
Feasible Arm Identification: Supplementary Material

Julian Katz-Samuels Clayton Scott

June 5, 2018

A Outline
In Section C, we prove our lower bound for the feasible identification problem (Theorem 1). In Section
D, we prove the upper bound for MD-UCBE (Theorem 2). In Section E, we prove the upper bound for
MD-SAR (Theorem 3). In Section F, we prove Proposition 1 and the upper bound for MD-APT (Theorem
4). In Section G, we prove the key lemmas that unify our analyses of the three algorithms, namely, Lemmas
1, 2, and 3. In Section H, we prove some useful technical lemmas. In Section I, we extend our results
to the feasible arm identification problem where P is convex. Finally, in Section J, we present additional
experimental results.

Regarding the lower and upper bound proofs (Theorems 1, 2, 3, and 4), we note that we may assume that
the realizations for each arm are drawn before the game has begun. Therefore, the empirical mean of an arm
after t pulls is well-defined even if that arm has not been pulled t times.

B Notation
Let Ti denote the number of pulls of arm i after T rounds. Let Xi,j,t denote the tth realization of the jth
coordinate of νi. For the sake of brevity, we write ∆i instead of ∆pεqi .

C Lower Bound Proof
We note that the proof of Theorem 1 has some similarities to the proof of Theorem 1 of Locatelli et al. [2016].
The most important technical differences are (i) our novel lower bound construction with multidimensional
distributions and (ii) our simple “chaining” argument that iteratively applies the well-known change-of-
measure equation (6) in Audibert and Bubeck [2010] to relate B0 and Bi.

Proof of Theorem 1. Step 1: All of the problems have the same complexity. The difference between
problem B0 and Bi is the ith arm, i.e., the distributions νi and ν1i. Since µi P P and µ1i R P , by definition
of H , it suffices to show that distpµi, BP q “ distpµ1i, P q. By Lemma H.1, there is m P rM s such that
τm P tx : atmx “ bmu and τm is the projection of µi onto tx : atmx “ bmu. Let τ 1i denote the projection
of µ1i onto tx : atmx “ bmu. We claim that τi “ τ 1i . Using the closed form solution of the projection of a
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vector onto a hyperplane [Boyd and Vandenberghe, 2004],

τi “ µi ` pa
t
mµi ´ bmqam,

τ 1i “ µ
1
i ` pbm ´ a

t
mµ

1
iqam

“ µi ` 2pτi ´ µiq ` pbm ´ atmpµi ` 2pτi ´ µiqqam
“ 2τi ´ µi ´ pbm ´ atmµiqam
“ τi,

establishing the claim.
Then,

distpµ1i, P q ě distpµ1i, tx : atmx ď bmuq “
›

›µ1i ´ τi
›

›

2 ě distpµ1i, P q

where the last inequality follows since τi P P . Thus,

distpµ1i, P q “
›

›µ1i ´ τi
›

›

2 “ }µi ´ τi}2 “ distpµi, BP q.

Thus, B0, . . . ,BK have the same problem complexity.
Step 2: Change of Measure For all i P rKs, since distpµi, BP q ą ε, there exists di ą 0 such that

distpµi, BP q “ di ` ε. We note that
›

›µ1i ´ µi
›

›

2 “ 2 }τi ´ µi}2 “ 2pdi ` εq “ ∆i ` di ď 2∆i. (1)

Note that we can write νi as a product distribution νi,1 b νi,2 b . . . b νi,D where νi,j „ Npµi,j , 1q and
ν1i – ν1i,1 b ν

1
i,2 b . . .b ν

1
i,D where ν1i,j „ Npµ1i,j , 1q. Let l ď D and define

ν
1,plq
i “ ν1i,1 b ν

1
i,2 b . . .b ν

1
i,l´1 b ν

1
i,l b νi,l`1 b . . .b νi,D.

Let Bi,plq denote the product distribution

ν1 b . . .b νi´1 b ν
1,plq
i b νi`1 b . . .b νK .

Define

KLk,l – KLpν1k,l, νk,lq “
1
2 pµ

1
k,l ´ µk,lq

2

where we used the KL-divergence between two multivariate Gaussian random variables. Next, define for
1 ď k ď K, 1 ď l ď D, and 1 ď t ď T ,

xKLk,l,t –
1
t

t
ÿ

s“1
logp

dν1k,lpXk,l,sq

dνk,lpXk,l,sq
q “

1
t

t
ÿ

s“1
r
1
2 pµ

2
k,l ´ pµ

1
k,lq

2q ` pµ1k,l ´ µk,lqXk,l,ss

where we used the definition of the pdf of Gaussian random variables. Note that Eνk,l xKLk,l,t “ KLk,l and
that

Varνk,lr
1
2 pµ

2
k,l ´ pµ

1
k,lq

2q ` pµ1k,l ´ µk,lqXk,l,ss “ pµ
1
k,l ´ µk,lq

2Varνk,lpXk,l,sq “ pµ
1
k,l ´ µk,lq

2.
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Define the event

Θ “ t@k ď K,@t ď T,@l ď D : xKLk,l,t ´ KLk,l ď 2|µk,l ´ µ1k,l|
c

logp4plogpT q ` 1qKDq
t

u.

Claim: PB0pΘq ě 3
4 . Fix k ď K and l ď D. xKLk,l,t ´ KLk,l is a sum of centered Gaussian random

variables with variance pµ1k,l ´ µk,lq
2. Therefore, the sub-Gaussian norm of each term in the sum is |µ1k,l ´

µk,l|. Let u P t0, . . . , rlogpT qsu. By Lemma H.2,

PB0pDt P r2u, 2u`1s : xKLk,l,t ´ KLk,l ě 2|µ1k,l ´ µk,l|
c

logp4plogpT q ` 1qKDq
t

q ď
1

4plogpT q ` 1qKDq .

Then a union bound over k ď K, u P t0, . . . , rlogpT qsu, l ď D yields that

PB0pΘcq ď
1
4 (2)

establishing the claim.
Next, let i P rKs and define the event Ai “ ti P pSu. We lower bound PBipAiq. Recall that Ti denotes

the number of pulls of arm i after T rounds and let

ti “ EB0Ti.

and define the event

Θi “ ΘXAi X tTi ď 6tiu.

