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Abstract
We introduce the feasible arm identification
problem, a pure exploration multi-armed bandit
problem where the agent is given a set of D-
dimensional arms and a polyhedron P “ tx :
Ax ď bu Ă RD. Pulling an arm gives a random
vector and the goal is to determine, using a fixed
budget of T pulls, which of the arms have means
belonging to P . We propose three algorithms
MD-UCBE, MD-SAR, and MD-APT and provide
a unified analysis establishing upper bounds for
each of them. We also establish a lower bound that
matches up to constants the upper bounds of MD-
UCBE and MD-APT. Finally, we demonstrate the
effectiveness of our algorithms on synthetic and
real-world datasets.

1. Introduction
Pure exploration multi-armed bandit (MAB) problems pro-
vide a framework for determining via a sequential experi-
ment which of a set of distributions meet some criteria. In
this setting, there are K distributions ν1, . . . , νK and the
agent sequentially chooses from which distribution to sam-
ple an observation. At the end of the sampling stage, the
agent outputs the distributions which he believes meet the
desired criteria and the performance of the agent is measured
based on the quality of this decision. In the MAB literature,
distributions are also referred to as arms, and sampling a
realization from a distribution νi is referred to as pulling
arm i. The most well-studied of these problems is top-k arm
identification. In this problem, the goal is to find the k best
arms, that is, k arms with the largest means. This problem
and other pure exploration problems have applications in a
wide range of areas, including crowdsourcing, A/B testing,
and online advertising.

In many application domains, the arms and the criteria for
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a good arm are multi-dimensional in nature. For exam-
ple, in crowdsourcing it is important to distinguish good
workers from bad workers. For a multilabel classification
task (where examples are associated with multiple labels), a
worker can be modeled as a multi-dimensional arm where
each dimension corresponds to her accuracy at identifying a
particular label, and a natural definition for a “good worker”
is that her accuracy is above some threshold for each label
(e.g., 90%). A common approach for finding such workers
is to use a collection of examples labeled by domain experts
as a set of tests. Since workers are paid for each example
that they label, often an organization is only willing to spend
a limited number of queries to find good workers and an
effective method under this budget constraint is needed.

As another example, consider A/B testing for designing
products such as websites, ads, and video games. In this
setting, there are several options for a product and a com-
pany diverts traffic to each of the options to determine which
one to choose. Multi-dimensional criteria arise naturally in
this domain, as well. For example, a company that wants to
grow its user base for its website might desire the rate of new
subscriptions to be above some level, while still maintaining
a certain level of user retention among its current users. If
the product is a video game, the company might also be
interested in maintaining some metric of user engagement
above a certain threshold.

The pure exploration MAB literature lacks (i) a simple
framework for describing problems where the arms and cri-
teria are multi-dimensional and (ii) practical algorithms for
addressing these problems. In this paper, we aim to address
this gap. We introduce the feasible arm identification prob-
lem in which arms are associated with multi-dimensional
distributions and the goal is to find arms whose means be-
long to a given polyhedron1 P “ tx : Ax ď bu. Polyhedra
encompass a large class of regions that can model common
user-defined constraints, including thresholds or ranges on
individual dimensions and linear constraints involving multi-
ple dimensions. We propose several algorithms for the fixed
budget setting and provide upper and lower bounds. Fi-
nally, we demonstrate through experiments on synthetic and
real-world datasets that by leveraging the geometry of the

1There are several conflicting definitions of polyhedra. We
define a polyhedron as the intersection of a finite number of closed
halfspaces (Boyd and Vandenberghe, 2004).
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problem, our methods significantly outperform a uniform al-
location strategy. Indeed, in several of our experiments, our
methods find the feasible arms with a probability that is a
factor of 10 better than that of a uniform allocation strategy.
All proofs are contained in the supplementary material.

2. Related Work
MABs have received a significant amount of attention. Most
work considers minimizing the cumulative regret instead of
a pure exploration objective. There have been relatively few
works on multi-dimensional arms and criteria in this regime
(Drugan and Now, 2013; Busa-Fekete et al., 2017; Tekin
and Turgay, 2017). Drugan and Now (2013) modify a UCB
algorithm to find all arms on the Pareto front. Busa-Fekete
et al. (2017) use the Generalized Gini Index to optimize all
objectives in a fair way. Tekin and Turgay (2017) consider
a contextual MAB setting where the goal is to maximize
the total reward in a non-dominant objective, subject to
the constraint that the total reward in a dominant objective
is maximized. These works differ from our work in that
(i) they consider the cumulative regret setting, which is
fundamentally different from the pure exploration setting
(Bubeck et al., 2009), and (ii) they aim to either balance
multiple objective functions or find arms on the Pareto front,
whereas we aim to find feasible arms, where feasibility is
defined by membership in a given polyhedron.

