
Scalable Deletion-Robust Submodular Maximization

A. An Example

Suppose the ground set V consists of identical elements with equal value of 1. In other words, for any A ✓ V , let f(A)
be 1 if A is not empty, and let it be 0 for the empty set. In this case, all elements are good candidates to be chosen at the
beginning of algorithm. However after choosing any of them, the marginal gain of the rest becomes 0, and the algorithm
has no incentive to continue selecting elements. If the first element is chosen deterministically, the adversary can delete
that element and we can not find any non-zero value subset after deletion. Now if we pick d/✏ of these elements and then
pick one of them randomly, the probability that adversary can delete the chosen element reduces to ✏ and we achieve the
robustness we aim for.

B. Explaining ROBUST-CENTRALIZED

In this section, we explain how ROBUST-CENTRALIZED returns a solution for the robust submodular maximization problem
after the deletion of set D.

The subsets of A⌧ and B after the deletion of set D are denoted by A
0
⌧

and B
0
, respectively, i.e., A0

⌧
= A⌧ \ D and

B
0 = B \ D. ROBUST-CENTRALIZED uses the sets {A0

⌧
} and B

0 in order to find a good solution to the optimization
problem of Eq. (1). ROBUST-CENTRALIZED considers all the possible thresholds in the range [�0

0/(2k),�
0
0], where �0

0 is
the largest value in set {f({e})|e 2 V \D}. We note that at this point, we can compute the value of �0

0 because the set
of deleted elements are revealed and we also kept all elements in Vd as part of the core-set. For each threshold ⌧, we can
ensure that the marginal gain of elements in S⌧ = [⌧ 0>⌧A⌧ 0 is at least ⌧. Therefore, we keep them as part of the solution.
Next for any element e 2 B

0 the ROBUST-CENTRALIZED algorithm checks if the marginal gain of e to S⌧ is at least ⌧ . If it
is, then e is added to S⌧ . We do not need to introduce any extra randomness or selection from a large pool of candidates for
additional robustness at this point, since the deletions are done already. The final solution is the set with the maximum value
f(S⌧ ) among all S⌧ .

C. Proof of Theorem 1

Proof. We define V
0 = V \D. Assume A

0
⌧

and B
0, respectively, are subsets of A⌧ and B after deletion of set D from

V . We define S
⇤ = argmaxS✓V \D,|S|k f(S) and f(S⇤) = OPT. We start by showing that one of the thresholds the

ROBUST-CENTRALIZED algorithm tries is close to the standard threshold OPT
2k that guarantees the 1

2 approximation without
deletion.

Lemma 1. There is a ⌧
⇤ 2 T0 such that ⌧⇤  OPT

2k < ⌧
⇤(1 + ✏), where T0 is defined in line 2 of ROBUST-CENTRALIZED.

Proof. From the submodularity of f we have �0
0  OPT  k�0

0. Therefore, the smallest threshold in T0 is at most OPT
2k .

Setting ⌧
⇤ to be the largest threshold in T0 that does not exceed OPT

2k will satisfy the claim of this lemma.

Since ROBUST-CENTRALIZED tries different thresholds and outputs the maximum value solution among them, it suffices to
lower bound the expected value of f(S⌧⇤) by ( 12 � �)OPT. We note that S⌧⇤ consists of two parts: the elements added in
the first stage (ROBUST-CORESET-CENTRALIZED) that are not deleted, i.e. [⌧�⌧⇤A

0
⌧

, and the set of elements added in the
second stage (line 7 of ROBUST-CENTRALIZED). We start by showing that the effect of deletion on the value of the first
part is negligible due to the robustness of how we insert elements in ROBUST-CORESET-CENTRALIZED. To simplify the
analysis, we abuse the notation, and define A = [⌧�⌧⇤A⌧ and A

0 = [⌧�⌧⇤A
0
⌧
.

Lemma 2. E[f(A0)] � (1 � 2✏)E[f(A)], and consequently we have E[f(S⌧⇤)] � (1 � 2✏)E[f(S⌧⇤ [ A)] where the
expectations are taken over the random coin flips of ROBUST-CORESET-CENTRALIZED.

