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Abstract

Can we efficiently extract useful information from
a large user-generated dataset while protecting
the privacy of the users and/or ensuring fairness
in representation? We cast this problem as an
instance of a deletion-robust submodular maxi-
mization where part of the data may be deleted
or masked due to privacy concerns or fairness
criteria. We propose the first memory-efficient
centralized, streaming, and distributed methods
with constant-factor approximation guarantees
against any number of adversarial deletions. We
extensively evaluate the performance of our al-
gorithms on real-world applications, including
(i) Uber-pick up locations with location privacy
constraints; (ii) feature selection with fairness con-
straints for income prediction and crime rate pre-
diction; and (iii) robust to deletion summarization
of census data, consisting of 2,458,285 feature
vectors. Our experiments show that our solution
is robust against even 80% of data deletion.

1. Introduction

It has long been known that solutions obtained from opti-
mization methods can demonstrate striking sensitivity to the
parameters of the problem (Bertsimas et al., 2011). Robust
optimization, in contrast, is a paradigm in the mathematical
programming community with the aim of safeguarding the
solutions from the changes in the underlying parameters.

In this paper, we consider submodular maximization, a very
well studied discrete optimization problem defined over a
finite set of items (e.g., images, videos, blog posts, sensors,
etc). Submodularity formalizes the notion of diminishing
returns, stating (informally) that selecting an item earlier
results in a higher utility than selecting it later. This no-
tion has found far-reaching applications in machine learning
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(Bach et al., 2013), web search and mining (Borodin et al.,
2017), social network (Kempe et al., 2003), crowdsourcing
(Singla et al., 2016), and user modeling (Yue & Guestrin,
2011), to name a few. However, almost all the existing
methods for submodular maximization, ranging from cen-
tralized (Nemhauser et al., 1978; Feldman et al., 2017) to
streaming (Badanidiyuru et al., 2014; Feldman et al., 2018),
to distributed (Mirzasoleiman et al., 2013; Mirrokni & Zadi-
moghaddam, 2015; Barbosa et al., 2015), rely on greedy
selection of elements. As a result, the returned solution
of such methods are remarkably sensitive to even a single
deletion from the set of items.

The need for efficient deletion-robust optimization meth-
ods is wide-spread across many data-driven applications.
With access to big and massive data (usually generated by
millions of users), along with strong machine learning tech-
niques, many service providers have been able to exploit
these new resources in order to improve the accuracy of
their data analytics. At the same time, it has been observed
that many such inference tasks may leak very sensitive infor-
mation about the data providers (i.e., personally identifiable
information, protected health information, legal or financial
data, etc). Similarly these algorithms can encode hidden bi-
ases that disproportionately and adversely impact members
with certain characteristics (e.g., gender and race).

In order to reduce the effect of information extraction on
privacy and fairness, one needs to be able to remove sen-
sitive data points (e.g., geolocations) or discard sensitive
data features (e.g., skin color) from the dataset without in-
curring too much loss in performance. For instance, Article
17 of European “General Data Protection Regulation” states
obligations with respect to providing individuals with the
“Right to erasure (or Right to be forgotten)”. By exercising
this right, individuals may enforce the service providers
to delete their personal data or put restrictions from using
part of it. Similarly, Title VII of the Civil Rights Act of
American anti-discrimination law prohibits employment dis-
crimination against certain characteristics (such as color and
sex). Thus, to obtain fairer machine learning algorithms, we
need to reduce the bias inherent in the training examples due
to the lack of certain types of information, not being repre-
sentative, or reflecting historical biases. This can be done
by either removing protected attributes from training data
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(Zemel et al., 2013) or train them separately for different
protected groups (Chayes, 2017), among other procedures.
Unfortunately, sensitive features or biased data usually are
not known a priori and we might be aware of their existence
just after training our models (Beutel et al., 2017). Retrain-
ing a machine learning model from scratch, after removing
sensitive features and biased data, is quite expensive for
large datasets. Deletion-robust submodular maximization
can save a lot of time and computational resources in these
scenarios. In this paper, we provide a computationally feasi-
ble way of rerunning the algorithms should some attributes
or data points be discarded.

Most existing submodular maximization methods, often
used for data extraction (Mirzasoleiman et al., 2013) and
informative subset selection (Wei et al., 2015), do not pro-
vide such guarantees. In this paper, we develop the first
scalable and memory-efficient algorithms for maximizing
a submodular function subject to a cardinality constraint
that are robust against any number of adversarial deletions.
This is in sharp contrast to previous methods that could
only handle a fixed number of deletions (Orlin et al., 2016;
Bogunovic et al., 2017) or otherwise their memory require-
ment scales multiplicatively with the number of deletions
(Mirzasoleiman et al., 2017).

Our contributions: For a monotone submodular function
with a cardinality constraint k, we develop the following ran-
domized algorithms that are robust against any d deletions:
1. Centralized: We propose ROBUST-CENTRALIZED that
achieves (1/2� �)-approximation guarantee (in expectation)
with the memory requirement O (k + d log k/�2). Note that
the memory complexity is only a logarithmic factor (e.g.,
log k) away from a trivial lower bound O(k + d).
2. Streaming: We propose ROBUST-STREAMING that
achieves (1/2� �)-approximation guarantee (in expectation)
with the memory requirement O

�
k log k/� + d log2

k/�3
�
.