We use equation (6) from Audibert and Bubeck [2010], whose argument we briefly restate in the interest
of making our paper more self-contained. Let E denote an event. Then,

EBi,pD´1qr1tEu expp´TixKLi,D,Tiqs “ EBi,pD´1qr1tEu
Ti
ź

s“1

dνi,D
dν1i,D

pXi,D,sqs

“

ż

. . .

ż

1tEu
Ti
ź

s“1

dνi,D
dν1i,D

pXi,D,sq

”

ź

k‰i

Tk
ź

s“1
dνk,lpXk,l,sq

ı”

Ti
ź

s“1

ź

l‰D

dνi,lpXi,l,sq

ı

Ti
ź

s“1
dν1i,DpXi,D,sq

“ EBir1tEus. (3)

We have the following series of inequalities:

PBipAiq ě PBipΘiq

“ EBi,pD´1qr1tΘiu expp´TixKLi,D,Tiqs (4)

ě EBi,pD´1qr1tΘiu expp´Ti
1
2 pµi,D ´ µ

1
i,Dq

2 ´ 2|µi,D ´ µ1i,D|
a

Ti logp4plogpT q ` 1qKDqqs
(5)

ě PrBi,pD´1qpΘiq expp´3tipµi,D ´ µ1i,Dq2 ´ 2|µi,D ´ µ1i,D|
a

6ti logp4plogpT q ` 1qKDqqq
(6)
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where equality (4) follows by equation (3), inequality (5) follows by Θ, and inequality (6) follows by tTi ď
6tiu. Observe that we can repeat lines (4), (5), and (6) for PrBi,pD´1qpΘiq. Continuing in this manner for
l “ 1, . . . , D ´ 1 yields:

PBipAiq ě PrBi,pD´1qpΘiq expp´3tipµi,D ´ µ1i,Dq2 ´ 2|µi,D ´ µ1i,D|
a

6ti logp4plogpT q ` 1qKDqqq

ě PrB0pΘiq expp´3ti
D
ÿ

l“1
pµi,l ´ µ

1
i,lq

2 ´ |µi,l ´ µ
1
i,l|

a

24ti logp4plogpT q ` 1qKDqqq (7)

ě PrB0pΘiq expp´12ti∆2
i ´

›

›µi ´ µ
1
i

›

›

1

a

24ti logp4plogpT q ` 1qKDqqq (8)

ě PrB0pΘiq expp´12ti∆2
i ´

›

›µi ´ µ
1
i

›

›

2

?
D
a

24ti logp4plogpT q ` 1qKDqqq (9)

ě PrB0pΘiq expp´12ti∆2
i ´ 2∆i

a

24tiD logp4plogpT q ` 1qKDqqq (10)

ě PrB0pΘiq expp´13ti∆2
i ´ 24D logp4plogpT q ` 1qKDqqq (11)

Line (8) follows by (1), line (9) follows by applying the inequality }x}1 ď }x}2
?
D, line (10) follows by

(1), and line (11) follows by the inequality 2ab ď a2 ` b2 with a “ ∆i

?
ti.

Step 3: Lower bounding PrB0pΘiq. Suppose that for some i it holds that PrB0pAiq ă
1
2 . Then,

PrB0pXkPrKsAkq ď PrB0pAiq ă
1
2 .

Observe that under B0, the event pXkPrKsAkq
c implies that LT,εppSq “ 1 since for all k P rKs, µk P P and

distpµk, BP q ě ε. Thus, the theorem follows since

max
iPt0,...,Ku

EBipLT,εppSqq ě EB0pLT,εppSqq ě PrB0ppXkPrKsAkq
cq ą

1
2 .

Therefore, we may suppose for the remainder of the proof that PrB0pAjq ě
1
2 for all j P rKs. Fix i P rKs.

By Markov’s inequality,

PrB0pTi ą 6tiq ď
EB0rTis

6ti
“

1
6 .

Then, using the above two inequalities and inequality (2), by a union bound,

PrB0pΘc
i q ď

1
4 `

1
2 `

1
6 “

11
12 ,

concluding this step of the proof.
Step 4: Putting it together.

max
iPt1,...,Ku

PrBipAiq ě
1
K

K
ÿ

i“1
PrBipAiq

ě
1
K

K
ÿ

i“1
PrB0pΘiq expp´13ti∆2

i ´ 24D logp4plogpT q ` 1qKDqqq (12)

ě
1
12

1
K

K
ÿ

i“1
expp´13ti∆2

i ´ 24D logp4plogpT q ` 1qKDqqq (13)
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where in inequality (12) we used (11), in inequality (13) we used PrB0pΘiq ě
1
12 . We claim that since

řK
i“1 ti “ T , there exists some j such that tj ď T

H∆2
j

. Towards a contradiction, suppose that for all i P rKs

ti ą
T

H∆2
i

. Then,

T “
ÿ

iPrKs

ti ą
ÿ

iPrKs

T

H∆2
i

“ T,

which is a contradiction. Then,

1
K

K
ÿ

i“1
expp´13ti∆2

i ´ 24D logp4plogpT q ` 1qKDqqq

ě expp´13tj∆2
j ´ 24D logp4plogpT q ` 1qKDqq ´ logpKqq

ě expp´13 T
H
´ 24D logp4plogpT q ` 1qKDqq ´ logpKqq.

Observe that under Bi, the event Ai implies that LT,εppSq “ 1 since distpµ1i, P q ą ε. Thus,

max
iPt0,...,Ku

EBipLT,εppSqq ě max
iPt1,...,Ku

EBipLT,εppSqq

ě max
iPt1,...,Ku

PrBipAiq

ě
1
12 expp´13 T

H
´ 24D logp4plogpT q ` 1qKDqq ´ logpKqq

ě expp´13 T
H
´ 25D logp48plogpT q ` 1qKDqqq.