In recent years, there have been many advances in pure
exploration MABs in the fixed confidence and fixed bud-
get settings (Mannor and Tistisklis, 2004; Gabillon et al.,
2012; Bubeck et al., 2013; Chen et al., 2014; Jamieson
et al., 2014). A limited number of works have considered
multi-dimensional feedback. Auer et al. (2016) considered
a variant of the top arm identification problem where arms
are multi-dimensional with each dimension corresponding
to a distinct objective that an agent wishes to optimize, and
the goal is to identify the Pareto front of the arms. In con-
trast to our work, they consider the fixed confidence setting.
More importantly, Pareto front identification and feasible
arm identification are mathematically very different prob-
lems and apply to distinct situations. Whereas Pareto front
identification is relevant to multi-objective optimization, the
feasible arm identification problem is useful for situations
where there are user-defined criteria for what qualifies as a
good arm.

Chen et al. (2017) recently proposed the general sampling
problem, which can model a setting where arms are multi-
dimensional and the goal is to find arms with means be-
longing to a given polyhedron. There are several major
differences with our work. First, Chen et al. (2017) do
not consider multi-dimensional feedback as the agent can
sample from one dimension of one arm at a time. Sec-
ond, whereas they study the fixed confidence setting, we

study the fixed budget setting. Third, they assume isotropic
Gaussian arms, whereas we assume each arm is associated
with a multi-dimensional sub-Gaussian distribution. Finally,
their proposed algorithm (see their Algorithm 7) is sample-
inefficient and impractical since in its first stage, it employs
a uniform allocation strategy until the confidence bounds
(defined with δ “ 0.01) of all of the means either intersect
with the given polyhedron or do not intersect with the given
polyhedron.

Locatelli et al. (2016) introduced the thresholding bandit
problem (TBP), which is essentially the scalar version of the
feasible arm identification problem, and the algorithm APT.
In TBP, there are K scalar-valued distributions, a thresh-
old τ , and a budget T . The goal is to identify all of the
distributions with means above τ . Our work significantly
generalizes TBP by considering multi-dimensional arms
and the problem of identifying those arms with means be-
longing to a given polyhedron. Unlike Locatelli et al. (2016)
who only analyze APT, we provide an unified analysis of
three algorithms for the feasible arm identification problem.
One of our algorithm, MD-APT, reduces to APT in the one-
dimensional thresholding case and our upper bound also
reduces to the upper bound of APT (up to constant factors).
To deal with this general setting, we introduce a novel com-
plexity measure that characterizes the hardness of determin-
ing whether an arm is in P . This measure is essentially the
distance of the mean of an arm to the boundary of the poly-
hedron. In addition, our general setting introduces technical
challenges for establishing upper and lower bounds. We
overcome these by using tools from convex analysis, prop-
erties of multi-dimensional sub-Gaussian distributions, and
change-of-measure arguments involving multi-dimensional
distributions.

Recently, Zheng et al. (2017) considered a problem with a
polyhedral constraint, but their setup is very different from
our own. In their setting, the goal is to solve a linear program
where either the constraints are not fully known or the cost
function is not fully known but can be estimated by adaptive
sampling. In our work, the constraints are known and we
wish to learn which out of a collection of distributions have
feasible means.

3. Setup
In this section, we formalize the feasible arm identification
problem. To begin, we define some notation. For all n P N,
let rns “ t1, . . . , nu. For any x P RD and A Ă RD, let
distpx, Aq “ infyPA }x´ y}2. Let 1 “ p1, . . . , 1qt P RD
and 1t¨u denote the indicator function. Define SD´1 “

tx P RD : }x}2 “ 1u.

Suppose we are given K stochastic arms. When the ith arm
is pulled, a reward is drawn i.i.d. from a D-dimensional
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distribution νi. Denote µi “ EX„νiX . We assume that
the agent is given a polyhedron P “ tx : Ax ď bu where
A P RMˆD and b P RM . Let atj denote the jth row of
A. By dividing each constraint by }aj}2, we can assume
without loss of generality that }aj}2 “ 1 for all j P rM s.
Let BP denote the boundary of P , i.e., BP “ sP zP ˝ where
sP denotes the closure of P and P ˝ denotes the interior of
P . For simplicity, we assume that P has positive volume.

We consider the fixed budget setting. The game is as follows:
there are T rounds and at each round t, the agent chooses
an arm It P rKs and observes a realization Xt „ νIt .
The goal is to identify all of the arms whose means belong
to the polyhedron. To define a performance measure, let
ε ą 0 denote the tolerance, and define Sint

P,ε – ti P rKs :
µi P P and distpµi, BP q ě εu and Sout

P,ε – ti P rKs :

distpµi, P q ą εu. Sint
P,ε is the set of arms that lie in the

interior of P by at least ε and Sout
P,ε is the set of arms that lie

outside of P by at least ε. Let pS Ă rKs denote the set of
arms outputted by an algorithm. We define the following
error measure:

LT,P,εppSq – 1tpS X Sout
P,ε ‰ H_ pSc X Sint

P,ε ‰ Hu

In words, the goal is to identify all of the arms with means
belonging to the polyhedron up to tolerance ε in the sense
that an algorithm is successful if its output includes every
arm i such that µi P P and distpµi, BP q ě ε and excludes
every arm l such that distpµl, P q ą ε.