3. Distributed: We propose ROBUST-DISTRIBUTED that
achieves (0.218 � �)-approximation guarantee (in expec-
tation) with the memory requirement O (m(k + d log k/�2)),
where m is the number of machines. We also intro-
duce COMPACT-DISTRIBUTED, a variant of ROBUST-
DISTRIBUTED, where its memory requirement is indepen-
dent of number of machines.

Table 1 compares our proposed methods with previous al-
gorithms. The proofs of all the theoretical results are

deferred to the Supplementary Material.

2. Related Work

Monotone submodular maximization under cardinality con-
straints is studied extensively in centralized, streaming and
distributed scenarios. The classical result of Nemhauser
et al. (1978) proves that the simple GREEDY algorithm that
starts with an empty set and iteratively adds elements with

the highest marginal gain provides (1� 1/e)-approximation
guarantee. To scale to large datasets, several streaming al-
gorithms with constant factor approximations have recently
been proposed (Badanidiyuru et al., 2014; Kumar et al.,
2015; Buchbinder et al., 2015). Also, different distributed
submodular maximization algorithms have been developed
lately (Mirzasoleiman et al., 2013; Mirrokni & Zadimoghad-
dam, 2015; Barbosa et al., 2015).

Krause et al. (2008) introduced the robust formulation of the
classical cardinality constrained submodular maximization
for the first time and gave a bi-criterion approximation to
the problem of max|A|k mini2{1,··· ,`} fi(A), where fi is
normalized monotone submodular for every i. Note that
submodular maximization of function f that is robust to
the deletion of d items can be modeled as a special case of
this problem: max|A|k min|D|d f(A \D). Krause et al.
(2008) guaranteed a robust solution by returning a set whose
size is k(1 + ⇥(log(dk log n)). There are two main draw-
backs with this approach when applied to deletions: first,
the size of final solution is logarithmically larger than k, and
second, the running time is exponential in d. Orlin et al.
(2016) designed a centralized algorithm that outputs a set
of cardinality k in a polynomial time. Their algorithm is
robust to the deletion of only o(

p
k) elements. Bogunovic

et al. (2017) further improved the result of Orlin et al. (2016)
to o(k) deletions. The approximation guarantees for both
of these algorithms are 0.387. The aforementioned meth-
ods try to construct a solution without allowing to update
the answer after deletion. In contrast, Mirzasoleiman et al.
(2017) developed a streaming algorithm which is robust to
the deletion of any number of d elements. They keep a
set of size O(kd log k/�), and after each deletion they find
a feasible solution of size at most k from this set. They
also improved the approximation guarantee to 1/2� �. The
main drawback of this algorithm is the memory requirement,
which is quite impractical for large values of d and k; e.g.,
for k = O(

p
n) and d = O(

p
n) the memory requirement

is even larger than n. Independently and concurrently with
our work, Mitrovic et al. (2017) presented a robust to dele-
tion streaming algorithm. Also, there are several recent
works on robust optimization of non-submodular functions
(Bogunovic et al., 2018; Tzoumas et al., 2018).

Submodular maximization has been widely used in classi-
cal machine learning and data mining applications, includ-
ing extracting representative elements with exemplar based
clustering (Krause & Gomes, 2010), data summarization
through active set selection (Herbrich et al., 2003; Seeger,
2004), feature selection (Krause & Guestrin, 2005) and doc-
ument summarization (Lin & Bilmes, 2011).

3. Problem Definition

Assume we have a set function f : 2V ! R�0. We define
the marginal gain of an element e 2 V to the set A ✓ V
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Table 1. Comparison of algorithms for robust submodular maximization with a cardinality constraint k. Randomized algorithms for which
the bounds hold in expectation are marked (R).

Algorithm Max. Robustness Approx. Memory Setup

OSU (Orlin et al., 2016) o(
p
k) 0.387 k Centralized

PRO-GREEDY (Bogunovic et al., 2017) o(k) 0.387 k Centralized
ROBUST (Mirzasoleiman et al., 2017) arbitrary d 1/2 - � O(kd log k/�) Streaming
STAR-T-GREEDY (Mitrovic et al., 2017) arbitrary d

0.149
1+� (1� 1/dlog ke) O(k log2

k/� + d log3
k/�) Streaming

ROBUST-CENTRALIZED (R) (ours) arbitrary d 1/2� � O(k + d log k/�2) Centralized
ROBUST-STREAMING (R) (ours) arbitrary d 1/2� � O(k log k/� + d log2

k/�
3) Streaming

ROBUST-DISTRIBUTED (R) (ours) arbitrary d 0.218� � O(m(k + d log k/�2)) Distributed
COMPACT-DISTRIBUTED (R) (ours) arbitrary d 0.109� � O(k + d log k/�2) Distributed

by �f (e|A) = f(A [ {e}) � f(A). The function f is
submodular if for all A ✓ B ✓ V and e 2 V \ B, we
have �f (e|A) � �f (e|B). A submodular function f is
monotone if for every A ✓ B ✓ V , we have f(A)  f(B).