D MD-UCBE Upper Bound Proof
Proof of Theorem 2. Step 1: Defining an appropriate event.

Let N be a minimal 1
2 -net on SD´1. Let δ ą 0 (we choose it later). Define the event

Ξ “ t@i P rKs,@y P N ,@r P t1, . . . , T u : |ytppµi,r ´ µiq| ď
c

aδ2

4r u.

By Lemma 2, on Ξ, for all i P rKs and for all r P rT s,

}pµi,r ´ µi}2 ď

c

aδ2

r
(14)

and

PrpΞq ě 1´ 2plogpT q ` 1qK5D expp´a δ2

16R2 q.

For the remainder of the proof, we suppose that Ξ holds.
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Step 2: Lower bound the number of pulls for some arm.
Fix T . Recall that Ti denotes the number of pulls of arm i after T rounds. We claim that there exists an

arm k such that it has been pulled after initialization and such that Tk ´ 1 ě T´K
H∆2

k

(for the remainder of the
proof, let k denote one of these arms). If not, then we obtain the following contradiction.

T ´K “

K
ÿ

i“1
pTi ´ 1q ă

K
ÿ

i“1

T ´K

H∆2
i

“ T ´K.

For the remainder of the proof, let t denote the last time at which arm k was pulled. Then,

Tkptq “ Tk ´ 1 ě T ´K

H∆2
k

. (15)

Step 3: Lower bound the number of pulls for each arm.
Lemma 1 and event Ξ imply that

|p∆i,Tiptq ´∆i| ď 2

d

aδ2

Tiptq
(16)

for all i P rKs. We choose δ “ 1
10 .

Arm k was pulled at time t, so that we have for all i P rKs,

p∆k,Tkptq ´

c

a

Tkptq
ď p∆i,Tiptq ´

c

a

Tiptq
. (17)

Now,

∆k `

c

a

Tiptq
ď p∆k,Tkptq `

c

a

Tiptq
`

1
5

c

a

Tkptq
(18)

ď
6
5

c

a

Tkptq
` p∆i,Tiptq (19)

where in inequality (18) we apply (16) and in inequality (19) we apply (17).
Rearranging (19), we obtain

c

a

Tiptq
ď

6
5

c

a

Tkptq
´∆k `

p∆i,Tiptq

ď ∆k ´∆k `
p∆i,Tiptq (20)

ď ∆i `
1
5

c

a

Tiptq
. (21)

where inequality (20) follows by (15) and 0 ď a ď 25
36
T´K
H and inequality (21) follows by (16).

Rearranging (21) implies that

4
5

c

a

Tiptq
ď ∆i.
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Thus,

1
5

c

a

Ti
ď

1
5

c

a

Tiptq
ď

∆i

4 ă
∆i

2 (22)

Step 4: Putting it together
Combining (22), event Ξ, and (14) yields for all i P rKs,

›

›

pµi,TipT`1q ´ µi
›

›

2 ă
∆i

2 .

Then, by Lemma 3, it follows that LT,εppSq “ 0.

E MD-SAR Upper Bound Proof
As in Algorithm 2, define Ďlogpxq “ 1

2 `
řx
i“2

1
i .

Proof of Theorem 3. Step 1: Defining an event and bounding probability Let N be a minimal 1
2 -net on

SD´1. Let δ ą 0 (we choose it later). Define the events

Ξ1 “ t@i P rKs,@y P N ,@r P t1, . . . , T u : |ytppµi,r ´ µiq| ď

d

pT ´Kqδ2

ĎlogpKqH2r
u,

Ξ2 “ t@k P rK ´ 1s,@l P tpKq, . . . , pK ` 1´ kqu and j P rKs s.t. 2∆j ă ∆l : p∆l,nk ´
p∆j,nk ą 0u.

Then, by Lemma 2,

PrpΞ1q ě 1´ 2plogpT q ` 1qK5D expp´ T ´K

16ĎlogpKqH2

δ2

R2 q

ě 1´ 2plogpT q ` 1qK5D expp´ T ´K

16 logp2KqH2

δ2

R2 q (23)

where line (23) follows by logpK ` 1q ´ 1
2 ď

ĎlogpKq ď logpKq ` 1
2 ď logp2Kq [Audibert and Bubeck,

2010].
Next, we bound PrpΞ2q. By a union bound,

PrpΞc2q ď
ÿ

kPrK´1s

ÿ

lPtpKq,...,pK`1´kqu,j:2∆jă∆l

Prpp∆j,nk ´
p∆l,nk ě 0q.

Fix a round k P t1, . . . ,K´1u, let l P tpKq, . . . , pK`1´kqu, and let j P rKs such that 2∆j ă ∆l. Then,

Prpp∆j,nk ´
p∆l,nk ě 0q “ Prppp∆j,nk ´∆jq ´ p

p∆l,nk ´∆lq ě ∆l ´∆jq

ď Prppp∆j,nk ´∆jq ´ p
p∆l,nk ´∆lq ą

1
2∆lq

ď Prp|pp∆j,nk ´∆jq ´ p
p∆l,nk ´∆lq| ą

1
2∆lq

ď Prp|p∆j,nk ´∆j | ` |
p∆l,nk ´∆l| ą

1
2∆lq

ď Prp|p∆j,nk ´∆j | ą
1
4∆lq ` Prp|p∆l,nk ´∆l| ą

1
4∆lq
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Define the event

Σi “ t@y P N , : |ytppµi,nk ´ µiq| ď
1
16∆lu.

Under Σi, Lemma H.3 implies that

}pµi,nk ´ µi}2 ď 2 sup
yPN

ytppµi,nk ´ µiq ď
1
8∆l.