Proof. We represent elements of A⌧ with A⌧ = {e⌧,1, · · · , e⌧,n⌧ }. Similarly, we define A
0
⌧
= {e0

⌧,1, · · · , e0⌧,n0
⌧
}. We also

define n⌧ = |A⌧ | and n
0
⌧
= |A0

⌧
|. We have

f(A) =
⌧
⇤X

⌧=⌧max

|A⌧ |X

l=1

�f (e⌧,l| [⌧ 0>⌧ A⌧ 0 [ {e⌧,1, · · · , e⌧,l�1}),
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where ⌧max is the highest threshold in T0. The marginal gain for all elements of A⌧ is sandwiched in the narrow range
[⌧, (1 + ✏)⌧ ]. Therefore, we can bound the value of A in terms of the sizes of A⌧ sets and their associated thresholds:

X

⌧�⌧⇤

|A⌧ |⌧  f(A)  (1 + ✏)
X

⌧�⌧⇤

|A⌧ |⌧.

By taking the expected value of each side of these bounds, we get:

X

⌧�⌧⇤

E[|A⌧ |]⌧  E[f(A)]  (1 + ✏)
X

⌧�⌧⇤

E[|A⌧ |]⌧. (3)

Each element of A⌧ is picked randomly from a set of size d

✏
. This means that each of these elements are deleted with a

probability at most ✏. From the submodularity of f , we know that the marginal gain of elements of A0
⌧

will not decrease
after deletion of any other element. Note that we have A

0
⌧
✓ A⌧ . Therefore, we can lower bound the expected value of

remaining elements, i.e., f(A0), similarly:

E[f(A0)] =
⌧
⇤X

⌧=⌧max

|A⌧ |X

l=1

E[Ie⌧,l /2D�f (e⌧,l| [⌧ 0>⌧ A
0
⌧ 0 [ {Ie⌧,1 /2De⌧,1, · · · , Ie⌧,l�1 /2De⌧,l�1})]

(a)
�

⌧
⇤X

⌧=⌧max

|A⌧ |X

l=1

E[Ie⌧,l /2D�f (e⌧,l| [⌧ 0>⌧ A⌧ 0 [ {e⌧,1, · · · , e⌧,l�1})]

�
⌧
⇤X

⌧=⌧max

|A⌧ |X

l=1

Pr[e⌧,l /2 D]⌧ � (1� ✏)
X

⌧�⌧⇤

E[|A⌧ |]⌧, (4)

where Ie/2D is a binary indicator variable to check e /2 D. Inequality (a) is concluded from the submodularity of f . By
combining Eqs. (3) and (4), we conclude that:

E[f(A0] � 1� ✏

1 + ✏
E[f(A)] � (1� 2✏)E[f(A)].

So far we have proved that the expected value of A0 is not much smaller than the value of A. We note that by definition A
0 is

a subset of both S⌧⇤ and A. By submodularity, we have:

f(S⌧⇤ [A)� f(S⌧⇤)  f(A)� f(A0).

We have shown that the expected value of the right hand side is at most 2✏E[f(A)] which completes the proof, since
f(A)  f(S⌧⇤ [A) by monotonicity of f .

We have shown that values of S⌧⇤ and S⌧⇤ [A do not differ by much. So we can focus on lower bounding f(S⌧⇤ [A) in
the rest of the proof.

Lemma 3. f(S⌧⇤ [A) � (1�✏)OPT
2 .

