ 1 ¢ dyk l(Xk 1. S
KLips = 5 > 1og(W

s=1

1 L
§ D50k = )+ ks = )Xo

ls

where we used the definition of the pdf of Gaussian random variables. Note that E ﬁw,t = KLy, and

that

Vi1

1
Varuk,,[§(ﬂi,z — (p3)?) + (g — tr,) Xet,s] = (g — 1) Vary,  (Xis) = (g — pa)’



Define the event

+1)KD)

_ log(4(log(T
©={Vk< KVt <T,¥<D:KLy,—KLy, <2|Mk,lu;€71\/ 0g(4(log(T)

t b

Fix k < Kand! < D. KL ;+ — KL is a sum of centered Gaussian random
— pur1)?. Therefore, the sub-Gaussian norm of each term in the sum is |p} ; —

(T)1). By Lemma[F2]

Claim: Pgo(0©) > 3.
variables with variance (u
ukvl|.Letu€{O,. [ og

(1) + HED), _ 1
t ) < 4(log(T) + 1)K D)’

~ log(4(lo
Pgo (3t € [2%, 2u+1] KLyt — KLg; > 2|,u§€J — ,uk}l|\/ g(4(log
Then a union bound over k < K, u € {0, ..., [log(T)]},! < D yields that

Ppo(0°) < 2

| =

establishing the claim.
Next, let ¢ € [K] and define the event A; = {i € S }. We lower bound Pgi (A;). Recall that T; denotes
the number of pulls of arm ¢ after 7" rounds and let

t;i = EgoT;.
and define the event
0, =0nA;n {Tz < th‘}.

We use equation (6) from|Audibert and Bubeck! [2010]], whose argument we briefly restate in the interest
of making our paper more self-contained. Let E denote an event. Then,

—~ dv;,
Egi.o-n [1{E} exp(~=TiKL; p,1,)] = Egi.co-n [1{E} H o P(Xip.s)]
1, D
dv;, k
‘[ Jl{E}n D i,D,s)[anVk,l(Xk,ls][nndyzl zls]HdV zDs
s=1 k#is=1 s=11#£D
= Ep[1{E}]. ()
We have the following series of inequalities:
Pgi(A;) = Psi(0;)
= Epio- [1{0:} exp(—TiKL; p.1,)] @)
1
> Egio- [1{Oi} exp(=Tig (i,p = i, p)* = 2lpi,p — 1. p|/Tilog(4(log(T) + 1)K D))]
&)
> P (0:) exp(—3t: (1,0 — 1} p) — 2lpi.p — 4 pl/6t; log(4(log(T) + 1)K D))
(6)



where equality (@) follows by equation (3), inequality (3) follows by ©, and inequality (6) follows by {7} <
6t;}. Observe that we can repeat lines (@), (3), and (6) for Pry:,(p-1)(0;). Continuing in this manner for
l=1,...,D —1yields:

P (Ai) = Prgio-1(0;) exp(—=3ti(1i,p — pip)? — 2|pi,p — 145 p|v/6ti log(4(log(T) + 1)K D)))
D

> Prpo(0;) exp(—3t; Y (mig — pth)* — i — 15,1/24t; log(4(log(T) + 1)K D))) (M
=1

> Prpo(0;) exp(—126,A7 — | i — |, /24t log(4(log(T) + 1)K D)) ®)
> Pro(0;) exp(—12¢; A2 | i — 1}, VD+/24t; log(4(log(T) + 1)K D)) ©)
> Prgo(0;) exp(—12t;A% — 2A;4/24t; D log(4(log(T) + 1)K D))) (10)
> Prpo(0;) exp(—13t;A% — 24D log(4(log(T) + 1)K D))) (11)

Line (8) follows by (T), line () follows by applying the inequality ||z|, < |z, /D, line (T0) follows by
(1), and line (TT) follows by the inequality 2ab < a® + b* with a = A;+/%;.
Step 3: Lower bounding Przo (0;). Suppose that for some ¢ it holds that Prgo(A;) < % Then,

1
Prgo(ﬁke[K]Ak) < Prgo(A4;) < 3

Observe that under B, the event (ye[x].Ax)© implies that ET’E(§) = 1 since for all k € [K], puy, € P and
dist(pty, OP) = e. Thus, the theorem follows since

B B (L7.0(8)) 2 Ero(Lr.(8)) > Proo(Ovets A1) >

DN |

Therefore, we may suppose for the remainder of the proof that Prgo(A;) > 3 forall j € [K]. Fix i € [K].
By Markov’s inequality,
Epo[Ti] 1

Prpgo(T; > 6t;) < ot = 5

Then, using the above two inequalities and inequality (Z), by a union bound,

1 1 1 11
P 9y < - Z = =
@) <ttt
concluding this step of the proof.