Thus, by Lemma 1, Σi implies that |p∆ipnkq ´∆i| ď
1
4∆l. Using the contrapositive of this implication,

Prp|p∆j,nk ´∆j | ą
1
4∆lq ` Prp|p∆l,nk ´∆l| ą

1
4∆lq ď PrpΣcjq ` PrpΣcl q

ď
ÿ

yPN
rPrp|ytppµl,nk ´ µlq| ą

1
16∆lq

` Prp|ytppµj,nk ´ µjq| ą
1
16∆lqs

ď 4 ¨ 5D expp´ nk∆2
l

512R2 q (24)

ď 4 ¨ 5D expp´
nk∆2

pK`1´kq

512R2 q.

where line (24) follows by Lemma H.5 and since N is a 1
2 -net by construction, we have |N | ď 5D by

Lemma H.4. Then,

PrpΞc2q ď
ÿ

kPrK´1s

ÿ

lPtpKq,...,pK`1´kqu,j:2∆jă∆l

4 ¨ 5D expp´
nk∆2

pK`1´kq

512R2 q

ď
ÿ

kPrK´1s
kK24 ¨ 5D expp´

nk∆2
pK`1´kq

512R2 q

ď 4K35D expp´ T ´K

512R2H2
q

where we used the fact that

nk∆2
pK`1´kq ě

T ´K
ĎlogpKqpK ` 1´ kq∆´2

pK`1´kq
ě

T ´K
ĎlogpKqH2

.

For the remainder of the proof, we suppose Ξ1 X Ξ2 holds.
Step 2: Lower bounding the number of pulls This step of the proof is similar to the proof of Theorem

3 in [Audibert and Bubeck, 2010]; we repeat it for the sake of completeness. Consider phase k. At least one
of the arms l P tpKq, . . . , pK ` 1´ kqu has not been eliminated. Then, by Ξ2, we have that p∆l,nk ą

p∆j,nk

for any arm j satisfying 2∆j ă ∆pK`1´kq. Thus, at the end of phase k, MD-SAR does not eliminate any
arm j such that 2∆j ă ∆pK`1´kq.

Now, fix an arm j. Recall that Tj denotes the number of pulls of arm j after T rounds. We consider
two distinct cases: (i) there exists m P rKs such that ∆pm´1q ď 2∆j ă ∆pmq and (ii) there exists no such
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m P rKs. Suppose (i) holds. Since 2∆j ă ∆pmq, the arm j is eliminated some time after the K ` 2 ´m
phase so that

∆2
jTj ě ∆2

jnK`2´m “
∆2
j

∆2
pm´1q

T ´K
ĎlogpKqpm´ 1q∆´2

pm´1q
ě

∆2
j

∆2
pm´1q

T ´K
ĎlogpKqH2

ě
T ´K

4ĎlogpKqH2
.

Next, suppose (ii) holds. Then, 2∆j ě ∆pKq, so that

∆2
jTj ě

1
4∆2

pKqn1 “
T ´K

4ĎlogpKqK∆´2
pKq

ě
T ´K

4ĎlogpKqH2
.

Thus, we have that for all j P rKs,

Tj ě
T ´K

4ĎlogpKqH2∆2
j

. (25)

Step 3: Putting it together. Using Lemma 2, Ξ1, and (25), we have that for all i P rKs,

›

›

pµi,TipT`1q ´ µi
›

›

2 ď 2

d

pT ´Kqδ2

ĎlogpKqH2Ti
ď 4δ∆i.

We choose δ “ 1
9 . Then, by Lemma 3, it follows that LT,εppSq “ 0.

F MD-APT Upper Bound Proof
Proof of Proposition 1. Let N be a minimal 1

2 -net of SD´1. By Lemma H.4, |N | ď 5D. Then,

ErLT,εppSqs ď PrpDi : pµi,TipT`1q P P and µi R P

or pµi,TipT`1q R P and µi P P q

ď PrpDi :
›

›

pµi,TipT`1q ´ µi
›

›

2 ą ∆iq

ď
ÿ

iPrKs

Prp
›

›

pµi,TipT`1q ´ µi
›

›

2 ą ∆iq

ď
ÿ

iPrKs

ÿ

yPN
Prp|ytppµi,TipT`1q ´ µiq| ą

∆i

2 q (26)

ď
ÿ

iPrKs

ÿ

yPN
2 expp´1

8
∆2
iTi
R2 q (27)

“ 2K5D expp´1
8

T

HR2 q.

Line (26) follows since by Lemma H.3, if
›

›

pµi,TipT`1q ´ µi
›

›

2 ą ∆i, then there exists y P N such that
|ytppµi,TipT`1q ´ µiq| ą

∆i

2 . Line (27) follows by Lemma H.5.

9



Proof of Theorem 4. Step 1: Defining an appropriate event.
Let N be a minimal 1

2 -net on SD´1. Let δ ą 0 (we choose it later). Define the event

Ξ “ t@i P rKs,@y P N ,@r P t1, . . . , T u : |ytppµi.r ´ µiq| ď
c

Tδ2

4Hr u.

By Lemma 2, on Ξ, for all i P rKs and for all r P rT s

}pµi.r ´ µi}2 ď

c

Tδ2

Hr
. (28)

and

PpΞq ě 1´ 2plogpT q ` 1qK5D expp´T δ2

16R2H
q

For the remainder of the proof, we suppose that Ξ holds.
Step 2: Lower bound the number of pulls for some arm.
Fix T . Recall that Ti denotes the number of pulls of arm i after T rounds. We claim that there exists an

arm k that has been pulled after initialization and such that Tk ´ 1 ě T´K
H∆2

k

(for the remainder of the proof,
let k denote one of these arms). If not, then we obtain the following contradiction:

T ´K “

K
ÿ

i“1
pTi ´ 1q ă

K
ÿ

i“1

T ´K

H∆2
i

“ T ´K.

Since T ě 2K, Tk ´ 1 ě T
2H∆2

k

.
For the remainder of the proof, let t ď T denote the last round that arm k was pulled. Then,

Tkptq “ Tk ´ 1 ě T

2H∆2
k

. (29)

Step 3: Lower bound the number of pulls for each arm.
Lemma 1 and event Ξ imply that

|p∆i,Tiptq ´∆i| ď 2

d

Tδ2

HTiptq
(30)

for all i P rKs.
At time t, we pulled arm k, so that for all i P rKs, p∆k,Tkptq

a

Tkptq ď p∆i,Tiptq

a

Tiptq. Then, using (29)
and (30),

p∆k,Tkptq

a

Tkptq ě p∆k ´ 2

d

Tδ2

HTkptq
q
a

Tkptq

ě p∆k ´ 2
b

2δ2∆2
kq
a

Tkptq. (31)

We require that δ ă 1
2
?