Proof. The while loop condition in line 7 of ROBUST-CORESET-CENTRALIZED ensures that there will be at most k
elements in A. If A has exactly k elements, its value is at least k⌧⇤ � OPT

2(1+✏) �
(1�✏)OPT

2 , since each element added to A

increases its value by some threshold ⌧ � ⌧
⇤
. Monotonicity of f implies that f(S⌧⇤ [ A) � f(A) which completes the

proof in this case. Similarly, the claim is proved if S⌧⇤ has k elements. So in the rest of the proof, we focus on the case
|A| < k and |S⌧⇤ | < k.
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We define S⌧⇤,e to be the subset of S⌧⇤ which is selected by ROBUST-CENTRALIZED exactly before processing e. We have

f(S⇤)
(a)
 f(S⇤ [ S⌧⇤ [A)

(b)
 f(S⌧⇤ [A) +

X

e2S⇤\(S⌧⇤[A)

f(e|S⌧⇤ [A)

(c)
 f(S⌧⇤ [A) +

X

e2(S⇤\(S⌧⇤[A))\B0

f(e|A) +
X

e2(S⇤\(S⌧⇤[A))\B0

f(e|S⌧⇤,e)

(d)
 f(S⌧⇤ [A) + k⌧

⇤ =) OPT
2

(e)
 f(S⌧⇤ [A).

Inequality (a) is true because f is monotone. From the submodularity of f we conclude (b). We have A ✓ S⌧⇤ [A and
S⌧⇤,e ✓ S⌧⇤ [A. Thus (c) results from the submodularity of f .

To prove inequality (d), we first note that the elements e 2 (S⇤ \ (S⌧⇤ [A)) \ B0 are discarded by ROBUST-CORESET-
CENTRALIZED. Since A has strictly less than k elements, they were not discarded because of the cardinality constraint.
So, for all of them we have �f (e|A) < ⌧

⇤ (low marginal value). Elements e 2 (S⇤ \ (S⌧⇤ [A)) are not selected by
ROBUST-CENTRALIZED, and cardinality constraint was not the reason for their rejection. Therefore, for these elements we
have f(e|S⌧⇤,e) < ⌧

⇤
.

From the results of Lemmas 2 and 3, we know E[f(S⌧⇤)] is at least (1�3✏)OPT
2 which proves the first claim of this theorem.

The number of thresholds in ROBUST-CORESET-CENTRALIZED is O(log k/✏). For each threshold ⌧ , we store at most d/✏
items in a B⌧ set. Also, the maximum number of elements in {[A⌧} is k. In addition, we have d+1 items in Vd. Therefore,
the size of core-set returned by ROBUST-CORESET-CENTRALIZED is at most O

�
k + (d log k)/✏2

�
elements. For the query

complexity of ROBUST-CORESET-CENTRALIZED we have: (i) each element is considered for at most O(log k/✏) different
thresholds, resulting in O ((|V | log k)/✏) oracle evaluations, and (ii) when an element is picked from B⌧ to be added to
A⌧ , we should re-calculate marginal gain of elements and update B⌧ resulting in k|V | oracle evaluations since the size of
the union set [⌧2TA⌧ never exceeds k. ROBUST-CENTRALIZED receives the core-set as the input so it only processes
O
�
k + (d log k)/✏2

�
elements. Each of them is considered to be added to one of the O(log k/✏) sets {S⌧}⌧2T0 which

results in O

⇣
(k + d

log k

✏2
) log k

✏

⌘
oracle evaluations.

D. The ROBUST-STREAMING Algorithm

At the end of ROBUST-CORESET-STREAMING, we know there is one running instance of the algorithm with a threshold ⌧
⇤

such that ⌧⇤  OPT
2k < (1 + ✏)⌧⇤. For all e 2 V \ (A⌧⇤ [B⌧⇤), we have �f (e|A⌧⇤) < ⌧

⇤. This ensures that the marginal
gain of elements that are not picked by this running instance are smaller than OPT

2k . Let {A0
⌧
} and {B0

⌧
} be the subsets

of {A⌧} and {B⌧} after the deletion of the set D from V, respectively. The elements of A⌧⇤ are robust to the deletion,
i.e., E[f(A0

⌧⇤)] � (1 � 2✏)E[f(A⌧⇤)]. Also, all the elements with marginal gain of at least ⌧⇤ are kept in the set B0
⌧⇤ .