We define the margin of arm i as

∆
pP,εq
i – distpµi, BP q ` ε

“

"

minjPrMs distpµi, tx : atjx “ bjuq ` ε : µi P P
distpµi, P q ` ε : µi R P

(1)

“

"

minjPrMs bj ´ a
t
jµi ` ε : µi P P

distpµi, P q ` ε : µi R P
(2)

where line (1) follows by Lemma H.1 and line (2) follows
by the closed form solution of the distance from a point to a
hyperplane and }aj}2 “ 1 (Boyd and Vandenberghe, 2004).

The complexity of an instance of the feasible arm identifica-
tion problem is defined to be:

HP,ε –
ÿ

iPrKs

r∆
pP,εq
i s´2.

In words, an instance has low complexity if all of the arms
are far from the boundary of the polyhedron and high com-
plexity if some of the arms are very close to the boundary.
The intuition behind this complexity measure is that for
an algorithm to output the correct answer about arm i, it
is sufficient to guarantee that an estimate pµi is within a

ball centered at µi with radius ∆
pP,εq
i

2 (see Lemma 3). For

the sake of brevity, we usually write LT,εppSq, ∆
pεq
i , and H

instead of LT,P,εppSq, ∆
pP,εq
i , and HP,ε, respectively.

Our analysis assumes that each νi is a multi-dimensional
sub-Gaussian distribution, which we now define (see Ver-
shynin et al. (2017) for more details). Let X be a scalar
random variable. We say that X is R-sub-Gaussian if
E exppX

2

R2 q ď 2. We define the sub-Gaussian norm of X as
the smallest R that satisfies the above requirement:

}X}ψ2
“ inftR ą 0 : E expp

X2

R2
q ď 2u.

A random vector X P RD is sub-Gaussian if Xta is sub-
Gaussian for all a P RD. The sub-Gaussian norm ofX is
defined as

}X}ψ2
“ sup

aPSD´1

›

›Xta
›

›

ψ2
.

We say that a random vector X is R-sub-Gaussian if
}X}ψ2

ď R. Henceforth, we assume that ν1, . . . , νK are
R-sub-Gaussian. See Vershynin (2012) for a discussion of
sub-Gaussian distributions.

4. Lower Bound
In this section, we establish a lower bound for the feasible
arm identification problem. Our construction takes any
polyhedron P and means µ1, . . . ,µK P P

˝ and produces
a collection of problems such that any algorithm makes a
mistake on one of the problems with probability at least on
the order of expp´c TH q (where c is a constant). In fact, this
lower bound holds even when the algorithm is given the
distance of each arm to the boundary of the polyhedron. If
A Ă RD is closed and x P RD, let ProjApxq denote the
projection of x onto A.

Theorem 1. Let P “ tx P RD : Ax ď bu have positive
volume and ε ě 0 such that P ˝ε – tx P P : distpx, BP q ą
εqu is nonempty. Letµ1, . . . ,µK P P

˝
ε , τi P ProjBP pµiq for

all i P rKs, and µ1i “ µi ` 2pτi ´ µiq for all i P rKs. Let
νi denote the distribution Npµi, Iq and ν1i the distribution
Npµ1i, Iq. Let B0 denote the product distribution ν1b . . .b
νK and Bi denote the product distribution

ν1 b . . .b νi´1 b ν
1
i b νi`1 b . . .b νK .

Then, B0, . . . ,BK have the same problem complexity

H “

K
ÿ

i“1

r distpµi, BP q ` εs´2

and for any algorithm,

max
iPt0,...,Ku

EBipLT,εppSqq

ě expp´13
T

H
´ 25D logp48plogpT q ` 1qKDqqq.
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This lower bound is equal to the lower bound of Locatelli
et al. (2016) (see their Theorem 1) up to the factor of D
and constants. Since D logpplogpT q ` 1qKDqq grows very
slowly as a function of T in comparison with T

H , the de-
pendence on D is quite mild. We also note that the lower
bound does not depend on the number of constraints M in
the polyhedron P , which suggests that the number of con-
straints of P does not directly affect the statistical difficulty
of the feasible arm identification problem. Since polyhedra
approximate convex sets arbitrarily well, the independence
of our lower bound from M enables us to derive a nearly
identical lower bound for the setting where P is convex (see
the supplementary material for details).