2 so that (31) is positive. Thus, we can apply (31) and (29) to obtain that

p∆k,Tkptq

a

Tkptq ě p
1
?

2
´ 2δq

c

T

H
. (32)

10



Next, applying (30), we obtain

p∆i,Tiptq

a

Tiptq “ p∆i,Tiptq

a

Tiptq

ď p∆i ` 2

d

Tδ2

HTiptq
q
a

Tiptq

ď ∆i

a

Tiptq ` 2δ
c

T

H
. (33)

Combining inequalities Tiptq ď Ti, (33), p∆k,Tkptq

a

Tkptq ď p∆i,Tiptq

a

Tiptq, and (32) yields that

∆i

a

Ti ` 2δ
c

T

H
ě ∆i

a

Tiptq ` 2δ
c

T

H

ě p∆i,Tiptq

a

Tiptq

ě p∆k,Tkptq

a

Tkptq

ě p
1
?

2
´ 2δq

c

T

H
. (34)

Rearranging (34) yields for all i P rKs

p1´ 4
?

2δq2 T

2H∆2
i

ď Ti. (35)

Step 4: Putting it together.
Combining (35) with (28) and Ξ respectively, we obtain

›

›

pµi,TipT`1q ´ µi
›

›

2 ď ∆iδp1´ 4
?

2δq.

We choose δ “
?

2
9 . Thus, by Lemma 3, LT,εppSq “ 0.

G Key Lemmas
In this section, we prove the Lemmas of Section 6, namely, Lemmas 1, 2, and 3.

Proof of Lemma 1. For the sake of brevity, we write pµi instead of pµi,t and p∆i instead of p∆i,t. We separate
the analysis into 4 cases.

Case 1: Aµi ď b and Apµi ď b.
Let j be such that ∆i “ |bj ´ a

t
jµi| ` ε and let pj such that p∆i “ |bpj ´ a

t
pj
pµi| ` ε. Then, by definition

of j and pj,

0 ď bj ´ a
t
jµi ď b

pj ´ a
t
pj
µi (36)

0 ď b
pj ´ a

t
pj
pµi ď bj ´ a

t
j pµi. (37)

Note that it suffices to bound

|∆i ´
p∆i| “ ||bj ´ a

t
jµi| ´ |bpj ´ a

t
pj
pµi||.

11



Then,

pbj ´ a
t
jµiq ´ pbpj ´ a

t
pj
pµiq ď pbpj ´ a

t
pj
µiq ´ pbpj ´ a

t
pj
pµiq (38)

“ at
pj
ppµi ´ µiq (39)

ď γ. (40)

where line (38) used line (36) and line (40) follows by Cauchy-Schwarz inequality, }aj}2 “ 1, and the
hypothesis. Next,

pb
pj ´ a

t
pj
pµiq ´ pbj ´ a

t
jµiq ď pbj ´ a

t
j pµiq ´ pbj ´ a

t
jµiq (41)

“ atjpµi ´ pµiq

ď γ. (42)

where line (41) used line (37) and line (42) follows by Cauchy-Schwarz inequality, }aj}2 “ 1, and the
hypothesis.

Case 2: Aµi � b and Apµi � b. Then,

|∆i ´
p∆i| “ | }µi ´ ProjP pµiq}2 ´ }pµi ´ ProjP ppµiq}2 |

ď }pµi ´ pµiq ´ pProjP pµiq ´ ProjP ppµiqq}2 (43)
ď }µi ´ pµi}2 ` }ProjP pµiq ´ ProjP ppµiq}2 (44)
ď 2 }µi ´ pµi}2 (45)
ď 2γ

where line (43) used the reverse triangle inequality, (44) used the triangle inequality, and (45) used the fact
that projection onto a convex set is contractive (Proposition 2.2.1 [Bertsekas, 2009]).

Case 3: Aµi � b and Apµi ď b.
We claim that distppµi, BP q ď }pµi ´ µi}2. Suppose not. Then, since pµi P P and µi R P , there exists

θ P r0, 1s such that z “ θµi ` p1´ θqpµi P BP . Then,

}pµi ´ z}2 ď }pµi ´ µi}2 ă distppµi, BP q,

which is a contradiction. Thus, the claim follows. Then,

distppµi, BP q ď }pµi ´ µi}2 ď γ.

Next, since pµi P P ,

distpµi, P q ď }µi ´ pµi}2 ď γ.

Thus,

|∆i ´
p∆i| “ | distppµi, BP q ´ distpµi, P q| ď maxpdistppµi, BP q, distpµi, P qq ď γ.

Case 4: Aµi ď b and Apµi � b. This case is similar to case 3. Since µi P P and pµi R P ,

distppµi, P q ď }pµi ´ µi}2 ď γ.

12



Next, since µi P P and pµi R P , by a similar argument used in case 3,

distpµi, BP q ď }µi ´ pµi}2
ď γ.

Thus,

|∆i ´
p∆i| “ | distppµi, BP q ´ distpµi, P q| ď maxpdistppµi, BP q, distpµi, P qq ď γ.

Proof of Lemma 2. First, we bound the norm of pµi,r ´ µi on Ξ for all i P rKs and for all r P rT s. Fix
i P rKs and r P rT s. Recall that N is a minimal 1

2 -net. Using the event Ξ and Lemma H.3,

}pµi,r ´ µi}2 ď 2 sup
yPN

ytppµi,r ´ µiq ď

c

ω2

r
.

Next, we give the probability bound. Since νi is R-sub-Gaussian, by definition, we have that if X „ νi,
then

sup
yPN

›

›Xty
›

›

ψ2
ď sup

yPSD´1

›

›Xty
›

›

ψ2
“ }νi}ψ2

ď R.