Step 4: Putting it together.

x| =
D=
av)
=
&
FN

P % 2
efhax, P (A

=1
1 K
> = ) Pruo(0;) exp(~ 1347 - 24Dlog(4(log(T) + VKD))  (12)
=1
11 &
- 134 A2 _
> 5% ;exp( 13t;A2 — 24D log(4(log(T) + 1)K D))) (13)



where in inequality (T2) we used (TT)), in inequality (T3) we used Prpo(©;) > 5. We claim that since
Zfil t; = T, there exists some j such that ¢; < HLA? Towards a contradiction, suppose that for all i € [K]

) T
t; > AT Then,

T
T= > t;> )] Az =T
€[ K] €[ K] K

which is a contradiction. Then,

K
> exp(—13t;A7 — 24D log(4(log(T) + 1)K D)))

x
K i=1
> exp(—13t;A% — 24D log(4(log(T) + 1)K D)) — log(K))

> exp(—l3% — 24D log(4(log(T) + 1)K D)) — log(K)).

Observe that under B, the event A; implies that ET,€(§ ) = 1 since dist(u}, P) > €. Thus,

max  Egi(Lr.(5) > max Egi(Lr.(5))

€{0,...,K} i€{1,....K}
ey Pre ()

= %2 exp(—lB% — 24D log(4(log(T) + 1)K D)) — log(K))

> exp(—l?)% — 25D log(48(log(T) + 1)K D))).

O
D MD-UCBE Upper Bound Proof
Proof of Theorem|2] Step 1: Defining an appropriate event.
Let V be a minimal %—net on SP~1. Let § > 0 (we choose it later). Define the event
- . ‘o~ ad?
== {VZG [K],Vye./\/,Vre {175T} : |y (u’i,r 7uz)| < ? .
By Lemmal2] on =, for all i € [K] and for all r € [T],
~ ad?
|£2sr — iy < - (14)
and
D 52
Pr(2) > 1—2(log(T) + 1)K —0———=).
t(E) > 1 - 2(log(T) + VK5 exp(—ages)

For the remainder of the proof, we suppose that = holds.



Step 2: Lower bound the number of pulls for some arm.
Fix T'. Recall that T; denotes the number of pulls of arm ¢ after T rounds. We claim that there exists an

arm k such that it has been pulled after initialization and such that Ty, — 1 > E’AIQ( (for the remainder of the
k

proof, let k denote one of these arms). If not, then we obtain the following contradiction.

ST-K

K
i=1 ?

i=1

For the remainder of the proof, let ¢ denote the last time at which arm & was pulled. Then,

T—-K
Tp(t) =T, — 1> —=-. 15
Step 3: Lower bound the number of pulls for each arm.
Lemma I]and event Z imply that
~ ad?
Asry — Al <20 = 16
‘ i, T; (t) | Tz (t) ( )

for all i € [K]. We choose § = 1.

Arm k was pulled at time ¢, so that we have for all i € K],

~ a ~ a
Ap (1) = 4 /m AV O /T(t)' (17)

a ~ a 1 a
A —— < A —— t+ = [ = 18
AT ’“’““”ﬁ(t)u\/n(w (15

6 a ~
<8 % LA, |

where in inequality (I8)) we apply (I6) and in inequality (T9) we apply (I7).

Rearranging (19), we obtain
a 6 a ~
<2 =L A+ A
VT S5\ T~ oF T Seno

Now,

<Ay —Ap + A (20)
1 a

<A+ =4 [—. 21

+ 0 (21

where inequality (20) follows by (T3) and 0 < a < 23 T2% and inequality (21) follows by (T6).
Rearranging (2T)) implies that




Thus,

1 1 A A
g AP LR 22)
NT S\ T - 4 2
Step 4: Putting it together
Combining (22)), event =, and yields for all i € [ K],
~ A;
R e |
Then, by Lemma it follows that £T76(§ )=0. O

E MD-SAR Upper Bound Proof
Asin Algorithm define log(z) = 3 + 27, L.