The proof of Theorem 1 is based on a novel lower bound
construction with multidimensional distributions for MABs.
Often, lower bounds in the bandit literature modify scalar
distributions and the main idea is to perturb the mean of a
scalar distribution by making it either larger or smaller. In
the feasible arm identification problem, picking a direction
to perturb the mean of a distribution is not so simple. Indeed,
the direction depends on the polyhedron since for some
polyhedra, changing the first coordinate does not produce
points lying outside of the polyhedron. In our construction,
we interchange a distribution νi with mean µi P P ˝ with a
distribution ν1i with mean µ1i that is shifted away from µi in
the direction of its projection onto the boundary of P .

Theorem 1 also implies the following non-asymptotic mini-
max bound.

Corollary 1. Let P “ tx P RD : Ax ď bu have positive
volume, ε ě 0 such that P ˝ε is nonempty, and R ą 0. Let
H̃ ą 0 such that there exists µ1, . . . ,µK P P

˝
ε with

H̃ “

K
ÿ

i“1

r distpµi, BP q ` εs´2.

Let BP,ε,H̃,R denote the set of feasible arm identification
problems on polyhedron P , with tolerance ε, and with
K arms such that the distributions are R-sub-Gaussian
and the problem complexity is less than H̃ . Then, T ě

25H̃R2D logp48plogpT q ` 1qKDqq implies that, for any
algorithm,

sup
BPBP,ε,H̃,R

EBpLT,εppSqq ě expp´14
T

H̃R2
q.

In words, this result says essentially that for any polyhe-
dron P and tolerance ε ě 0, the induced class of feasible
arm identification problems with P and ε has a minimax
lower bound on the order of expp´c T

HR2 q where c is a
constant. Henceforth, we say that an algorithm is nearly
optimal if for large enough T its expected loss decays as
Opexpp´c T

HR2 qq where c is a constant.

5. Algorithms
In this section, we extend three algorithms to the feasible
arm identification problem, namely, an upper confidence
bound based algorithm (UCBE) (Audibert and Bubeck,
2010), a successive accepts and rejects algorithm (SAR)
(Bubeck et al., 2013; Chen et al., 2014), and the Any-
time Parameter-free Thresholding algorithm (APT) (Lo-
catelli et al., 2016). The main novelty of our approach
is that our algorithms estimate the distance of the mean
of each arm to the boundary of the polyhedron to decide
which arm to pull. To begin, we introduce some nota-
tion. Let It denote the index of the arm chosen at time
t. Let Xi,j,t denote the tth realization of the jth coordi-
nate of νi, Tiptq “

řt´1
s“1 1tIs “ iu denote the number of

pulls of arm i at round t, and pµi,t denote the estimate of
µi after t samples, i.e., pµi,t “ ppµi,1,t, . . . , pµi,D,tqt where
pµi,j,t “

1
t

řt
s“1Xi,j,s.

The key quantity in each of these algorithms is the following
empirical estimator of the margin of each arm:

p∆
pεq
i,t “

"

minjPrMs bj ´ a
t
j pµi,t ` ε : pµi,t P P

distppµi,t, P q ` ε : pµi,t R P

Given pµi,t, distppµi,t, P q can be computed by solving a
quadratic program and, thus, the interior point method can
compute p∆

pεq
i,t in runtime polynomial in M and D. Each of

our algorithms updates one p∆
pεq
i,t in each round, thus solving

at most T quadratic programs. Therefore, each algorithm
can be implemented efficiently.

Algorithm 1 MD-UCBE: Multi-dimensional Upper Confi-
dence Bound Exploration algorithm

1: Input: K arms, polyhedron P , tolerance ε, budget T ,
hyperparameter a

2: for t “ 1, . . . , T do
3: if t ď K then
4: SampleXt „ νt.
5: else
6: Choose It “ arg mini p∆

pεq
i,Tiptq

´
b

a
Tiptq

and sam-

pleXt „ νIt .
7: end if
8: end for
9: Return: pS “ ti P rKs : pµi,TipT`1q P P u

Next, we describe each of the algorithms and our results.
Each algorithm outputs pS “ ti P rKs : pµi,TipT`1q P P u.
The algorithms differ in how they decide which arm to pull.
MD-UCBE (Algorithm 1) is a modification of the algorithm
UCBE from Audibert and Bubeck (2010). At each time step
t, it pulls an arm i that minimizes p∆pεqi,Tiptq´

b

a
Tiptq

breaking

ties arbitrarily where a is a hyperparameter. Theorem 2
gives an upper bound on its expected loss.
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Theorem 2. Let K ě 0, T ě K and ε ě 0. Suppose
0 ď a ď 25

36
T´K
H . Then, the expected loss of MD-UCBE

satisfies:

ErLT,εppSqs ď 2plogpT q ` 1qK5D expp´
a

1600R2
q.