Thus, by Lemma H.2 and a union bound, for each i P rKs, y P N , and u P t0, . . . , tlogpT quu:

PrpDv P r2u, 2u`1s, |ytppµi,v ´ µiq| ě

c

ω2

4v q ď 2 expp´ ω2

16R2 q.

Taking a union bound over all i P rKs, y P N , and u P t0, . . . , tlogpT quu yields

PrpΞq ě 1´ 2plogpT q ` 1qK|N | expp´ ω2

16R2 q

ě 1´ 2plogpT q ` 1qK5D expp´ ω2

16R2 q

where in the last line we used |N | ď 5D by Lemma H.4.

Proof of Lemma 3. Fix i P rKs. For the sake of brevity, we write pµi instead of pµi,t. First, suppose Aµi ď
b´ ε1. Fix any j P rM s. Then,

atj pµi ´ bj “ a
t
jppµi ´ µiq ` a

t
jµi ´ bj

ă
∆i

2 ` atjµi ´ bj (46)

ď
1
2 pbj ´ a

t
jµi ` εq ` a

t
jµi ´ bj

ď
1
2 pa

t
jµi ´ bj ` εq

ď
1
2 p´ε` εq

“ 0

13



where line (46) follows by the Cauchy-Schwarz inequality, }aj}2 “ 1, and the hypothesis.
Next, suppose distpµi, P q ě ε. Then,

}pµi ´ µi}2 ă
∆i

2 “
1
2 pdistpµi, P q ` εq ď distpµi, P q.

Thus, pµi R P since otherwise we have a contradiction.

H Technical Lemmas
Lemma H.1. Let P “ tx P RD : Ax ď bu with A P RMˆD. Let µ P P . Then,

distpµ, BP q “ min
i“1,...,M

distpµ, tx : atix “ biuq.

Proof. It is not hard to establish that BP “ P X pYMi“1tx : atix “ biuq. We claim that

distpµ,YMi“1tx : atix “ biuq “ distpµ, P X pYMi“1tx : atix “ biuqq.

Since YMi“1tx : atibx “ biu is closed, there exists y P YMi“1tx : atibx “ biu such that

}µ´ y}2 “ distpµ,YMi“1tx : atibx “ biuq.

We claim that y P P . Suppose not (towards a contradiction). Then, there exists θ P p0, 1q such that
z “ p1´ θqµ` θy P BP . Then,

distpµ, pYMi“1tx : atix “ biuqq ď }z ´ µ}2 ă }y ´ µ}2 “ distpµ,YMi“1tx : atibx “ biuq,

which is a contradiction, establishing the claim. Then,

min
i“1,...,M

distpµ, tx : atix “ biuq “ distpµ,YMi“1tx : atix “ biuq

“ distpµ, P X pYMi“1tx : atix “ biuqq

“ distpµ, BP q.

Lemma H.2. Suppose that X1, . . . , XT are centered scalar R-sub-Gaussian random variables. Then, @u P
t0, . . . , rlogpT qsu,

PrpDv P r2u, 2u`1s : 1
v

v
ÿ

i“1
Xi ě

c

x

v
q ď expp´ x

4R2 q.

Proof. Define Sv “
řv
i“1Xi. Fix u P t0, . . . , rlogpT qsu. Let m “ 2u`1. Hoeffding’s maximal inequality

yields (see Step 2 of Lemma 1 of [Jamieson et al., 2014])

PrpDv P rms : 1
v
Sv ě

?
x

v
q “ PrpDv P rms : Sv ě

?
xq

ď expp´ x

2R2m
q.

14



Then,

PrpDv P r2u, 2u`1s : 1
v
Sv ě

?
x

v
q ď PrpDv P rms : 1

v
Sv ě

?
x

v
q

ď expp´ x

2R2m
q.

Finally,

PrpDv P r2u, 2u`1s : 1
v
Sv ě

c

x

v
q ď PrpDv P r2u, 2u`1s : 1

v
Sv ě

?
x2u
v

q

ď expp´ x2u

2R2m
q

“ expp´ x

4R2 q.

Lemma H.3. Let ε ą 0 and Nε be an ε-net of SD´1. For any y P RD,

}y}2 ď
1

1´ ε sup
zPNε

ytz.

Proof. Let z0 P Nε such that
›

›

›

y
}y}2

´ z0

›

›

›

2
ď ε. Then, by Cauchy-Schwarz,

}y}2 “
yty

}y}2
“ ytp

y

}y}2
´ z0q ` y

tz0 ď }y}2

›

›

›

›

y

}y}2
´ z0

›

›

›

›

2
` ytz0 ď ε }y}2 ` y

tz0.

Rearranging the inequality, we obtain

}y}2 ď
1

1´ εy
tz0 ď

1
1´ ε sup

zPNε

ytz.

The following Lemma appears in [Vershynin et al., 2017] (see Corollary 4.2.13).

Lemma H.4. Let ε ą 0 and Nε be a minimal ε-net of SD´1. Then, |Nε| ď p
2
ε ` 1qD.

We state without proof general Hoeffding’s inequality for sub-Gaussian random variables (see Theorem
2.6.2 in Vershynin et al. [2017]).

Lemma H.5. Suppose that X1, . . . , Xn are i.i.d. scalar R-sub-Gaussian random variables with mean
µ P R. Then, for all t ą 0,

Prp| 1
n

n
ÿ

i“1
Xi ´ µ| ą tq ď 2 expp´ t2n

2R2 q.
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I Feasible Arm Identification with a Convex Region: Statistical Re-
sults

To begin, we introduce some notation. Let δ ą 0 and x P RD. Define Bδpxq “ tx P RD : }x}2 ď δu.

Proposition I.1. Let P be a compact convex set with positive volume. There exists a sequence of polyhedra
tPnu such that

lim
nÝÑ8

sup
yPRD

| distpy, BPnq ´ distpy, BP q| “ 0.

Further, if there exists some τ ą 0 such that distpµi, BP q ě τ @i P rKs, then for all δ ą 0, there exists a
large enough n such that

p1´ δqHP ď HPn ď p1` δqHP .