Proof of Theorem[3] Step 1: Defining an event and bounding probability Let A/ be a minimal %-net on
SP~1 Let § > 0 (we choose it later). Define the events

(T — K)62
log(K)Har”’
Zy = {Vke[K —1],Vie {(K),...,(K+1—k)}andje [K]st 2A; < Ay : Ap,, — A, > 0}

== {VZE [K],Vye./\f,Vre {1a7T} : |yt(ﬁi,7" _H’Z)‘ <

Then, by Lemma

Pr(Z;) = 1 — 2(log(T) + 1) K57 exp( r-K 52)

o) =2 1 — XP———— 7 5

! & P 6log(K) Ha R2
T-K 52

> 1 —2(log(T) + 1) K57 exp(— (23)

16log(2K) Ho 7

where line follows by log(K + 1) — 3 < log(K) < log(K) + 3 < log(2K) [Audibert and Bubeck,
2010].
Next, we bound Pr(=5). By a union bound,

Pr(g5) < ) > Pr(Aj . — App, = 0).
ke[K —111{(K),....,(K+1—k)},j:2A, <A,

Fixaroundke {1,..., K —1},letl € {(K),...,(K+1—k)},andlet j € [K] such that 2A; < A;. Then,

~ ~

Pr(Ajn, — Ay, = 0) = Pr((Aj, — A)) = (Apmy, — A) = A~ A))

s

~

~ 1
< Pr((Bgm, = 85) = (Bin, = A1) > 54)
~ ~ 1
< Pr([(Agm, = A7) = (Bin, = A1) > 54)
. o 1
< Pr(|Ajme = Agl + 1Aun, = A > SA)

~ 1 ~ 1
< PI“(|Aj’nk — AJ| > iAl) + Pr(‘Al’nk - Al| > ZAI)



Define the event
Ei = {vy €N7: |yf(ﬁz,nk - Nz)| < 7Al}

Under %;, Lemma[H.3]implies that
~ ~ 1
|Bhisne = pilly < 250D y' (Fhin, — i) < g
yeN

Thus, by Lemma }; implies that |A7(nk) — A;| < 3. Using the contrapositive of this implication,

1
4

~ 1 ~ 1 c c
Pr(| 8 = 5] > 780 + Pr(|Bin, — A > 7A) < Pr(E5) + Pr(S})

~ 1
< Y Pr(y! (Bum, — )| > 762
yeN

~ 1
+ Pr(ly* (Ajn, — 15)] > TGAI)]
nkAlZ
512R?
nkA%K-&-l—k))
512R2

where line follows by Lemma and since \V is a 3-net by construction, we have || < 57 by
Lemmal[H.4] Then,

<457 exp(—

) (24)

<45 exp(—

c D nkA%K'H—k)
Pr(23) < 2 45" exp(— Fo Rz )
ke[K—1]1e{(K),...,(K+1—k)},j:20; <A,
nkAQK 1—k
< Z kK24~5Dexp(—¥)
2
el 512R
T-K
<AK35P exp(————
P~ sarem,)
where we used the fact that
A2 - T-K T-K
NER(K+1-k) & T— - Z = .
EHD = Jog(K) (K + 1= k)AZ,, ) log(K)H,

For the remainder of the proof, we suppose =1 N =2 holds.

Step 2: Lower bounding the number of pulls This step of the proof is similar to the proof of Theorem
3 in [[Audibert and Bubeckl, 2010]); we repeat it for the sake of completeness. Consider phase k. At least one
of the arms [ € {(K),..., (K + 1 — k)} has not been eliminated. Then, by =5, we have that Al,nk > Aj,nk
for any arm j satisfying 2A; < A(g41_y). Thus, at the end of phase k, MD-SAR does not eliminate any
arm j such that 2A; < Ag41_p).

Now, fix an arm j. Recall that T} denotes the number of pulls of arm j after 7" rounds. We consider
two distinct cases: (i) there exists m € [K] such that A,,_;) < 2A; < A(,, and (ii) there exists no such



m € [K]. Suppose (i) holds. Since 2A; < A(,,), the arm j is eliminated some time after the K + 2 — m
phase so that

A2 T_K A2 T-K T-K
AT = Aing o m = : /

J AQ Py -2 = A2 Py Z = :
(m—1 log(K)(m — 1)A(7n—1) (m—1) log(K)Hy ~ 4log(K)H>

Next, suppose (ii) holds. Then, 2A; > Ak, so that

1 T—-K T—-K
A?T] Z *A%K)Tll = — ) Z — .
4 410g(K)KA(K) 4log(K)H,
Thus, we have that for all j € [K],
T-K
Ty>—0 — (25)
Alog(K) Ho A2
Step 3: Putting it together. Using Lemmal[2] =, and (23)), we have that for all i € [K],
R (T — K)5?
i, (1) — 1, < 2 Tos (K)o T, < 40A;.
We choose § = é. Then, by Lemma it follows that £T,€(§) =0.
U
F MD-APT Upper Bound Proof
Proof of Proposition[l) Let N be a minimal 1-net of SP~1. By Lemma IN| < 5P. Then,
E[L7,(S)] < Pr(3i : fiqy(r1) € Pand p; ¢ P
or f; 1,(r+1) ¢ P and p; € P)
< Pr(3i : B, re1) — pil, > D)
< Z Pr(| iz, (re1) — Hz’HQ > Aj)
€[ K]
Lo~ A
< 3 Pr(ly (B ry ey — i)l > 7) (26)
ie[K] yeN
1 A%T;
< 2 e 27
2 2 2exp(—g ) @7)
ie[K] yeN
T
= 2K57 exp(—<
(g i)

Line 26) follows since by Lemma if Hﬁi,ﬂ(Tﬂ) - “ZH > A,, then there exists y € N such that
[y (B, (m 1) — )| > AQ Line follows by Lemma O




Proof of Theorem 4} Step 1: Defining an appropriate event.
Let V be a minimal %—net on SP~1. Let § > 0 (we choose it later). Define the event

T52
4Hr

E={Vie[K],YyeN,Vre{l,....,T} : |y (fi, — pi)| < }.