Paralleling our upper bounds for MD-SAR and MD-APT,
this result says that the degree of difficulty of a problem for
MD-UCBE depends on H , i.e., the distance of the arms to
the boundary of the polyhedron and the tolerance parameter
ε. Theorem 2 suggests setting a “ 25

36
T´K
H , in which case

MD-UCBE is nearly optimal. One important shortcoming
of this algorithm is that H is not known in practice, so it
is unclear how to set the hyperparameter a. Indeed, in our
experiments, we show that the performance of MD-UCBE
is highly sensitive to the selection of a.

Algorithm 2 MD-SAR: Multi-dimensional Successive Ac-
cepts and Rejects algorithm

1: Input: K arms, polyhedron P , tolerance ε, budget T
2: Ďlogpxq “ 1

2`
řx
i“2

1
i , n0 “ 0, nk “

Q

T´K
ĚlogpKqpK`1´kq

U

pk ą 1q
3: Q “ rKs
4: for k “ 1, . . . ,K ´ 1 do
5: Query nk ´ nk´1 samples from all arms i P Q
6: QÐÝ Qz arg maxiPQ p∆

pεq
i,nk

7: end for
8: Return: pS “ ti P rKs : pµi,TipT`1q P P u

MD-SAR (Algorithm 2) extends the SAR algorithm from
Bubeck et al. (2013). It divides the budget T into K ´ 1
rounds. In each round, it samples all of the arms belonging
to Q Ă rKs the same number of times. At the end of
each round, it removes from Q an arm i that maximizes
p∆
pεq
i,Tiptq

. Intuitively, MD-SAR stops sampling from an arm
i for which there is the least amount of uncertainty about
whether µi P P . Theorem 3 provides an upper bound on
the expected loss of MD-SAR. It depends on a different
complexity term that is nevertheless related to H . Let piq
denote the index of the arm with the ith smallest margin so
that ∆

pεq
p1q ď ∆

pεq
p2q ď . . . ď ∆

pεq
pKq and define the complexity

parameter

H2 “ max
iPrKs

ir∆
pεq
piqs

´2.

The analysis of Audibert and Bubeck (2010) of the anal-
ogous quantities immediately implies that H2 ď H ď

logp2KqH2.

Theorem 3. Let K ě 0, T ě K and ε ě 0. Then, the

expected loss of MD-SAR satisfies: ErLT,εppSqs ď

2plogpT q ` 1qK5D expp´
T ´K

1296 logp2KqH2

1

R2
q

`4K35D expp´
T ´K

512R2H2
q.

Similar to previous results on SAR-type algorithms in the
fixed budget setting (Audibert and Bubeck, 2010; Chen et al.,
2014), our upper bound on MD-SAR is loose by a factor of
logpKq in the exponential. While the guarantee is not tight,
it has the significant practical advantage over MD-UCBE
that it does not involve a difficult-to-tune hyperparameter.
On the other hand, MD-SAR has the limitation that it needs
to know T in advance.

Algorithm 3 MD-APT: Multi-dimensional Anytime
Parameter-Free Thresholding algorithm

1: Input: K arms, polyhedron P , tolerance ε, budget T
2: for t “ 1, . . . , T do
3: if t ď K then
4: SampleXt „ νt.
5: else
6: Choose It “ arg mini p∆

pεq
i,Tiptq

a

Tiptq and sam-
pleXt „ νIt .

7: end if
8: end for
9: Return: pS “ ti P rKs : pµi,Tipt`1q P P u

MD-APT (Algorithm 3) is a modification of the APT al-
gorithm in Locatelli et al. (2016). After an initialization
phase in which it pulls each arm once, at each round t, it
pulls an arm i that minimizes p∆

pεq
i,Tiptq

a

Tiptq. The intuition

behind the algorithm is that if the margins ∆
pεq
i were known

in advance, then a nearly optimal strategy would allocate
samples to the arms proportionally to the r∆pεqi s

´2s. For
simplicity, let ε “ 0; the case ε ą 0 is not as clear since
arms whose distance to the boundary is less than ε do not
need to be sampled at all.
Proposition 1. Let ε “ 0. A static allocation strategy with
a total of T

r∆
pεq
i s2H

pulls of the ith arm @i P rKs achieves

ErLT,εppSqs ď 2K5D expp´
1

8

T

HR2
q.

Thus, such a static allocation is nearly optimal. Since the
∆
pεq
i s are unknown, MD-APT samples the arms proportion-

ally to the estimates rp∆pεqi,Tiptqs
´2. Theorem 4 gives an upper

bound on the expected loss of MD-APT.
Theorem 4. Let K ě 0, T ě 2K, and ε ě 0. Then, the
expected loss of MD-APT satisfies:

ErLT,εppSqs ď 2plogpT q ` 1qK5D expp´
T

1296R2H
q.
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This Theorem implies that MD-APT is nearly optimal. Fur-
ther, unlike MD-UCBE, it is parameter-free and, unlike
MD-SAR, it is an anytime algorithm in the sense that MD-
APT does not require knowledge of the budget T . These
properties make MD-ADT practical for many applications
(Jun and Nowak, 2016).