In many submodular optimization applications, a subset of
items of the ground set V may be removed at different points
in time. For this reason, we require to find solutions which
are robust to the deletion. Indeed, the goal is to maximize
a submodular function f over a set V of items under a
cardinality constraint k, where it is robust to the deletion
of any subset D ⇢ V of size |D|  d. More precisely,
we are interested in solving the following problem for each
possible (and unknown a priori) instance of D:

S
⇤ = argmax

S✓V \D,|S|k

f(S). (1)

We also define OPT = f(S⇤). The most straightforward ap-
proach to this problem is to solve Eq. (1) for each instance
of D. Unfortunately, solving Eq. (1), for large datasets,
is computationally prohibitive. Also, deletion of elements
from the set V can happen at different stages in real time
applications. This makes the problem even harder. Our
solution to this problem is to maintain a small set A ⇢ V,

called a core-set of V, where for each set D we can effi-
ciently find a subset B ✓ A \D that provides an acceptable
approximation for Eq. (1). Note that set A is constructed
without knowing set D. For this reason, next we define the
notion of (↵, d)-robust randomized core-set.
Definition 1. A random subset of A ✓ V is an (↵, d)-robust
randomized core-set for a set V, if for any subset D ✓ V of
size |D|  d, there exists a B ✓ A \D, |B|  k such that

E[f(B)] � ↵ · max
S✓V \D,|S|k

f(S),

where expectation is taken over the randomization of set A.

4. Robustness and Cardinality Constraint

In this section, we present three fast and scalable random-
ized algorithms. These algorithms solve the problem of
robust submodular maximization in centralized, streaming
and distributed scenarios. Our algorithms provide, in expec-
tation, constant factor approximation guarantees, where they

are robust to the (even adversarial) deletion of any d items
from the set V. In our setting, an adversary might try to
find a set of inputs for which our algorithms fail to provide
good results. In order to make the optimization robust to the
adversarial deletions, we introduce randomness in the selec-
tion process. We assume that the adversary does not have
access to the random bits of the randomized algorithms.

The proposed algorithms are designed based on a general
idea that the elements are chosen randomly from a large
enough pool of similar items. This idea is useful because the
adversary is not aware of the random bits of the algorithms,
which makes the deletion probability of elements we have
chosen negligible. Therefore, we can bound the expected
value of each selected set.

Our solution consists of two steps. In the first step, we find
a small core-set of elements (in comparison to the whole
dataset). We prove that after the deletion of at most d arbi-
trary elements, we can still find a good approximation for
the optimization problem in this small set. In the second
step, we choose at most k elements from the core-set we
have found in the first step. We prove a constant approxima-
tion factor for our algorithm in expectation. This guarantees
that the core-set is (↵, d)-robust randomized for a constant
↵ and arbitrary d.

In the optimization procedure, we use a thresholding idea
to select elements. Similar ideas have been used previously
for designing streaming algorithms (Badanidiyuru et al.,
2014; Buchbinder et al., 2015; Chekuri et al., 2015). In
those algorithms, when an element of the stream arrives,
if this element has sufficiently large marginal value it is
kept; otherwise it is discarded. In the robust submodular
maximization, we keep a large enough pool of elements
with sufficient marginal values before adding or discarding
them. We randomly pick an element when the size of pool is
at least d/✏. Thus the element picked at each step is deleted
with a probability at most ✏. This is true because the size
of deleted items is at most d. To guarantee the quality of
the chosen elements after the deletion (i.e., we want the
expected value of f over the set of picked elements does
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not change a lot after deletion), not only they should have
been picked from a large pool of elements, the elements
of pool should have almost the same marginal gains. To
explain, in more details, why we need this property consider
the example in Appendix A.

4.1. Centralized Algorithm

In this section we outline a centralized algorithm, called
ROBUST-CORESET-CENTRALIZED, to find an (↵, d)-robust
core-set. We also present the ROBUST-CENTRALIZED algo-
rithm which is able to find a good solution from the core-set.

Badanidiyuru et al. (2014) showed that one way to obtain a
constant factor approximation to the classical submodular
maximization problem is to use a thresholding idea. They
proved that choosing elements with marginal gain at least
⌧
⇤ = OPT

2k from a stream until a maximum of k elements
are chosen returns a set with an approximation factor of
1/2. The main problem with this primary idea is that the
value of OPT is not known by the algorithm. Badanidiyuru
et al. (2014) pointed out that, from the submodularity of f ,
we have �0  OPT  k�0 where �0 is the largest value
in set {f({e})|e 2 V }. By dividing the range [�0, k�0]
into intervals of [⌧i, ⌧i+1) (where ⌧i+1/⌧i is close to 1) it is
possible to find a good enough approximation for OPT.