By Lemma[2} on E, for all i € [K] and for all r € [T]

~ T62
ir — Millg S A/ - 28
and
D 62

For the remainder of the proof, we suppose that = holds.

Step 2: Lower bound the number of pulls for some arm.

Fix T'. Recall that T; denotes the number of pulls of arm ¢ after 7" rounds. We claim that there exists an
arm k that has been pulled after initialization and such that 7, — 1 > % (for the remainder of the proof,

let k£ denote one of these arms). If not, then we obtain the following contradiction:

K K 7 g
T-K-= T, -1 —— =T-K.
Since T > 2K, T — 1 > 555
k
For the remainder of the proof, let ¢ < T' denote the last round that arm %k was pulled. Then,
To(t) = Tp — 1> —- (29)
RV Y
Step 3: Lower bound the number of pulls for each arm.
Lemma(I]and event = imply that
~ 752
A7y — A <2 (30)

B

HT.(t)

foralli € [K].
At time ¢, we pulled arm £, so that for all i € K], Ak,ka(t)\/Tk (t) < ﬁi@(tn /T;(t). Then, using (29)
and (30),
~ Ts2
Ap 1oy VTr(t) = (A — 2 m) T(1)

> (Mg — 24/26202) /T (8). 31)

We require that § < ﬁ so that (3T)) is positive. Thus, we can apply (3I)) and (29) to obtain that
RinoVTD) = (5 — 204 2. (32)
Lk \/i H

10



Next, applying (30), we obtain
Ai oy VTi(t) = Ay iy V(D)
T62
T
< AWTi(t) + 25\/;.

Combining inequalities T;(¢) < T, (33), ﬁk’Tk(t)« /Ti(t) < Ai,Ti(t)« /T;(t), and (32) yields that

T T
Ai,:n-(t) T;(t)

> Ak,Tk(t)\/ Ty (1)

> (\i@ —25)\/3

, T
— <
2H A2

<(AZ+2

\%

Rearranging (34) yields for all i € [K]
(1 — 4+/20) T;.

Step 4: Putting it together.
Combining (33) with (28) and = respectively, we obtain

| 71y — mily, < AiS(1— 4v/26).

We choose 0 = g Thus, by Lemma ET,E(§) =0.

G Key Lemmas

In this section, we prove the Lemmas of Section [f] namely, Lemmas|[T} 2} and[3]

(33)

(34)

(35)

Proof of Lemma For the sake of brevity, we write fi; instead of fi; ; and 32 instead of 3” We separate

the analysis into 4 cases.
Case 1: Ap; < band Ap; < b.

Let j be such that A; = [b; — alp;| + € and let 7 such that A; = |bs — a%ﬁ,i| + €. Then, by definition

of j and 3,

<~

0<b, faz-m < b3 fagui
0<b;— a;ﬁi < b — a;ﬁi.
Note that it suffices to bound

[Ai = Al = [Ibj — ajpl — b — a2,

11

(36)
(37



Then,

(bj — ajm) — (b; — a2fi;) < (b; — asp) — (b; — afis) (38)
= a%(ﬁi — i) (39
<. (40)

where line (38) used line (36) and line @0) follows by Cauchy-Schwarz inequality, |a;|, = 1, and the
hypothesis. Next,

(b; — alfi;) — (b — ajpi) < (bj — ajin:) — (bj — ajp:) (41)

(
aj(pi — i)
-

N

(42)

where line @T) used line (37) and line (#2) follows by Cauchy-Schwarz inequality, [a;[, = 1, and the
hypothesis.
Case 2: Ap; £ band Afi; & b. Then,

[Ai = Al = [ = Projp(p)ll, — l1: — Projp (i), |
)