Proof. Step 1: Defining a sequence of approximations. Define a dyadic cube of side length 2´n as a set
of the form

r
i1

2´n ,
i1 ` 1
2´n s ˆ . . .ˆ r

iD
2´n ,

iD ` 1
2´n s

where i1, . . . iD are integers and n P N. Let En denote the set of dyadic cubes with sidelength 2´n. Define

Pn “ convp Y
EPEn,EĂP

Eq.

Note that for any n, Pn is a polyhedron with a finite number of constraints.
Step 2: For large n, BPn is a good approximation of BP . Next, we claim that @δ ą 0, there exists N

such that n ě N implies that supxPBPn distpx, BP q ď δ. Suppose not. Then, there exists δ ą 0 such that
@n P N there exists xn such that distpxn, BP q ą δ. Since P is compact and txnunPN Ă P , there exists a
convergent subsequence txnju with limit x P P . Then, distpx, BP q ě δ, which implies that x P P ˝ and
Bδpxq Ă P . By definition of Pn, there exists N such that n ě N implies that B δ

2
pxq Ă PN . Thus, n ě N

implies that distpx, BPnq ě δ
2 . Thus, xnj cannot converge to x, which is a contradiction. So, the claim is

true.
Next, we claim that @δ ą 0, there exists N such that n ě N implies that supxPBP distpx, BPnq ď δ.

Suppose not. Then, Dδ ą 0 such that @n P N there exists xn P BP such that distpxn, BPnq ą δ. BP is
bounded and closed so that BP is compact. Thus, txnu has a convergent subsequence txnju with limit point
x P BP . x has the property that distpx, BPnq ě δ for all n P N. Let y P P ˝ (such a point exists since P
has positive volume). Then, since P is convex, by the line segment principle (Proposition 1.4.1 [Bertsekas,
2009]), every point of the form zθ “ p1 ´ θqx ` θy for θ P p0, 1s is such that zθ P P ˝. So there exists
w P Bδpxq X P

˝. For large enough n, w P Pn. Since }w ´ x}2 ă δ, we have a contradiction and thus the
claim follows.

Step 3: Distance to BPn approaches uniformly distance to BP . Formally, we show that

lim
nÝÑ8

sup
yPRD

| distpy, BPnq ´ distpy, BP q| “ 0. (47)

Let δ ą 0. Let n large enough so that supxPBPn distpx, BP q ď δ and supxPBP distpx, BPnq ď δ. Fix y P
RD. Let xp P BP such that }y ´ xp}2 “ distpy, BP q and xpn P BPn such that }y ´ xpn}2 “ distpy, BPnq.
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Let z P BP such that }xpn ´ z}2 ď δ. Then, by the reverse triangle inequality,

| }z ´ y}2 ´ }xpn ´ y}2 | ď δ.

Then,

distpy, BP q ´ }y ´ xpn}2 ď distpy, BP q ´ }z ´ y}2 ` δ ď δ.

Let w P BPn such that }xp ´w}2 ď δ. By the reverse triangle inequality,

| }y ´ xp}2 ´ }y ´w}2 | ď δ.

Then,

distpy, BPnq ´ }y ´ xp}2 ď distpy, BPnq ´ }y ´w}2 ` δ ď δ.

This establishes (47).
Step 4: Approximation of Problem Complexity. Suppose there exists some τ ą 0 such that distpµi, BP q ě

τ @i P rKs. Let γ1 “ 1 ´ 1?
1`δ , γ2 “

1?
1´δ ´ 1 and γ “ minpγ1, γ2q. Let n large enough such that

@y P RD,

| distpy, BPnq ´ distpy, BP q| ď γτ ď γmin
i

distpµi, BP q.

Then,

HP “
ÿ

iPrKs

rdistpµi, BP q ` εs´2

ď
ÿ

iPrKs

rdistpµi, BPN qp1´ γq ` εs´2

ď
ÿ

iPrKs

rdistpµi, BPN q ` εs´2p1´ γq´2

ď
ÿ

iPrKs

rdistpµi, BPN q ` εs´2p1` δq

“ p1` δqHPn

Similarly, HP ě p1´ δqHPn .

Theorem I.1. Let P be a convex set with positive volume and ε ě 0 such that P ˝ε – tx P P : distpx, BP q ą
εqu is nonempty. Let µ1, . . . ,µK P P ˝ε . Then, for any δ ą 0, there exists a collection of K ` 1 problems
B0, . . . ,BK such that for any algorithm,

max
iPt0,...,Ku

EBipLT,P,εppSqq ě expp´13 T

p1´ δqHP
´ 25D logp48plogpT q ` 1qKDqqq.

where

HP “

K
ÿ

i“1
r distpµi, BP q ` εs´2.
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Proof. Step 1: Reduce convex set to compact convex set. Let ri – 2 distpµi, BP q for all i P rKs. Clearly,
there exists large enough B ą 0 such that P0 “ P X tx P RD : }x}2 ď Bu has the property that for all
i P rKs, if we replace µi with any µ̃i P Brpµiq, then distpµ̃i, BP q “ distpµ̃i, BP0q and

LT,P,εpSq “ LT,P0,εpSq (48)

for all S Ă rKs . Further, for the feasible identification problem with µ1, . . . ,µK as the means,HP “ HP0 .
Step 2: Define approximation. Since distpµi, BP0q ą ε for all i P rKs, there exists γ P p0, εq such that

for all i P rKs,

distpµi, BP0q ą ε` γ. (49)

Fix δ ą 0. By Proposition I.1, there exists a polyhedron Papprox such that

p1´ δqHP0 ď HPapprox ď p1` δqHP0

and

sup
yPRD

| distpy, BPapproxq ´ distpy, BP0q| ă
γ

2 . (50)

By (49) and (50), µ1, . . . ,µK P Papprox and for all i P rKs, distpµi, BPapproxq ą ε ` γ
2 so that

LT,P0,εpSq “ LT,Papprox,εpSq for all S Ă rKs.
Step 3: Apply lower bound for polyhedra. Apply the lower bound construction from Theorem 1

to Papprox to define K ` 1 collections of distributions Bi for i P t0, 1, . . . ,Ku (see Theorem 1 for their
definitions). We claim that for every problem Bi, LT,P0,εpSq “ LT,Papprox,εpSq for all S Ă rKs. We briefly
sketch the proof. First,

distpµ1i, BP0q `
γ

2 ą distpµ1i, BPapproxq “ distpµi, BPapproxq ą distpµi, BP0q ´
γ

2 ě ε`
γ

2 .