We note that although the runtime of our algorithms depends
on M , our upper bounds on their statistical performance
are independent of M . We leverage this result and the fact
that one can approximate convex sets arbitrarily well with
polyhedra to obtain a computationally inefficient algorithm
with nearly the same guarantee as Theorem 4 for the set-
ting where P is convex (see the supplementary material for
details).

6. Analysis
Our analyses of the three algorithms are unified through a
series of lemmas. The first key idea is a sufficient condition
for p∆

pεq
i,t to concentrate around ∆

pεq
i . Lemma 1 shows that

concentration of pµiptq around its mean in the norm sense is
sufficient.
Lemma 1. Let γ ą 0, i P rKs, and t P rT s. If
}pµi,t ´ µi}2 ď γ, then

|p∆
pεq
i,t ´∆

pεq
i | ď 2γ.

In the scalar case, concentration of the empirical margin
around the true margin often follows by the triangle in-
equality. In our setting, because of the more complicated
relationship between pµi,t and p∆

pεq
i,t such an argument is not

sufficient.

The second key idea is that with an appropriately high prob-
ability, pµi,t concentrates around its mean in the norm sense.
The main tools are Hoeffding’s maximal inequality (see
Lemma H.2) and an ε-net, which we now define (Vershynin
et al., 2017).
Definition 1. Let A Ă RD and ε ą 0. N Ă A is an ε-net
of A if @x P A, there exists y P N such that }x´ y}2 ď ε.
Let N Ă A be an ε-net of A. We say that N is minimal if,
for any other ε-net M of A, it holds that |M| ě |N |.
Lemma 2. Let N be a minimal 1

2 -net on SD´1. Let ω ą 0.
Define the event

Ξ “ t@i,@y P N ,@r P rT s : |ytppµi.r ´ µiq| ď

c

ω2

4r
u.

Then, on Ξ, for all i P rKs and for all r P rT s,

}pµi.r ´ µi}2 ď

c

ω2

r

and

PrpΞq ě 1´ 2plogpT q ` 1qK5D expp´
ω2

16R2
q.

In effect, Lemma 1 and Lemma 2 together imply that with
high probability, (i) pµi,t concentrates around µi in the norm
sense and (ii) p∆pεqi,t concentrates around ∆

pεq
i .

Finally, the third idea is the simple observation that if for all

i P rKs, pµi,t lies in a ball centered at µi with radius ∆
pεq
i

2 ,
then an algorithm does not make a mistake.
Lemma 3. Fix t P rT s and i P rKs and suppose that
}pµi,t ´ µi}2 ă

1
2∆

pεq
i . Then, Aµi ď b ´ ε1 implies that

Apµi,t ă b and distpµi, P q ě ε implies that pµi,t R P .

The analysis of each algorithm then proceeds as follows.
First, suppose some appropriately defined variant of the
event Ξ in Lemma 2. Second, by Lemmas 1 and 2, (i)
pµi,t concentrates around µi in the norm sense and (ii) p∆pεqi,t
concentrates around ∆

pεq
i . Given these concentration results,

it is shown that each algorithm pulls each arm a sufficient
number of times so that Lemma 3 can be applied.

7. Experiments
In this section, we conduct experiments on synthetic and
real-world datasets. In addition to the algorithms MD-
UCBE, MD-SAR, and MD-APT, we consider a uniform
allocation algorithm (UA), which samples the arms in a
cyclic fashion. We consider the performance of MD-UCBE
under four hyperparameter settings ai “ i 25

36
T´K
H for

i P t.1, 1, 10, 100u. Let MD-UCBE[i] denote MD-UCBE
with hyperparameter ai. Note that the larger i is, the more
MD-UCBE[i] explores and that our theoretical guarantee in
Theorem 2 only covers i ď 1. To calculate p∆

pεq
i,t , we use the

quadratic programming solver in the CVXOPT package for
python. We average all experiments over 2000 trials.

7.1. Synthetic Experiments

Each experiment has 20 5-dimensional arms and is run
for 2000 time steps. We use Gaussian distributions with
variance 1

4 . For experiments 1, 2, and 3 we use a cube
P “ tx P R5 : 0 ď xi ď 1u. In experiments 4 and 5, we
use more complicated feasibility regions. In the following,
we say an arm i is irrelevant if the error measure LT,εp¨q
does not depend on how i is categorized.