< [[(pi — ;) — (Projp(pi) — Projp (i), (43)
< pi — Billy + [Projp(pi) — Projp(fi)ll, (44)
< 2||pi — iy (45)
< 2y

where line (@3] used the reverse triangle inequality, (@4) used the triangle inequality, and (43)) used the fact
that projection onto a convex set is contractive (Proposition 2.2.1 [Bertsekas}, 2009]).
Case 3: Ap; £ band Afi; <b.
We claim that dist(ft;, 0P) < ||ft; — pi|,. Suppose not. Then, since f1; € P and p; ¢ P, there exists
6 € [0,1] such that z = Op; + (1 — 0)fa; € @P. Then,
lfic — 21, < | — il < dist(fas, OP),
which is a contradiction. Thus, the claim follows. Then,
dist(ft, 0P) < |t — pifly < .
Next, since f1; € P,
dist(pi, P) < i — Bill, < 7.
Thus,
Case 4: Ap; < band Afi; « b. This case is similar to case 3. Since p; € P and fi; ¢ P,

dist(i2s, P) < || — pily <7

12



Next, since pu; € P and fi; ¢ P, by a similar argument used in case 3,

dist(pi, OP) < |pi — i,

<
<.
Thus,

IA; — Ay| = | dist(fi;, 0P) — dist(pes, P)| < max(dist(fi;, OP), dist(pes, P)) < 7.
O

Proof of Lemmal[2] First, we bound the norm of fi; . — p; on = for all i € [K] and for all » € [T]. Fix
i € [K] and r € [T]. Recall that V' is a minimal 3-net. Using the event = and Lemma|H.3|

~ ~ w?
[ — pilly < 2sup y' (i — i) <A/ —
yeN r

Next, we give the probability bound. Since v; is R-sub-Gaussian, by definition, we have that if X ~ v,
then

t t — .
sup | X*yl,, < o X'y, = lvil,, <R

Thus, by Lemma[H.2|and a union bound, for each i € [K], y € N, and u € {0, ..., |log(T)|}:
Pr(Iv e (22,2 ' (s — o)l > 4 20) < 2exp(— o).

’ dv 16 R?

Taking a union bound over all i € [K], y € N, and u € {0, ..., |log(T)|} yields

2

w
Pr(E) >1-2(log(T) + 1)K —_—
() > 1 - 210(T) + DEWexp(~ )
D w?
>1—-2(log(T)+ 1)K —_——
(108 (T) + 1) K5 exp(~ )
where in the last line we used |A/| < 5” by Lemma|[H.4] O

Proof of Lemmal[3] Fix i € [K]. For the sake of brevity, we write fi; instead of fi; ;. First, suppose Ap; <
b — €l. Fix any j € [M]. Then,

alfi; — by = al(fi; — pi) + alp; — b,

A,
< ? + az»ui — bj (46)

N

(bj — alpi +€) + afp; — b;

N

(ajpi —bj +e)

N

(—e+e)

O NN =N

13



where line (46) follows by the Cauchy-Schwarz inequality, |a;l|, = 1, and the hypothesis.
Next, suppose dist(g;, P) > €. Then,

|£2: — pilly < (dlSt(ﬂl, P) + ¢€) < dist(p;, P).

2

Thus, fi; ¢ P since otherwise we have a contradiction.

H Technical Lemmas

Lemma H.1. Let P = {x € RP : Ax < b} with A€ RM*D_ Let p € P. Then,
dist(u, OP) = ;rlninM dist(p, {x : alx = b;}).

i
Proof. Ttis not hard to establish that 0P = P n (UM, {z : atx = b;}). We claim that
dist(, UM {x : alx = b;}) = dist(p, P~ (UM {x : alx = b;})).
Since UM, {z : atbx = b;} is closed, there exists y € UM, {z : atbr = b;} such that
I =yl = dist(p, L {2 : afba = bi}).

We claim that y € P. Suppose not (towards a contradiction). Then, there exists § € (0,1) such that
z=(1—0)pu+ 0y e dP. Then,

dist(e, (U { : ale = b,}) < = — pl, < |y — pl, = dist(, U (@ : albe = b)),
which is a contradiction, establishing the claim. Then,
Z:rlan dist(p, {z : alx = b;}) = dist(p, UL {z : alx = b;})
= dist(, P n (UM {x : alx = b;}))
= dist(u, OP).

O

Lemma H.2. Suppose that X1, ..., X1 are centered scalar R-sub-Gaussian random variables. Then, Yu €

{0, ..., [log(T)]},
Pr(3v e [2%,2¢T1] : %Z \/> < exp(—%Rz).