Finally, ROBUST-STREAMING, by adding elements of B0
⌧⇤ with a marginal gain at least ⌧⇤ to A

0
⌧⇤ , finds a solution with an

expected approximation guarantee of 1�3✏
2 to the optimum solution. The pseudo code of ROBUST-STREAMING is given in

Algorithm 5.

E. Proof of Theorem 2

Proof. The proof is similar to the proof of Theorem 1. We define V 0 = V \D. Assume A0
⌧

and B
0
⌧

, respectively, are subsets
of A⌧ and B⌧ after deletion of set D from V . We define

S
⇤ = argmax

S✓V \D,|S|k

f(S) and f(S⇤) = OPT.

In our proof, we should consider three points. First, there is a ⌧
⇤ 2 T0 such that ⌧⇤  OPT

2k < ⌧
⇤(1 + ✏). Second, we

can show that E[f(A0
⌧⇤)] � (1� 2✏)E[f(A⌧⇤)]. Third, all the elements with enough marginal gain are in the set B0

⌧⇤ and
ROBUST-CENTRALIZED will add them to the final solution.

First Note that �0
0  OPT  k�0

0 and T0 contains all the thresholds in [ �0
0

2(1+✏)k ,�
0
0]. Also, �d  �0

0  �0. Therefore,
there is a threshold ⌧

⇤ such that ⌧⇤  OPT
2k < ⌧

⇤(1 + ✏) and it is in both T0 and Tn.
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Algorithm 5 ROBUST-STREAMING

1: Input: {A0
⌧
} and {B0

⌧
} {A0

⌧
and B

0
⌧

contain elements of A⌧ and B⌧ (outputs of ROBUST-CORESET-STREAMING)
after deletion.}

2: Output Set S of cardinality at most k
3: �0

0  the largest value of set {f({e})|e 2 {[A0
⌧
} [ {[B0

⌧
}}

4: T0 = {(1 + ✏)i| �0
0

2(1+✏)k  (1 + ✏)i  �0
0}

5: for ⌧ 2 T0
do

6: S⌧  A
0
⌧

7: for all e 2 B
0
⌧

do

8: if |S⌧ | < k and �f (e|S⌧ ) � ⌧ then

9: S⌧  S⌧ [ e

10: Return argmax⌧ f(S⌧ )

Second For the threshold ⌧
⇤
, ROBUST-CORESET-STREAMING returns two sets A⌧⇤ and B⌧⇤ , where B⌧⇤ is the union

of sets B⌧⇤,⌧ . Assume A⌧⇤ has n⌧⇤ elements and out of these n⌧⇤ elements, n⌧⇤,⌧ elements are picked from B⌧⇤,⌧ . This
means their marginal gain is in the range of [⌧, ⌧(1 + ✏)]. We can bound f(A⌧⇤) from above by

X

⌧�⌧⇤

n⌧⇤⌧ ⌧  f(A⌧⇤)  (1 + ✏)
X

⌧�⌧⇤

n⌧⇤⌧ ⌧

By taking the expected value of each side of these bounds, we get:
X

⌧�⌧⇤

E[n⌧⇤⌧ ]⌧  E[f(A⌧⇤)]  (1 + ✏)
X

⌧�⌧⇤

E[n⌧⇤⌧ ]⌧ (5)

We know that an element which is picked at a given step is deleted with a probability at most ✏. The expected number of
elements picked from B⌧⇤,⌧ that remains in the set A0

⌧
(set A⌧ after deletion) is E[n0

⌧⇤,⌧ ] � (1 � ✏)E[n⌧⇤,⌧ ]. Due to the
submodularity of f , the marginal gain of these undeleted elements is at least ⌧ . To sum up, we have

E[f(A0
⌧
)] � (1� ✏)

X

⌧�⌧⇤

E[n⌧⇤,⌧ ]⌧.