We should first note that due to the deletion process, the
relevant maximum singleton value is not �0 anymore, and
it is �0

0 = maxe2V \D f({e}). The algorithm is unaware
of set D, therefore �0

0 could be anywhere in the range
[�d,�0] where �d is the (d+ 1)-th largest value in the set
{f({e})|e 2 V }. The lower bound of �d is implied by the
fact that at most d elements will be deleted. So ⌧

⇤ = OPT
2k

could fall anywhere in the range [�d/2k,�0]. Unlike the
deletion free case, the upper and lower limits of this range
do not differ only by a multiplicative factor of k, thus a naive
approach makes us try arbitrarily large number of different
choices to find a good estimate of ⌧⇤. We resolve this issue
by the following observation.

We reserve a set B of elements that might be valuable after
the deletion process. Let Vd be the (d + 1) largest single-
ton value elements, i.e., the top d + 1 elements in the set
{f({e})|e 2 V }. We preserve all elements of Vd for the
next round by inserting them to B. This way, we do not
have to worry about thresholds above �d as all elements that
might have marginal value above �d to any set should be in
set Vd and they are added to B. Therefore, we consider all
thresholds in the set T = {(1 + ✏)i|�d

2k  (1 + ✏)i  �d}.
Starting from the largest ⌧ 2 T to the smallest, we iteratively
construct two sets A⌧ and B⌧ . At the end of the algorithm,
the set B is defined as the union of Vd and [⌧2TB⌧ . We
output set B, along with all sets {A⌧}⌧2T, as the core-set.

We initialize A⌧ to ?. We let B⌧ to be the set of elements
whose marginal values to the set [⌧ 0�⌧A⌧ 0 is in the range

Algorithm 1 ROBUST-CORESET-CENTRALIZED

1: �d  the (d+ 1)-th largest value of {f({e})|e 2 V }
2: Vd  all the d+ 1 elements with the largest values in

set {f({e})|e 2 V }
3: T = {(1 + ✏)i| �d

2(1+✏)k  (1 + ✏)i  �d}
4: For each ⌧ 2 T : {A⌧} ? and {B⌧} ?
5: V  V \ Vd

6: for ⌧ 2 T from the highest to the lowest do

7: while |B⌧ | � d/✏ for B⌧ = {e 2 V : ⌧ 
�f (e|[⌧ 0�⌧ A⌧ 0) < (1+ ✏)⌧} and |[⌧ 0�⌧ A⌧ 0 | < k

do

8: Randomly pick an element e from B⌧ and add it
to A⌧ , i.e., A⌧  A⌧ [ {e}

9: V  V \ (A⌧ [B⌧ )
10: B  {[B⌧} [ Vd

11: Return {A⌧}, B

[⌧, (1 + ✏)⌧). We note that this is a dynamic definition
and whenever we add an element to any of A⌧ sets, the
related B⌧ set might change as well. Elements in the set B⌧

are similar to each other in terms of their marginal values.
Without deletions, we can choose any element from B⌧

and add it to our solution. However, if B⌧ has only a few
elements, the adversary can delete all of them, and we will
be left with an arbitrary poor solution. To make the selection
process robust, we select a random element from B⌧ and
add it to A⌧ only if there are at least d/✏ elements in B⌧ .
This way even if all the deleted elements are from the set
B⌧ , the probability of each selected element being deleted is
at most ✏. We also know that all elements added to A⌧ have
similar marginal values and are interchangeable. We keep
adding elements to A⌧ until either [⌧ 0�⌧A⌧ 0 has k elements
or the size of set B⌧ becomes smaller than d/✏. At this stage,
we keep both sets A⌧ and B⌧ as a part of the output core-set.
We also remove them from the ground set V and move on
to the next lower threshold. The pseudo code of ROBUST-
CORESET-CENTRALIZED is given in Algorithm 1.

The sets {A⌧} and B are the outputs (core-set) of ROBUST-
CORESET-CENTRALIZED. In Appendix B , we show how
ROBUST-CENTRALIZED (with pseudo code given in Algo-
rithm 2) returns a solution for submodular maximization
problem after the deletion of set D.

Theorem 1. For any � > 0, by setting ✏ = 2�
3 , ROBUST-

CORESET-CENTRALIZED and ROBUST-CENTRALIZED
satisfy the following properties:

• ROBUST-CENTRALIZED outputs a set S such that |S| 
k and E[f(S)] � (1/2� �) · OPT.

• ROBUST-CORESET-CENTRALIZED outputs at most
O (k + d log k/�2) elements as the core-set.