Proof. Define S, = >/ | X;. Fixu € {0,...,[log(T)]}. Let m = 2**!. Hoeffding’s maximal inequality
yields (see Step 2 of Lemma 1 of [Jamieson et al.|[2014])

Pr(3v e [m] : %Sy > ﬁ) =Pr(Jve [m]: S, = V)



Then,

Pr(Jv e [2%,2¢T1] : ESU > @) < Pr(Fve [m]: ESU > ﬁ)
v v

Finally,

Pr(3v e [2%,2¢T1] : s > \[) < Pr(3v e [2¢,2¢T1] lsv >
v

v v
x2ﬂ.
< -
exp( 2R2m)
x
= eXp(—TRZ)
O

Lemma H.3. Let € > 0 and N, be an e-net of SP~1. For any y € RP,

1

Iyl < 7= sw o'
€ zeN,
Proof. Let zo € N, such that H Fis zOH < e. Then, by Cauchy-Schwarz,
2
ty tr Y t
lyl, = ( —z0) +¥'z0 <|yly | 5 — 20| +¥y'z0 <elyl, + y 2o
Hy“z Iyl lyll, 2
Rearranging the inequality, we obtain
lyly < 'z < —
< —Y'z su z.
Yl l—ey 0S 1_€z€_/\pfy
O

The following Lemma appears in [Vershynin et al., 2017]] (see Corollary 4.2.13).

Lemma H.4. Let ¢ > 0 and N be a minimal e-net of SP~*. Then, < (2+1)P.

We state without proof general Hoeffding’s inequality for sub-Gaussian random variables (see Theorem
2.6.2 in|Vershynin et al.|[2017]).

Lemma H.5. Suppose that X,,...,X,, are i.id. scalar R-sub-Gaussian random variables with mean
€ R. Then, forallt > 0,

2

t“n
|72X ul > 1) < 2exp(—52g)-
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I Feasible Arm Identification with a Convex Region: Statistical Re-
sults

To begin, we introduce some notation. Let § > 0 and « € R”. Define Bs(z) = {z € R : |z|, < 6}.

Proposition I.1. Let P be a compact convex set with positive volume. There exists a sequence of polyhedra
{P,} such that

lim sup |dist(y, d0P,) — dist(y, dP)| = 0.

n—0oo yERD

Further, if there exists some T > 0 such that dist(u;, 0P) = 7 Vi € [K), then for all § > 0, there exists a
large enough n such that

(1-6)Hp < Hp, < (1+6)Hp.

Proof. Step 1: Defining a sequence of approximations. Define a dyadic cube of side length 27" as a set
of the form
11 1+ 1

[ ip ip+1
2—n’ 2-n

[ ] x F’W]

where i1, ...¢p are integers and n € N. Let I, denote the set of dyadic cubes with sidelength 27". Define

P,=conv( v E).
E€E,, ,EcP
Note that for any n, P, is a polyhedron with a finite number of constraints.

Step 2: For large n, 0P, is a good approximation of 0P. Next, we claim that V6 > 0, there exists N
such that n > N implies that sup,p dist(x,dP) < 0. Suppose not. Then, there exists § > 0 such that
Vn € N there exists «,, such that dist(x,,, 0P) > 4. Since P is compact and {x,, },eny C P, there exists a
convergent subsequence {x,,,} with limit z € P. Then, dist(x,0P) > §, which implies that z € P° and
Bs(x) < P. By definition of F,,, there exists IV such that n > N implies that B; (z) < Py. Thus,n > N

implies that dist(x, 0F,) > %. Thus, T, cannot converge to x, which is a contradiction. So, the claim is
true.

Next, we claim that V§ > 0, there exists IV such that n > N implies that sup,.,p dist(z, 0P,) < 6.
Suppose not. Then, 36 > 0 such that Vn € N there exists ¢,, € 0P such that dist(x,,0P,) > 4. 0P is
bounded and closed so that 0P is compact. Thus, {x,, } has a convergent subsequence {x,,; } with limit point
@ € 0P. «x has the property that dist(x,dP,) > 0 for all n € N. Let y € P° (such a point exists since P
has positive volume). Then, since P is convex, by the line segment principle (Proposition 1.4.1 [Bertsekas,
2009]), every point of the form zp = (1 — 0)x + Gy for § € (0,1] is such that zp € P°. So there exists
w € Bs(x) n P°. For large enough n, w € P,,. Since |w — x|, < J, we have a contradiction and thus the
claim follows.

Step 3: Distance to 0 P,, approaches uniformly distance to ¢ P. Formally, we show that

lim sup |dist(y,dP,) — dist(y, dP)| = 0. 47)

n—-00 yeRD

Let 0 > 0. Let n large enough so that sup,,p, dist(xz,0P) < ¢ and sup,e,p dist(x,0P,) < J. Fix y €

RP. Let @, € 0P such that |y — x|, = dist(y, 0P) and x,,, € P, such that |y — x,, |, = dist(y, P,).