Experiment 1 (Four Groups with Irrelevant Arms): We
set ε “ 0.075 and use µ0:1 “ p.8qb5, µ2:3 “ p.9qb5,
µ4:5 “ p1.1qb5, µ6:7 “ p1.2qb5, µ8 “ p.975qb5, µ9 “

p1.025qb5, µ10:19 “ p.3qb5. Note that this problem has
two irrelevant arms, µ8 and µ9.

Experiment 2 (Four Groups with no Irrelevant Arms):
We set ε “ 0 and useµ0:1 “ p.8q

b5,µ2:3 “ p.9q
b5,µ4:5 “

p1.1qb5, µ6:7 “ p1.2q
b5, µ8 “ p.95qb5, µ9 “ p1.05qb5,

µ10:19 “ p.3q
b5. In comparison to experiment 1, we make

it slightly easier to determine whether the arms µ8 and µ9
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belong to the polyhedron because otherwise the difficulty
of the problem prevents any algorithm from achieving sub-
stantial progress after 2000 time steps.

Experiment 3 (Linear Progression with Irrelevant
Arms): We set ε “ 0.075 and use µ0:3 “ p.75qb5 ` p0 :
3q ˆ .05, µ4 “ p.975qb5, µ5 “ p1.025qb5, µ6:9 “

p1.25qb5´p0 : 3qˆ .05, µ10:19 “ p1.15qb5. Note that this
problem has two irrelevant arms, µ4 and µ5.

Experiment 4 (Four Groups on the Simplex): For this
experiment, we use P “ tx P R5 : xi ě 0,

ř

i xi ď 2u.
We set ε “ .1. Let c “ p.2qb5. We use µ0:4 “ c, µ5:9 “

1.85 ¨ c, µ10:14 “ 2.25 ¨ c, and µ15:19 “ 1.95 ¨ c. µ0:9 are
good arms, µ10:14 are bad arms, and µ15:19 are irrelevant.

Experiment 5 (Ordered Polyhedron): For this experi-
ment, we use P “ tx P R5 : xi ď xi`1@i P r4su
and ε “ .1. We use µ0:3 “ p0, .2, .4, .6, .8qt, µ4:7 “

p.0, .15, .3, .45, .6qt, µ8:11 “ p0, .2, .15, .6, .8sqt, µ12:15 “

p0, .2, .05, .6, .8qt, and µ16:19 “ p0, .2, .4, .2, 0q
t. The arms

µ8:11 are irrelevant.

The performance of MD-UCBE is very sensitive to the
selection of its hyperparameter. MD-UCBE[1] and MD-
UCBE[10] tend to do well, but MD-UCBE[100] explores
too much so that it tends to perform only slightly better than
UA and MD-UCBE[.1] does not explore enough. Although
MD-UCBE[.1] has a theoretical guarantee, the constants
are too large so that it never makes progress in solving the
problems. MD-APT performs better than MD-SAR in exper-
iments 1, 4, and 5 and worse than MD-SAR in experiments
2 and 3. In experiment 2, MD-APT pulls arm 8, which
minimizes ∆

pεq
i , too frequently. It pulls arm 8 on average

904.8125 times, whereas MD-SAR more evenly spreads
out its pulls, pulling arm 8 on average 317.751 times. We
observe a similar phenomenon in a variant of experiment
3 where we set ε “ 0 and which we defer to the supple-
mentary material due to lack of space. This suggests that
in certain problems MD-APT focuses too much on specific
arms with means near the boundary and does not allocate
enough samples to other arms. On the other hand, MD-
SAR utilizes knowledge of the time horizon T to effectively
spread out samples. MD-APT’s agnosticism about T may
put it a disadvantage in the regime where some of the ∆

pεq
i

are very small and T is small relative to H . As suggested
by experiment 1, the ε parameter can be used to counteract
the sensitivity of MD-APT to arms with means near the
boundary.

7.2. Application 1: Dose-Finding

In clinical trials, an important challenge is determining the
appropriate dosage of a drug. The main difficulty is the
trade-off that as the dosage increases, the effectiveness of
the drug tends to increase, but the likelihood of adverse

effects also increases. Thus, one must find a dosage that
is sufficiently effective, but does not have too many side
effects. We assume a situation where the side effects are
mild enough not to be a concern for clinical trials, but could
nevertheless be unacceptable for a final commercial product.

We investigate this problem by considering the data in Gen-
ovese et al. (2013) (see ARCR20 in week 16 in Table 2
and Table 3). In this study, the authors examine the drug
secukinumab for treating rheumatoid arthritis. They con-
sider four dosage levels (25mg, 75mg, 150mg, 300mg)
and a placebo. We design a simulation based on their
data where each arm corresponds to a drug and has two
attributes, the likelihood of being effective and the like-
lihood of causing an adverse effect. Let µi,1 denote the
probability of being effective and µi,2 the probability of
causing an adverse effect. Then, dosage levels 25mg, 75mg,
150mg, and 300mg have means µ1 “ p.34, .519qt,µ2 “

p.469, .612qt,µ3 “ p.465, .465qt,µ4 “ p.537, .61qt, re-
spectively, and the placebo has mean µ5 “ p.36, .58qt. We
suppose that a drug is considered good if the probability of
success is above .4 and the probability of adverse effects is
below .5 and we set ε “ 0. Thus, only arm 3 is good and all
other arms are bad. We chose these thresholds so that one
drug is good; we did not try other threshold settings. We
run the experiment for 1000 time steps.