• The query complexities of ROBUST-CORESET-
CENTRALIZED and ROBUST-CENTRALIZED are
O ((k + log k/�)|V |) and O ((k + d log k/�2)(log k/�)).
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Algorithm 2 ROBUST-CENTRALIZED

1: Input: {A0
⌧
} and B

0 {A0
⌧

and B
0 contain ele-

ments of A⌧ and B (outputs of ROBUST-CORESET-
CENTRALIZED) after deletion.}

2: Output: Set S of cardinality at most k
3: �0

0  the largest value of {f({e})|e 2 {[A0
⌧
} [B

0}
4: T0 = {(1 + ✏)i| �0

0
2(1+✏)k  (1 + ✏)i  �0

0}
5: for ⌧ 2 T0 from the highest to the lowest do

6: S⌧  
S

⌧ 02T0,⌧ 0�⌧
A

0
⌧ 0

7: for all e 2 B
0

do

8: if �f (e|S⌧ ) � ⌧ and |S⌧ | < k then

9: S⌧  S⌧ [ e

10: Return argmaxS⌧
f(S⌧ )

4.2. Streaming Algorithm

In many applications, the dataset does not fit in the main
memory of a single machine or even the data itself arrives
as a stream. So it is not possible to use centralized algo-
rithms which need random access to the whole data. In this
section, we present a streaming algorithm with a limited
available memory. We first use the thresholding idea of
Section 4.1 in order to find a core-set for V. Then we show
that it is possible to find a good solution from this core-set
when deletion happens. Recall that for ROBUST-CORESET-
CENTRALIZED, the maximum singleton element and the
thresholds are fixed while in the streaming setting, they
may change as new elements arrive. To apply ideas of the
centralized algorithm, we should overcome the following
challenges: (i) it is not possible to make several passes over
the data for different thresholds (i.e., we cannot start from
the largest possible marginal gain to the lowest), and (ii) the
value of �0 and �d are not known a priori.

We show that it is possible to maintain a good approximation
of OPT even with a single pass over the data. From now on,
let �0 and �d, respectively, denote the largest and the (d+
1)-th largest singleton values in the stream of data at time
step t. First, note that �d  OPT and the marginal gain of
all the currently received elements is at most �0. Therefore,
it is enough to consider thresholds in the range [�d

2k ,�0]. A
new threshold is instantiated when the maximum singleton
element is changed. These new (increasing) thresholds
are between the current maximum and the previous one.
Therefore, all the elements with marginal gains larger than
the new threshold will appear after its instantiation.

ROBUST-CORESET-STREAMING, for each threshold ⌧ ,
keeps two sets A⌧ and B⌧ = [⌧ 0�⌧B⌧,⌧ 0 . All the elements
with marginal gains at least ⌧ to set A⌧ are good enough
to be picked by this instance of the algorithm. In order to
make the selected elements robust to deletions, we should
put all good enough elements in different B⌧,⌧ 0 sets, with
thresholds ⌧ 0 in the range [⌧,�0], based on their marginal
values. Whenever a set B⌧,⌧ 0 becomes large, we pick one

Algorithm 3 ROBUST-CORESET-STREAMING

1: T = {(1 + e)i|i 2 Z}
2: For each ⌧, ⌧

0 2 T : {A⌧} ? and {B⌧,⌧ 0} ?
3: for every arriving element et do

4: �d  the (d + 1)-th largest element of
{f{e1}, · · · , {f{et}}

5: �0  the largest element of {f{e1}, · · · , {f{et}}
6: Tt = {(1 + ✏)i| �d

2(1+✏)k  (1 + ✏)i  �d}
7: Delete all A⌧ and B⌧,⌧ 0 such the ⌧ or ⌧ 0 /2 Tt

8: for ⌧ 2 Tt do

9: if |A⌧ | < k and ⌧  �f (e|A⌧ ) then

10: Add et to B⌧,⌧ 0 such that for ⌧
0 

�f (et|A⌧ ) < ⌧
0(1 + ✏)

11: while 9⌧ 00 such that |B⌧,⌧ 00 | � d/✏ do

12: Randomly pick an element e from B⌧,⌧ 00 and
add it to A⌧ , i.e., A⌧  A⌧ [ {e}

13: For all e 2
S

⌧ 002Ti,⌧
00�⌧

B⌧,⌧ 00 recompute
�f (e|A⌧ ) and re-place them in correct bins

14: for ⌧ 2 Tn do

15: B⌧  
S

⌧ 02Tn,⌧
0�⌧

B⌧,⌧ 0

16: Return {A⌧}, {B⌧}

element of it randomly to add to A⌧ . This ensures that an
element is picked from a large pool of almost similar ele-
ments. Formally, all the elements with a marginal gain in
the range [⌧ 0, ⌧ 0(1 + ✏)) are added to the set B⌧,⌧ 0 . When
the size of a B⌧,⌧ 0 is at least d/✏, we randomly pick an ele-
ment from B⌧,⌧ 0 and add it to A⌧ . Adding an element to A⌧

may decrease the marginal gains of elements in B⌧,⌧ 0 sets.
So we recompute their marginal gains and put them in the
right B⌧,⌧ 00 set (they are kept if their marginal gains are at
least ⌧ , otherwise they are discarded). These changes may
make another set large, so we keep adding elements to A⌧

while we find a large B⌧,⌧ 00 set. This process continues until
a maximum of k elements are added to A⌧ or the stream
of data ends. Note that there are at most d elements with
marginal gains in the range (�d,�0]; we can simply keep
these elements (refer to it as set Vd). For all �d < ⌧  �0,
we have A⌧ = ?, because there is no pool of size at least
d/✏ elements to pick from it. Also, for B⌧,⌧ 0 sets, we do not
need to cover the range (�d,�0] with too many thresholds.
Indeed, when �d changes (it can only increase), we can
update the set Vd and locate the removed elements from Vd

into a correct B⌧,⌧ 0 . Therefore, it is sufficient to consider
only thresholds in the range[�d

2k ,�d]. The pseudo code of
ROBUST-CORESET-STREAMING is given in Algorithm 3.