16



Let z € 0P such that ||x;,, — z|, < d. Then, by the reverse triangle inequality,
Hz =yl = [2p, -yl | <6
Then,
dist(y, OP) — |y — @y, |, < dist(y, OP) — |z — yl, + 8 <.
Let w € 0P, such that ||z, — w||, < J. By the reverse triangle inequality,
Hy =2, =y —wl, [ <é
Then,
dist(y, 0P,) — |y — x, |, < dist(y, 0P,) — [ly — w|, + < 4.

This establishes (@7).

Step 4: Approximation of Problem Complexity. Suppose there exists some 7 > 0 such that dist(u;, 0P) >
T Vi e [[)K]. Lety; = 1— \/11T’ Yo = \/1175 — 1 and v = min(~;,72). Let n large enough such that
Vy e RY,

| dist(y, 0P,,) — dist(y, 0P)| < v7 < ymindist(u;, OP).
Then,

Hp = ) [dist(psi,0P) + €]

€[ K]
< [dist(pe;, OPn) (1 — ) + €] 72
€[ K]
< ), [dist(pei, 0Py) + €] 2(1 =) 72
€[ K]
< ) [dist(pi, Py) + €] 72(1+ )
€[ K]
= (]. + 5)Hpn
Similarly, Hp > (1 — §)Hp,.
O
Theorem L.1. Let P be a convex set with positive volume and € = 0 such that P = {x € P : dist(x, 0P) >
€)} is nonempty. Let w1, ..., i € P2. Then, for any 6 > 0, there exists a collection of K + 1 problems
B°, ..., BX such that for any algorithm,

max Egi (ET,RG(@)) > exp(—13

{0y =0y 25D log(48(log(T') + 1)K D))).

where

Hp = Y [ dist(p;, OP) + €] 2.

=

i=1

17



Proof. Step 1: Reduce convex set to compact convex set. Let r; == 2 dist(u;, 0P) foralli € [K]. Clearly,
there exists large enough B > 0 such that Py = P n {z € R” : |z||, < B} has the property that for all
i € [K], if we replace p; with any fi; € B,.(p;), then dist(f;, 0P) = dist(f1;,0Fp) and

Lr1.pe(S) = Lrp,(S) (48)

forall S < [K] . Further, for the feasible identification problem with g1, . .., ptx as the means, Hp = Hp,.
Step 2: Define approximation. Since dist(g;,0Fy) > € forall i € [ K], there exists v € (0, €) such that
forall i e [K],

dist(p;, 0Fy) > € + . (49)
Fix § > 0. By Proposition there exists a polyhedron P, such that

(175)HP0 < Hp

approx

< (1 + 6)Hp0
and

sup | dist(y, 0 Papproz) — dist(y, 0Fy)| < 7 (50)
yeRD 2

By @9) and (50), pt1,...,x € Pappror and for all i € [K], dist(pss, 0Pupproz) > € + 7 so that
,CT,po,e(S) = CT,PQPPTOI,E(S) forall S ¢ [K]
Step 3: Apply lower bound for polyhedra. Apply the lower bound construction from Theorem
10 Pupprox to define K + 1 collections of distributions B? for i € {0,1,..., K} (see Theorem for their
definitions). We claim that for every problem B, L, p,e(S) = L1.p,,,.0.,¢(S) forall S ¢ [K]. We briefly
sketch the proof. First,
di p ol . / L _ . ' e 2l
ist(p;, 0Fy) + 5 > dist(p;, OPapprox) = dist(pei, OPappros) > dist(pes, 0Fp) 5 > e+ 5"
Thus, dist(p], 0Py) > €. Further, p ¢ Papprox, dist(pe], Papproz) = € + 3, and (30) imply that p} ¢ P.
The claim follows from this observation.
Thus, by Theorem forall S c [K],

EpiL7,p(S) = Epi L7, py (S 51
eiax EpLrp, (5) eiax Bgilrp, (S) (5D
= EpiL (S
einax,  Eg T\ Pappros.e(:5)
> exp(—lSHi — 25D 1og(48(log(T) + 1)K D)))
Popprox
> exp(—13—1 25D log(48(log(T) + 1)K D))
> exp(—187——= —
exp HP(]_ _ 6) Og Og
where line follows by (48).
O
Theorem L.2. Let P be a convex set with positive volume and ., . . ., i € RP. Suppose that there are

some B > 0 and v > 0 such that it is known that

1. max( dist(p;, OP), |pilly) < B forallie [K],
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2. |dist(p;, OP) — €| = vy foralli € [K], and
3. dist(p;, OP) = .
Then, there exists an algorithm that given any § > 0, achieves

l )
1296RZHp(1 + )

IE[ET,P,E(g)] < 2(log(T) + 1) K57 exp(—

Proof. Step 1: Define the algorithm. The algorithm is as follows:

1. Set Fp = P n BQB(O).
2. Use the construction from Proposition I.I{to approximate Py with P04 such that

sup | dist(y, OPy) — dist(y, 0 Pappros)| < - (52)

yeRD 2
(1=0)Hp, < Happrox < Hp,(1+0).