Therefore, we have

E[f(A0
⌧⇤)] �

1� ✏

1 + ✏
E[f(A⌧⇤)] � (1� 2✏)E[f(A⌧⇤)] (6)

Let S⌧⇤ denote the set returned by ROBUST-STREAMING for threshold ⌧
⇤. To prove E[f(S⌧⇤)] � ( 12 � 3✏)OPT, we

consider three cases. If |A⌧⇤ | = k, then E[f(A⌧⇤)] � k⌧
⇤ � OPT

2(1+✏) � (1� ✏)OPT
2 and from Eq. (6) we have E[f(S⌧⇤)] �

E[f(A0
⌧⇤)] � (1�2✏)E[f(A⌧⇤) � (1�3✏)OPT

2 . The claim is proved similarly if S⌧⇤ has k elements. Let’s assume |A⌧⇤ | < k

and |S⌧⇤ | < k.

Lemma 4. E[f(S⌧⇤)] � (1� 2✏)E[f(S⌧⇤ [A⌧⇤)]. Also if |A⌧⇤ | < k and |S⌧⇤ | < k, then f(S⌧⇤ [A⌧⇤) � (1�✏)OPT
2 .

The proof of this lemma is similar to the proofs of Lemmas 2 and 3 and we skip the details. To sum-up, for the case
|A⌧⇤ | < k, from Lemma 4, we have (1�3✏)OPT

2  E[f(S⌧⇤)]. This concludes the first claim of theorem.

Number of thresholds in ROBUST-CORESET-STREAMING in the interval [ �d
2(1+✏)k ,�d] is O( log k

✏
). For each ⌧ in this

interval, there are O( log k

✏
) sets of B⌧,⌧ 0 . We store at most d

✏
elements in each of B⌧,⌧ 0 set. Also, the maximum number

of elements in A⌧ is k. Also, there at most d elements with the marginal gain in range (�d,�0]. To sum up, ROBUST-
CORESET-STREAMING stores O( log k

✏
(k + d log k

✏2
) + d) = O(k log k

✏
+ d log2

k

✏3
)) elements. For the time complexity of

ROBUST-CORESET-STREAMING we have: (i) each element is considered in at most O( log k

✏
) different thresholds resulting

in O( log k

✏
|V |) oracle evaluations, and (ii) for each threshold, when an element is picked from B⌧,⌧ 0 to be added to A⌧ , we

should re-calculate marginal gains of all elements in [⌧ 00�⌧B⌧,⌧ 00 resulting in O(dk log k

✏2
) oracle evaluations. This is true

because, for each ⌧ , the size of A⌧ never exceeds k and we have at most O(d log k

✏2
) elements in [⌧ 00�⌧B⌧,⌧ 00 . Therefore, the
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total time complexity of ROBUST-CORESET-CENTRALIZED is O( log k

✏
|V | + dk log2

k

✏3
). ROBUST-STREAMING receives

the core-set as the input so it only processes O(k log k

✏
+ d log2

k

✏3
) elements. From the input, only O(d log2

k

✏3
) elements are

in B
0
⌧
. Each of them is considered to be added to one of the O( log k

✏
) sets {S⌧}⌧2T0 which results in O(d log3

k

✏4
) oracle

evaluations.

F. Proof of Theorem 3

Proof. In the first round of our algorithm, we randomly distribute the elements of V on m machines. i.e., independently
assigning each element to one of the m machines uniformly at random. The data assigned to machine i is represented by Vi.
We also define V

0 = V \D and V
0
i
= Vi \D. Let V 0(1/m) represent the distribution over random subsets of V 0 where

each element is sampled independently with a probability 1/m.

Lemma 5. The distribution of V
0
i
= Vi \D is identical to V 0(1/m).

Proof. Note that we assume the adversary does not have access to the randomness of our algorithm. Therefore, all the
elements of V \D are distributed uniformly at random on m machines.