In Appendix D, we introduce another algorithm (called
ROBUST-STREAMING) such that after deletion of any set D
from the core-set finds a solution with an expected approxi-
mation guarantee of 1�3✏

2 to the optimum solution.

Theorem 2. For any � > 0, by setting ✏ = 2�
3 , ROBUST-

CORESET-STREAMING and ROBUST-STREAMING satisfy
the following properties:



Scalable Deletion-Robust Submodular Maximization

Algorithm 4 ROBUST-DISTRIBUTED

1: for e 2 V do

2: Assign e to a machine i chosen uniformly at random;
3: Let Vi be the elements assigned to machine i

4: Run ROBUST-CORESET-CENTRALIZED (Algorithm 1)
on each machine to obtain {Ai

⌧
} and B

i

5: Run ROBUST-CENTRALIZED (Algorithm 2) on each
{Ai

⌧

0} and B
i0 to get the set Si of cardinality at most

k from each machine {{Ai
⌧

0} and B
i0 are elements of

{Ai
⌧
} and B

i after deletion of set D.}
6: S  argmaxSi{f(Si)}
7: T  GREEDY({

S
i

S
⌧2Ti A

i
⌧

0}
S
{
S

i
B

i0})
8: Return argmax{f(T ), f(S)}

• ROBUST-STREAMING outputs a set S such that |S|  k

and E[f(S)] � (1/2� �) · OPT.
• ROBUST-CORESET-STREAMING makes one pass over

the dataset.
• ROBUST-CORESET-STREAMING outputs at most

O
�
k log k/� + d log2

k/�3
�

elements as the core-set.
• The query complexities of ROBUST-CORESET-

STREAMING and ROBUST-STREAMING are
O
�
|V | log k/� + dk log2

k/�3
�

and O
�
d log3

k/�4
�
.

4.3. Distributed Algorithm

In this section, build upon ideas from (Mirzasoleiman et al.,
2013; Mirrokni & Zadimoghaddam, 2015; Barbosa et al.,
2015), we present a robust distributed submodular maxi-
mization algorithm, called ROBUST-DISTRIBUTED. We
prove that our distributed algorithm finds an (↵, d)-robust
randomized core-set with a constant ↵ and any arbitrary d.

ROBUST-DISTRIBUTED is a two-round distributed algo-
rithm within a MapReduce framework. It first randomly par-
titions dataset between m machines. Each machine i runs
ROBUST-CORESET-CENTRALIZED on its data and passes
the result (i.e., sets {Ai

⌧
} and B

i) to a central machine. Af-
ter the deletion of the set D, this single central machine
runs m instances of ROBUST-CENTRALIZED on the outputs
received from each machine i and finds solutions S

i. In
addition, it runs the classical GREEDY on the union of sets
received from all machines (i.e., union of all sets {Ai

⌧

0} and
B

i0) to find another solution T . The final solution is the
best answer among T and sets Si. ROBUST-DISTRIBUTED
is outlined in Algorithm 4.
Theorem 3. For any � > 0, by setting ✏ = �/2, ROBUST-
DISTRIBUTED outputs a set S, |S|  k such that E[f(S)] �
↵�/(↵+�) · OPT, where ↵ = 1/3� � and � = 1� 1/e. This
results in an approximation factor of 0.218� �.
Corollary 1. Running ROBUST-CORESET-CENTRALIZED
on the output of ROBUST-DISTRIBUTED produces a com-
pact core-set of size O (k + d log k/�2). Also, ROBUST-
CENTRALIZED finds a solution with (0.109 � �)-

approximation guarantee from this compact core-set. We re-
fer to this version of our distributed algorithm as COMPACT-
DISTRIBUTED.

The main motivation of COMPACT-DISTRIBUTED is that
the memory complexity does not increase with the number
of machines m (while it still provides a constant factor
approximation).

5. Experimental Results

In this section, we extensively evaluate the performance
of our algorithms on several publicly available real-world
datasets. We consider algorithms that can be robust to the
deletion of any number of items and return k elements af-
ter deletion. Note that both OSU (Orlin et al., 2016) and
PRO-GREEDY (Bogunovic et al., 2017) are robust to the
deletion of only o(k) items. For this reason, we compare
our proposed methods with three other baselines: (i) RO-
BUST (Mirzasoleiman et al., 2017), (ii) STAR-T-GREEDY
(Mitrovic et al., 2017), and (iii) the stochastic greedy algo-
rithm (Mirzasoleiman et al., 2015) (SG), where we first
obtain a solution S of size r = 6k (we set r > k to
make the solution robust to deletion), and then we report
GREEDY(S \D) as the final answer.