Figure 6 gives the results of the experiment. MD-APT and
MD-UCBE[10] perform better than the rest of the algo-
rithms. MD-UCBE[1] performs slightly worse than UA,
which may be because there are only 5 arms so that UA
is not that bad of a strategy and MD-UCBE[1] does not
explore sufficiently. MD-SAR only performs slightly better
than UA. This may be because the time horizon is only 1000
time steps and there are only 5 arms.

7.3. Application 2: Crowdsourcing

We use a real-world dataset for the natural language pro-
cessing task of affective text analysis (Snow et al., 2008).
In this task, workers are asked to rate a short headline on
valence and six emotions: disgust, fear, joy, anger, sadness
and surprise. A group of experts also provide such ratings
for the headlines.

We consider the problem of finding workers that tend to
agree with the expert views on each of the tasks. We ex-
amine the deviation of a worker’s ratings with the experts
ratings. We normalize this deviation onto a scale of r0, 1s.
Let µi,j denote the mean of worker i on task j and let µ̄j
denote the mean of all of the workers on task j. We deem
a worker i good if µi,j ď µ̄j for all j P r7s. In words, a
worker is good if for every task, he performs better than the
average worker. To make this realistic, we assume that we
are in a setting where the average worker performance on
each task is known based on another pool of workers. We
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Figure 1. Four Groups on Cube
with Irrelevant Arms
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Figure 2. Four Groups on
Cube, no Irrelevant Arms
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Figure 3. Linear Progression
on Cube with Irrelevant Arms
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Figure 4. Four Groups on a
Simplex
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Figure 5. Ordered polyhedron
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Figure 6. Dose-Finding Experiment
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Figure 7. Crowdsourcing Experiment

use a tolerance of ε “ 0.02. There is a total of 38 workers,
where 30 workers are bad arms, 3 workers are good arms,
and 5 workers are irrelevant. Because each worker only pro-
vides a small number (at least 20) of ratings, whenever an
arm is pulled, the algorithm observes an observation chosen
uniformly at random with replacement from the data asso-
ciated with the arm. We run each algorithm for 4000 time
steps and in each trial, we randomly permute the samples
of each worker. In the supplementary material, we repeat
this experiment, but we simulate each arm as a Gaussian
distribution (see Section J); the results are very similar.

Figure 7 gives the results of the experiment. Until roughly
time step 3000, MD-APT and MD-UCBE[10] perform the
best. Afterwards, MD-SAR does substantially better than
MD-APT and MD-UCBE[10]. MD-UCBE[1] and MD-
UCBE[100] perform only marginally better than UA.

7.4. Summary of Results

The experiments suggest that although MD-UCBE is a com-
petitive algorithm, it is highly sensitive to hyperparameter
selection, which limits its applicability in practice. MD-
SAR and MD-APT tend to perform dramatically better than
UA. For example, in the crowdsourcing experiment, UA has
a final error rate of roughly 52%, whereas MD-SAR has
a final error rate of roughly 5%. Further, our algorithms
can handle complicated polyhedra such as the polyhdron
that requires that coordinates are sorted in ascending order
(see experiment 5). These results suggest that MD-APT
tends to perform better than MD-SAR, but in some settings

(e.g., some arms with small ∆
pεq
i and H large relative to

T ) MD-APT focuses too much on some of the arms with
means near the boundary. Because MD-SAR more evenly
spreads out its pulls among the arms, it performs better in
this regime.

8. Conclusion
In this paper, we introduced the feasible arm identification
problem. This problem provides a flexible framework for
settings where arms are multi-dimensional and it is of in-
terest to determine whether each arm satisfies user-defined
multi-dimensional criteria. We provided a characterization
of the difficulty of these problems that yielded a lower bound
and we provided a unified analysis of three algorithms MD-
UCBE, MD-SAR, and MD-APT. Our experiments suggest
that by leveraging the geometry of the feasible arm identifi-
cation problem, MD-SAR and MD-APT are able to dramat-
ically outperform a uniform allocation approach.

Our work also suggests several open directions for future
research. For example, in many crowdsourcing problems,
one does not ask workers to perform all tasks at once, but
rather one task at a time and, yet, it may be of interest to find
workers who excel at a collection of tasks. This suggests
a variant of the feasible arm identification problem where
the agent chooses one coordinate of one arm and observes
a realization of the corresponding random variable in each
round.
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