For the sake of analysis, we assume, in each run of the algorithm, for picking elements from the pool of B⌧ and tie-breaking
we have a fixed strict total ordering ⇧ of the elements of V. The choice of permutation ⇧ is uniformly at random from the
symmetric group Sn. Indeed, we assume ROBUST-CORESET-CENTRALIZED in each round among all the elements with the
marginal gain of [⌧, (1 + ✏)⌧) chooses the one with the highest rank in ⇧. Also, we make a slight change to the algorithm:
when the size of all the elements with marginal gain in a range [⌧, (1 + ✏)⌧) is exactly d

✏
, we choose the element with the

highest priority in ⇧ and pass all these elements to the next round (as part of the core-set). In this case, at most d/✏ � 1
elements can have a marginal gain in range [⌧, (1 + ✏)⌧). So, ROBUST-CORESET-CENTRALIZED would consider the next
smaller threshold, i.e., elements with marginal gain in [ ⌧

1+✏
, ⌧).

Suppose S
⇤ = argmaxS✓V 0,|S|k f(S) and f(S⇤) = OPT. In addition, let OPTi = maxS⇢V 0

i ,|S|k f(S), i.e., OPTi is
the optimum value for the data on machine i. Let’s define the set Oi, conditioned on the fixed set Vi and the permutation ⇧,
as follows

Oi = {e 2 S
⇤ : e /2 ROBUST-CORESET-CENTRALIZED(Vi [ {e})}.

Note that while the output of ROBUST-CORESET-CENTRALIZED is random in general; if we assume the set Vi and total
ordering ⇧ are fixed a priori, then the set Oi is deterministic also.

Lemma 6. Consider a fixed strict total ordering ⇧ between elements of V. For all e 2 O
0
i
✓ Oi we have

e /2 ROBUST-CORESET-CENTRALIZED(Vi [O
0
i
),

and

ROBUST-CORESET-CENTRALIZED(Vi [O
0
i
) = ROBUST-CORESET-CENTRALIZED(Vi).

Proof. In the first step, we show that the thresholds for ROBUST-CORESET-CENTRALIZED on sets Vi [ {e} and Vi [O
0
i

are equal to thresholds of ROBUST-CORESET-CENTRALIZED on set Vi. First note that for e 2 Oi, we have f({e})  �d.
This is true because if f({e}) > �d, then e is picked by the algorithm as an element of the core-set (as one of the top d+ 1
singleton value elements) and it contradicts with the assumption that e /2 ROBUST-CORESET-CENTRALIZED(Vi [ {e}).
As �0 and �d are the same for all sets Vi, Vi [ {e} and Vi [O

0
i
, their corresponding thresholds is the same also.

We prove the equality of the output core-sets of ROBUST-CORESET-CENTRALIZED on these three different sets by induction.
For this reason assume, for a threshold ⌧ , the sets of elements chosen by ROBUST-CORESET-CENTRALIZED on both Vi

and Vi [ O
0
i

are equal so far. We show that the two instances of algorithm pick exactly the same element in the next
step. Let B⌧ and B

0
⌧

denote the set of all elements with the marginal gain in the current bucket we are processing from
ROBUST-CORESET-CENTRALIZED(Vi) and ROBUST-CORESET-CENTRALIZED(Vi [O

0
i
), respectively. We consider two

main cases. If O0
i
\B

0
⌧
= ?, then the two sets B⌧ and B

0
⌧

we are processing in the runs of the algorithm are the same. If
their size is strictly less than d

✏
, both instances output the set B⌧ = B

0
⌧

as part of their core-set and consider the next smaller
threshold. Therefore the core-sets output by the two runs of the algorithm will remain the same in this step as well, and the
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induction step is proved. Otherwise, there are at least d

✏
elements, and the two instances choose the same element to add to

A⌧ because they take the element with the highest priority in ⇧.

Now consider the case O0
i
\B

0
⌧
= O

00
i
6= ?. We consider two sub-cases in this part. Assume |B⌧ | < d

✏
, then for all e 2 O

00
i

there exists at most d

✏
� 1 elements in Vi \Oi with the marginal gain in the current bucket. This contradicts the fact that

e 2 Oi because for every such e, the set B⌧ [ {e} has at most d

✏
elements and therefore e will be part of the core-set.