In our experiments, we evaluate the effect of three parame-
ters: (i) d where an algorithm is designed to be robust to d

deletions; (ii) cardinality constraint k of the final solution;
and (iii) number of deleted elements r. The objective value
of all algorithms are normalized to the utility obtained from
a classical greedy algorithm that knows the set of deleted
items D beforehand. Note that we are able to guarantee
the performance of our algorithms (also this is true for RO-
BUST (Mirzasoleiman et al., 2017) and STAR-T-GREEDY
(Mitrovic et al., 2017)) only when the number of deletions
r is less than d. While the theoretical improvements of our
algorithms for larger values of d is more significant (see
Table 1), for a fair comparison, we used the experimental
setting of Mirzasoleiman et al. (2017). In these experiments,
we also evaluate the effect of larger number of deletions,
i.e., where r � d. We observe, even though our algorithms
are not designed for such higher number of deletions, they
demonstrate a gracefully robust behavior.
5.1. Location Privacy

In a wide range of applications, data can be represented as a
kernel matrix K, which encodes the similarity between dif-
ferent items in the database. In order to find a representative
set S of cardinality k, a common objective function is

f(S) = log det(I + ↵KS,S), (2)

where KS,S is the principal sub-matrix of K indexed by S

and ↵ > 0 is a regularization parameter (Herbrich et al.,
2003; Seeger, 2004; Krause & Guestrin, 2005). This func-
tion is monotone submodular.

In this section, we analyze a dataset of 10,000 geolocations.
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Each data entry is longitude and latitude coordinates of
Uber pickups in Manhattan, New York in April 2014 (Uber-
Dataset). Our goal is to find k representative samples using
the objective function described in Eq. (2). The similarity of
two location samples i and j is defined by a Gaussian kernel
Ki,j = exp(�d2

i,j
/h

2), where the distance di,j (in meters)
is calculated from the coordinates and h is set to 5000. We
set d = 5, i.e., we make algorithms (theoretically) robust
to deletion of at most five elements. To compare the effect
of deletions on the performance of algorithms, we use two
strategies to choose the deleted items: (i) classical greedy
algorithm, and (ii) the stochastic greedy algorithm.

In the first experiment, we study the effect of deleting dif-
ferent number of items on the normalized objective values.
To refer to an algorithm with a specific deletion strategy, we
use the name of algorithm followed by the deletion strat-
egy, e.g., Rob-Stream-G refers to ROBUST-STREAMING
where the deleted items are picked by greedy strategy.
From Fig. 1a, we observe that ROBUST-STREAMING and
ROBUST-CENTRALIZED are more robust to deletion than
ROBUST and SG. The effect of deleting by greedy strategy
on the performance of algorithms is more pronounced than
SG strategy. It can be seen that, even by deleting more than
d = 5 items, our algorithms maintain their performance.
Also, SG (which is not designed to be robust to deletions)
shows the worst performance.

Other than normalized objective values, the memory require-
ment of each algorithm is quite important. Indeed, we are
interested in deletion-robust algorithms that do not keep
many items. Fig. 1b compares the memory complexity of
algorithms. We observe that ROBUST-CENTRALIZED needs
to keep the least number of items. For ROBUST algorithm,
the memory complexity increases super linear in k (it is
O(k log k)), which makes it quite impractical for large val-
ues of k and d. Also, we observe ROBUST-STREAMING
outperforms STAR-T-GREEDY in both objective func-
tion and memory requirement. To sum-up, we observe that
our algorithms provide the best of two worlds: while their
normalized objective values are clearly better than other
baselines, they need to keep much fewer number of items.

5.2. Submodular Feature Selection

One of the challenges in learning from high dimensional
data is to select a subset of relevant features in a computa-
tionally feasible way. For this reason, the quality of a subset
of features S can be captured by the mutual information
between attributes in S and the class variable Y (Krause &
Guestrin, 2005). More specifically,

I(Y ;XS) =
X

y2Y

X

x2XS

p(x, y) log2

✓
p(x, y)

p(x)p(y)

◆
,

where XS is a random variable that represents the set S
of k features. The joint distribution on (Y,X1, · · · , Xk),

under the Naive Bayes assumption, is defined by
p(y, x1, · · · , xk) = p(y)

Q
k

i=1 p(xi|y). This assumption
makes the computation of joint distribution tractable. In
our experiments, we estimate each p(xi|y) by counting
frequencies in the dataset. In the feature selection prob-
lem, the goal is to choose k features such that maximiz-
ing f(S) = I(Y ;XS). It is known that the function
f(S) = I(Y ;XS), under the Naive Bayes assumption, is
monotone submodular (Krause & Guestrin, 2005).

In this section and Appendix G, we use this feature selection
method on two real datasets. We first show that our algo-
rithms, after the deletion of sensitive features (i.e., features
that might cause unfairness in the final classifier) provide
results with near optimal quality (based on mutual infor-
mation). Second, we demonstrate that classifiers that are
trained on these selected features perform very well.