3. Run MD-APT with the K given arms, P02, and € and return its answer S.

We note that because it is known that dist(p;, 0P) = +, step 2 of the algorithm is valid.
Step 2: Distance of p; to 0P is equal to the distance of p; to 0 Fy. First, we claim that

dist(p;, OP) = dist(u;, 0P). (33)
Let x € 0P such that | — p;||, = dist(p;, 0P). Then,
l2ly < lilly + |2 = pall, < 2B.

Thus, ¢ € Py. Since Py — P, x € 0F,. Therefore, dist(p;, 0FPy) < dist(u;, 0P). Towards a contradiction,
suppose that dist(p;, 0Py) < dist(u;, 0P). Lety € 0P, such that |u; — y| = dist(p;, 0Fp). Then,

lylly < lesilly + |y — pill, < 2B. (54)

Recall the fact
d(An B)c dA v dB.

Therefore, by this fact, y € 0P, and imply that y € 0 P. Thus, we have a contradiction. This establishes

Step 3: L1, pc(S) = L p,c(S) for every S < [K]. Next, we show that L1 p(S) = Lt p, (S) for
all S = [K]. Suppose p; € SB'.. Then, by (53), dist(p;, 0Fy) = dist(p;, 0P) > e. Further, by hypothesis,
| il < B so that p; € Py. Thus, p; € Sﬁg;}e.

Next, suppose that p; € Sp't. Then, Py = P implies that p; ¢ Py and dist(p;, Po) = dist(p;, P) > €
by (33). Thus, p; € S"P“‘;,e.

Next, suppose that p; ¢ Sp' and p; ¢ SE'.. Then, either (i) p; € P and dist(p;, 0P) < e or (ii) p; ¢ P
and dist(p;, P) < e. Suppose (i). Then, by (53), it follows that p; ¢ SB' and p; ¢ Sipﬁ‘;,e. Suppose (ii).
Then, Py < P and (3) imply that p1; ¢ S§" _and p; ¢ SiP“;’e. This establishes the claim.
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Step 4: Putting it together. (52) and the hypotheses imply that L7 p, (S) = L1.c.p, ... (S) for all
S c [K].
Thus, let S denote the output of MD-APT with the K given arms, P,p,r00, and €. By Theorem

E[L7,pe(S)] = E[L1,py ()]
= E[LT,Pppron,c(5)]

T
< 2(log(T) + 1) K57 exp(———s ——
(log(T') + 1) K5" exp( 129632HPappT0$)
T
< 2(log(T) 4+ 1) K5 exp(— )

1296 R2Hp(1 + 0)

J Additional Experiments

In this section, we present a couple more experiments. First, we present another variant of experiment 3,
linear progression of arms on a cube, where there are no irrelevant arms. We set e = 0. We use pp.3 =
(.75)®% +(0 : 3) x .05, g = (.95)%5, us = (1.05)%°, pe.9 = (1.25)%° — (0 : 3) x .05, pr10.10 = (1.15)®.
In comparison to experiment 3, we make it slightly easier to determine whether the arms 4 and ps belong
to the polyhedron because otherwise the difficulty of the problem prevents any algorithm from achieving
substantial progress after 2000 time steps. Figure [T presents the results. MD-SAR performs substantially
better than MD-APT. MD-APT pulls arm 4, which minimizes A;, too much. MD-APT pulls arm 4 time on
average 1006.27 times, whereas MD-SAR pulls arm 4 on average 319.59 times.

We also repeat the crowdsourcing experiment with a slightly different setup. Now, we draw samples
from a Gaussian distribution for each worker with mean calculated from the dataset in |Snow et al.| [2008]]
and variance over all the ratings over all the workers. The results are very similar to the results in the main
text.

. 0.00 —~ 001
Z 2
= -0.25 =
% % -05
-8 ~0.50 1 'g
a MD-APT S 1o MD-APT
o 07 MD-SAR o MD-SAR
—_
3 ol —— UA 3 —— UA
e —— MD-UCBE[1] & °] —— MD-UCBE[1] 9
3 -1251 —— MD-UCBE[10] 3 —— MD-UCBE[10] \
S 150/ —* MD-UCBE[1] 2 %] —*— MD-UCBEL.1]
o ) —— MD-UCBE[100] o —»— MD-UCBE[100]
e 0 250 500 750 1000 1250 1500 1750 2000 e 6 560 10‘00 15‘00 ZObO 2560 3060 35b0 4600
horizon horizon

Figure 1: Linear Progression on Cube, no Irrele-  Figure 2: Crowdsourcing Experiment with Sim-
vant Arms ulated Data
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