So we can focus on the sub-case |B⌧ | � d

✏
. Since for every e 2 O

00
i

, element e is not part of the core-set when added to
Vi, there should be some higher priority element in B⌧ than any e 2 O

00
i

. This highest priority element will be picked by
both runs of the algorithm. Therefore the core-sets remain the same in this step of induction as well which completes the
proof.

Next, we bound the marginal gain of elements of Oi versus elements picked from pools of {Bi
⌧
} by ROBUST-CORESET-

CENTRALIZED, i.e., set Ai.

Lemma 7. Consider a fixed strict total ordering ⇧ between elements of V. Let Ai denote the set chosen by ROBUST-
CORESET-CENTRALIZED on machine i. For all e 2 Oi, we have

1. If |Ai| < k then �f (e|Ai)  OPTi

2k
.

2. If |Ai| = k then �f (e|Ai)  (1 + ✏)f(Ai)

k
 (1 + ✏)OPTi

k
.

Proof. From Lemma 6, we know ROBUST-CORESET-CENTRALIZED on the sets Vi and Vi [Oi outputs the same sets.

1. From the fact that |Ai| < k, we conclude ROBUST-CORESET-CENTRALIZED has passed over all the thresholds and
has not picked e. So we conclude �f (e|Ai)  �d

2(1+✏)k 
OPTi
2k .

2. Denote A
i by {e1, · · · , e|Ai|}, where ej is the j-th element added to A

i. Also, define Aj = {e1, · · · , ej}, i.e., Aj is
the first j picked elements of Ai. We have

f(Ai) =

|Ai|X

j=1

�f (ej |Aj�1),

where A0 = ?. We know

�f (e|Ai)
(a)
 �f (e|Aj�1)

(b)
 (1 + ✏)�f (ej |Aj�1)

The inequality (a) is the direct consequence of submodularity of f . We prove (b) by contradiction. Assume (b) is not
true. Then e should have been taken as a part of the core-set before picking ej , and this contradicts with e being in Oi.
To sum up, we have

�f (e|Ai)  1 + ✏

|Ai|

|Ai|X

j=1

�f (ej |Aj�1) 
(1 + ✏)f(Ai)

k
 (1 + ✏)OPTi

k
.

The next step is to bound f(Oi) based on f(Ai) and OPTi.

Lemma 8. f(Oi)  f(Ai) + (1 + ✏)OPTi.

Proof. We have

f(Oi)
(a)
 f(Oi [A

i)
(b)
 f(Ai) +

X

e2Oi

�f (e|Ai)
(c)
 f(Ai) + (1 + ✏)OPTi.
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Inequality (a) drives from the monotonicity of f . Inequality (b) is true because Oi\Ai = ? and f is submodular. Inequality
(c) is true from the result of Lemma 7 and the fact that |Oi|  k.

Now, we can bound the expected value of f(Oi) by the expect value of f(Si), where S
i is the result of ROBUST-

CENTRALIZED from the core-set of machine i. Assume set Ai0 consists of elements of Ai after deletion. We have

E⇧[f(Oi)]
(a)
 E⇧[A

i] + (1 + ✏)OPTi

(b)
 (1 + ✏)E⇧[Ai0]

1� ✏
+ (1 + ✏)OPTi

(c)
 (1 + ✏)E⇧[f(Si)]

1� ✏
+ (1 + ✏)OPTi !

(
1

3
� 2✏)E⇧[f(Oi)]

(d)
 E⇧[f(S

i))]

Inequalities (a) and (b) are directly from the results of Lemma 8 and Lemma 2. We know A
i ✓ S

i and inequality (c)
concludes from the monotonicity of f . Theorem 1 guarantees that ROBUST-CORESET-CENTRALIZED outputs a ( 1�3✏

2 , d)-
robust randomized core-set. This ensures that, for every ground set Vi, ( 1�3✏

2 )OPTi  E⇧[f(Si)]. Inequality (d) results
from this fact.