In the first experiment, we use the Adult Income dataset
from UCI Repository (Blake & Merz, 1998). This dataset
contains information about 32,561 individuals and whether
income of those individuals is over 50K a year. We extract
113 binary features from this dataset. The goal of the clas-
sification task is to predict the income status of 16,281 test
cases. For the deletions, we remove sensitive features that
might result in the unfairness, e.g., features about sex, race,
nationality, marital status and relationship status. Fig. 1c
compares algorithms based on different number of deletions
for k = 5 and k = 10. We observe that for both values
of k, ROBUST-CENTRALIZED considerably outperforms
ROBUST (Mirzasoleiman et al., 2017) and SG. Also, the
performance of ROBUST is better than SG.

To further investigate the effect of deletions, we compare
accuracy of different classifiers, where each is trained on
the features found by our algorithms and baselines. We
train two type of classifiers: (i) Naive Bayes (Zhang, 2004)
and (ii) SVM (Smola & Schölkopf, 2004). From Table 2,
we observe that a SVM classifier, which is trained over all
features, results in an accuracy of 83.0%. If we use a greedy
algorithm to find the best 5 features and train SVM classifier
on those features, the accuracy will drop to 79.6% (clearly
there is a trade off between the number of features and accu-
racy). After deleting 10 features that might result in unfair-
ness in classification (e.g., race and sex), we again use the
greedy algorithm to find the best five features (referred to as
GREEDYD). The accuracy in this case is 79.3%. Interest-
ingly, we observe that the accuracies of classifiers which are
trained on the features found by ROBUST-CENTRALIZED
and ROBUST-STREAMING drop only by 0.2%. Also, for
Naive Bayes classifier, we do not observe any decrease on
the accuracy when we train on the features found by our
algorithms. Finally, both Centralized (22) and Streaming
(29) algorithms need to keep fewer number of items than
ROBUST (39) and STAR-T-GREEDY (50).
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Figure 1. (a) The effect of deletion on the performance of algorithms with respect two different deletion strategies; (b) memory complexity
of robust algorithms for different cardinality constraints; (c) The effect of deletion on the performance for feature selection.

Table 2. The comparison of Naive Bayes and SVM classifiers for
Adult Income dataset. Ten sensitive features are deleted. The
number of stored features is reported in parenthesis.

Algorithm Naive Bayes (Acc.) SVM (Acc.)

All features 0.798 0.830
GREEDY 0.788 0.796
GREEDYD 0.781 0.793
Rob-Cent 0.781 (22) 0.791
Rob-Stream 0.781 (29) 0.791
ROBUST 0.779 (39) 0.788
STAR-T-GREEDY 0.779 (50) 0.787

5.3. Large Data Summarization

To evaluate the performance of ROBUST-DISTRIBUTED on
large datasets, we consider the Census1990 dataset from
UCI Repository (Blake & Merz, 1998). This dataset consists
of 2,458,285 data points with 68 features. We are going
to find k representative samples from this large dataset.
We apply the set selection objective function described in
Eq. (2). The similarity between two entries x and x

0 is
defined by 1 � kx�x

0kp
68

, where kx � x
0k is the Euclidean

distance between feature vectors of x and x
0.

We randomly split the dataset into m = 12 partitions. For
each instance of ROBUST-CORESET-CENTRALIZED, we
set d = 25 with an ✏ = 0.1. As a baseline, we consider a
distributed version of stochastic greedy algorithm (refer to
it as SG-DISTRIBUTED). For this algorithm, we first run
stochastic greedy on each partitions to select Si = 6k items.
After deletion of D, we report f(GREEDY([Si \D)) as
the final result. Also, we normalize the utility of functions to
the objective value of an instance of SG-DISTRIBUTED that
knows the set of deleted items D in advance. For deletions,
we propose four different strategies: D1 randomly deletes
50% of items, D2 randomly deletes 80% of items, D3 deletes
all men in the dataset, and D4 deletes all women.

We investigate the effect of different deletion strategies for
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Figure 2. Census1990 dataset: ROBUST-DISTRIBUTED versus SG-
DISTRIBUTED for four different deleting strategies.

two values of k 2 {50, 100}. In Figs. 2a and 2b, we ob-
serve that ROBUST-DISTRIBUTED clearly outperforms SG-
DISTRIBUTED in all cases. Furthermore, we observe that
the objective value of ROBUST-DISTRIBUTED in all scenar-
ios is even better than our reference function for normaliza-
tion (normalized objective values are larger than 1). Each
machine on average stores 209.3 (for k = 50) and 348.3
(for k = 100) items. The standard deviations of memory
complexities are 36.9 and 26.5, respectively. To conclude,
ROBUST-DISTRIBUTED enables us to robustly summarize
a dataset of size 2,458,285 with storing only ⇡4500 items.
Our experimental results confirm that this core-set is robust
to the deletion of even 80% of items.

6. Conclusion

In this paper, we considered the problem of deletion-robust
submodular maximization. We provided the first scalable
and memory-efficient solutions in different optimization
settings, namely, centralized, streaming, and distributed
models of computation. We rigorously proved that our
methods enjoy constant factor approximations with respect
to the optimum algorithm that is also aware of the deleted
set of elements. We showcased the effectiveness of our
algorithms on real-word problems where part of data should
be deleted due to privacy and fairness constraints.
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