Thus, distpµ1i, BP0q ą ε. Further, µ1i R Papprox, distpµ1i, Papproxq ě ε ` γ
2 , and (50) imply that µ1i R P .

The claim follows from this observation.
Thus, by Theorem 1, for all pS Ă rKs,

max
iPt0,...,Ku

EBiLT,P,εppSq “ max
iPt0,...,Ku

EBiLT,P0,εp
pSq (51)

“ max
iPt0,...,Ku

EBiLT,Papprox,εppSq

ě expp´13 T

HPapprox

´ 25D logp48plogpT q ` 1qKDqqq

ě expp´13 T

HP p1´ δq
´ 25D logp48plogpT q ` 1qKDqqq

where line (51) follows by (48).

Theorem I.2. Let P be a convex set with positive volume and µ1, . . . ,µK P RD. Suppose that there are
some B ą 0 and γ ą 0 such that it is known that

1. maxp distpµi, BP q, }µi}2q ď B for all i P rKs,
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2. | distpµi, BP q ´ ε| ě γ for all i P rKs, and

3. distpµi, BP q ě γ.

Then, there exists an algorithm that given any δ ą 0, achieves

ErLT,P,εppSqs ď 2plogpT q ` 1qK5D expp´ T

1296R2HP p1` δq
q.

Proof. Step 1: Define the algorithm. The algorithm is as follows:

1. Set P0 “ P X ĞB2Bp0q.

2. Use the construction from Proposition I.1 to approximate P0 with Papprox such that

sup
yPRD

| distpy, BP0q ´ distpy, BPapproxq| ď
γ

2 (52)

p1´ δqHP0 ď Happrox ď HP0p1` δq.

3. Run MD-APT with the K given arms, Papprox, and ε and return its answer pS.

We note that because it is known that distpµi, BP q ě γ, step 2 of the algorithm is valid.
Step 2: Distance of µi to BP is equal to the distance of µi to BP0. First, we claim that

distpµi, BP q “ distpµi, BP0q. (53)

Let x P BP such that }x´ µi}2 “ distpµi, BP q. Then,

}x}2 ď }µi}2 ` }x´ µi}2 ď 2B.

Thus, x P P0. Since P0 Ă P , x P BP0. Therefore, distpµi, BP0q ď distpµi, BP q. Towards a contradiction,
suppose that distpµi, BP0q ă distpµi, BP q. Let y P BP0 such that }µi ´ y} “ distpµi, BP0q. Then,

}y}2 ď }µi}2 ` }y ´ µi}2 ă 2B. (54)

Recall the fact

BpAXBq Ă BAY BB.

Therefore, by this fact, y P BP0 and (54) imply that y P BP . Thus, we have a contradiction. This establishes
(53).

Step 3: LT,P,εpSq “ LT,P0εpSq for every S Ă rKs. Next, we show that LT,P,εpSq “ LT,P0,εpSq for
all S Ă rKs. Suppose µi P Sint

P,ε. Then, by (53), distpµi, BP0q “ distpµi, BP q ě ε. Further, by hypothesis,
}µi}2 ď B so that µi P P0. Thus, µi P Sint

P0,ε
.

Next, suppose that µi P Sout
P,ε. Then, P0 Ă P implies that µi R P0 and distpµi, P0q “ distpµi, P q ą ε

by (53). Thus, µi P Sout
P0,ε

.
Next, suppose that µi R Sout

P,ε and µi R Sint
P,ε. Then, either (i) µi P P and distpµi, BP q ă ε or (ii) µi R P

and distpµi, BP q ď ε. Suppose (i). Then, by (53), it follows that µi R Sout
P0,ε

and µi R Sint
P0,ε

. Suppose (ii).
Then, P0 Ă P and (53) imply that µi R Sout

P0,ε
and µi R Sint

P0,ε
. This establishes the claim.
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Step 4: Putting it together. (52) and the hypotheses imply that LT,P0,εpSq “ LT,ε,PapproxpSq for all
S Ă rKs.

Thus, let pS denote the output of MD-APT with the K given arms, Papprox, and ε. By Theorem 4,

ErLT,P,εpSqs “ ErLT,P0,εpSqs

“ ErLT,Papprox,εpSqs

ď 2plogpT q ` 1qK5D expp´ T

1296R2HPapprox
q

ď 2plogpT q ` 1qK5D expp´ T

1296R2HP p1` δq
q.

J Additional Experiments
In this section, we present a couple more experiments. First, we present another variant of experiment 3,
linear progression of arms on a cube, where there are no irrelevant arms. We set ε “ 0. We use µ0:3 “
p.75qb5`p0 : 3qˆ .05, µ4 “ p.95qb5, µ5 “ p1.05qb5, µ6:9 “ p1.25qb5´p0 : 3qˆ .05, µ10:19 “ p1.15qb5.
In comparison to experiment 3, we make it slightly easier to determine whether the arms µ4 and µ5 belong
to the polyhedron because otherwise the difficulty of the problem prevents any algorithm from achieving
substantial progress after 2000 time steps. Figure 1 presents the results. MD-SAR performs substantially
better than MD-APT. MD-APT pulls arm 4, which minimizes ∆i, too much. MD-APT pulls arm 4 time on
average 1006.27 times, whereas MD-SAR pulls arm 4 on average 319.59 times.

We also repeat the crowdsourcing experiment with a slightly different setup. Now, we draw samples
from a Gaussian distribution for each worker with mean calculated from the dataset in Snow et al. [2008]
and variance over all the ratings over all the workers. The results are very similar to the results in the main
text.
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Figure 1: Linear Progression on Cube, no Irrele-
vant Arms
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Figure 2: Crowdsourcing Experiment with Sim-
ulated Data
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