We note that the only randomness properties we need in Lemma 2 and Theorem 1 are to ensure each added element to
an A set has a probability of deletion of at most ✏ with linearity of expectation. With the ⇧ based implementation of this
randomness, we achieve these properties.

In the last step, we prove the approximation guarantee of ROBUST-DISTRIBUTED. Define vector p such that for e 2 V , we
have

pe =

⇢
PA⇠V(1/m)[e 2 ROBUST-CENTRALIZED(A [ {e})] if e 2 S

⇤
,

0 otherwise.

Lemma 9. For ↵ = 1
3 � 2✏ and � = 1� 1

e
, we have

E[f(Si)] � ↵E[f(Oi)] � ↵f
�(1S⇤ � p)

E[f(T )] � �E[f(S⇤ \ ({[i [⌧2Ti A
i

⌧

0} [ {[iBi0})] � �f
�((p)),

where f
� is the Lovász extension of function f .

Proof. The proof of this lemma is similar to the proof of Barbosa et al. (2015, Theorem 5). Let Z denote the set returned by
ROBUST-DISTRIBUTED. From Lemma 9, we have

E[f(Z)] � E[f(Si)] � ↵f
�(1S⇤ � p) (7)

E[f(Z)] � E[f(T )] � �f
�(p) (8)

From the result of Eqs. (7) and (8) we have

(� + ↵)E[f(Z)] � ↵�(f�(1S⇤ � p) + f
�((p)))

(a)
� ↵�f

�(1S⇤) = ↵�f(S⇤).

In inequality (a), we use the convexity of Lovász extension and (Barbosa et al., 2015, Lemma 1). This proves the first part
of theorem.

From Theorem 1, we know that the size of core-set for an instance of ROBUST-CORESET-CENTRALIZED is O(k + d
log k

✏2
).

Therefore, the size of core-set for ROBUST-DISTRIBUTED is at most m times of this value.

Proving Corollary 1: The first part of Corollary 1 is a direct consequence of Theorem 1. The second part results from the
approximation guarantees of Theorems 1 and 3.
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G. Experimental Results: Fairness in Crime Rate Prediction

In the second experiment for robust feature selection, we use the Communities and Crime dataset from UCI Repository of
machine learning databases (Blake & Merz, 1998). This dataset consist of 122 features with plausible connection to crime
in communities within the United States. The crime rate is provided as the per capita violent crimes. In this experiment, we
delete sensitive features such as distribution of race and sex in population and police forces. Fig. 3 compares normalized
objective values for k 2 {4, 5} and different number of deletions. Again, we observe that our centralized and streaming
algorithms have the best performances. We should point out that the parameter d can also play an important role in practice.
Indeed, since all algorithms are made robust to deletion of d = 3 elements, the performance of ROBUST (Mirzasoleiman
et al., 2017) hugely decreases with only r = 4 deletions, while our algorithms maintain their near optimal performances.

To assess the quality of selected features, we use a RIDGE regression classifier (Hoerl & Kennard, 1970). From Table 3 we
observe that the RMSE for a classifier that is trained on all features is 0.136. For classifiers trained on features selected by
GREEDY and GREEDYD, the errors increase to 0.193 and 0.199, respectively. The errors for centralized (0.163) and
streaming (0.177) algorithms are even less than the greedy algorithm which knows the deleted features in advance. This
might be due to the fact that only our proposed methods select features related to the percentage of divorced males and
females as important attributes. It is plausible that these attributes can have high correlations with crime rate.
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Figure 3. Crime and Communities: the effect of deletion on the performance of different algorithms for feature selection. We set d = 3

Table 3. The comparison of the RIDGE classifier for Crime and Communities dataset. Ten sensitive features are deleted. The number of
stored features is reported in parenthesis.

Algorithm RIDGE (RMSE)

All features 0.136
GREEDY 0.193
GREEDYD 0.199
Rob-Cent 0.163 (25)
Rob-Stream 0.177 (52)
ROBUST 0.197 (58)
STAR-T-GREEDY 0.173 (71)


