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Abstract

We introduce a new family of fairness definitions
that interpolate between statistical and individ-
ual notions of fairness, obtaining some of the
best properties of each. We show that checking
whether these notions are satisfied is computa-
tionally hard in the worst case, but give practical
oracle-efficient algorithms for learning subject to
these constraints, and confirm our findings with
experiments.

1. Introduction

As machine learning is being deployed in increasingly con-
sequential domains (including policing (Rudin, 2013), crim-
inal sentencing (Barry-Jester et al., 2015), and lending (Ko-
ren, 2016)), the problem of ensuring that learned models are
fair has become urgent.

Approaches to fairness in machine learning can coarsely be
divided into two kinds: statistical and individual notions of
fairness. Statistical notions typically fix a small number of
protected demographic groups G (such as racial groups), and
then ask for (approximate) parity of some statistical measure
across all of these groups. One popular statistical measure
asks for equality of false positive or negative rates across all
groups in G (this is also sometimes referred to as an equal
opportunity constraint (Hardt et al., 2016)). Another asks
for equality of classification rates (also known as statistical
parity). These statistical notions of fairness are the kinds
of fairness definitions most common in the literature (see
e.g. (Kamiran & Calders, 2012; Hajian & Domingo-Ferrer,
2013; Kleinberg et al., 2017; Hardt et al., 2016; Friedler
et al., 2016; Zafar et al., 2017; Chouldechova, 2017)).
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One main attraction of statistical definitions of fairness is
that they can in principle be obtained and checked without
making any assumptions about the underlying population,
and hence lead to more immediately actionable algorithmic
approaches. On the other hand, individual notions of fair-
ness ask for the algorithm to satisfy some guarantee which
binds at the individual, rather than group, level. Individual
notions of fairness have attractively strong semantics, but
their main drawback is that achieving them seemingly re-
quires more assumptions to be made about the setting under
consideration.

The semantics of statistical notions of fairness would be
significantly stronger if they were defined over a large num-
ber of subgroups, thus permitting a rich middle ground be-
tween fairness only for a small number of coarse pre-defined
groups, and the strong assumptions needed for fairness at
the individual level. Consider the kind of fairness gerry-
mandering that can occur when we only look for unfairness
over a small number of pre-defined groups:

Example 1.1. Imagine a setting with two binary features,
corresponding to race (say black and white) and gender (say
male and female), both of which are distributed indepen-
dently and uniformly at random in a population. Consider
a classifier that labels an example positive if and only if it
corresponds to a black man, or a white woman. Then the
classifier will appear to be equitable when one considers
either protected attribute alone, in the sense that it labels
both men and women as positive 50% of the time, and labels
both black and white individuals as positive 50% of the time.
But if one looks at any conjunction of the two attributes
(such as black women), then it is apparent that the classifier
maximally violates the statistical parity fairness constraint.
Similar examples for classification are easily constructed.

We remark that the issue raised by this toy example is not
merely hypothetical. In our experiments in Section 5, we
show that similar violations of fairness on subgroups of the
pre-defined groups can result from the application of stan-
dard machine learning methods applied to real datasets. To
avoid such problems, we would like to be able to satisfy a
fairness constraint not just for the small number of protected
groups defined by single protected attributes, but for a com-
binatorially large or even infinite collection of structured
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subgroups definable over protected attributes.

In this paper, we consider the problem of auditing binary
classifiers for equal opportunity and statistical parity, and the
problem of learning classifiers subject to these constraints,
when the number of protected groups is large. There are ex-
ponentially many ways of carving up a population into sub-
groups, and we cannot necessarily identify a small number
of these a priori as the only ones we need to be concerned
about. At the same time, we cannot insist on any notion of
statistical fairness for every subgroup of the population: for
example, any imperfect classifier could be accused of being
unfair to the subgroup of individuals defined ex-post as the
set of individuals it misclassified. This simply corresponds
to “overfitting” a fairness constraint.

Our investigation focuses on the computational challenges,
both in theory and in practice.

1.1. Our Results

Briefly, our contributions are: 1) Formalization of the prob-
lem of auditing and learning classifiers for fairness with
respect to rich classes of subgroups G. 2) Results proving
(under certain assumptions) the computational equivalence
of auditing G and (weak) agnostic learning of G. 3) Provably
convergent algorithms for learning classifiers that are fair
with respect to G, based on a formulation as a two-player
zero-sum game between a Learner (the primal player) and
an Auditor (the dual player). We provide two different
algorithms, both of which are based on solving for the equi-
librium of this game. The first provably converges in a
polynomial number of steps; the second is only guaranteed
to converge asymptotically but is computationally simpler.
4) An implementation and extensive empirical evaluation of
the simpler algorithm demonstrating its effectiveness on a
real dataset in which subgroup fairness is a concern.

1.2. Related Work

Independent of our work, (Hébert-Johnson et al., 2017) also
consider a related and complementary notion of fairness
that they call “multicalibration”. For a real-valued predictor,
calibration informally requires that for every value v € [0, 1]
predicted by an algorithm, the fraction of individuals who
truly have a positive label in the subset of individuals on
which the algorithm predicted v should be approximately
equal to v. Multicalibration asks for approximate calibration
on every set defined implicitly by some circuit in a set G.
(Hébert-Johnson et al., 2017) give an algorithmic result that
is broadly similar to the one we give for learning subgroup
fair classifiers, but for this different fairness notion. Our
techniques differ from theirs significantly.

Thematically, the most closely related piece of prior work is
(Zhang & Neill, 2016), who also aim to audit classification

algorithms for discrimination in subgroups that have not
been pre-defined. Our work differs from theirs in a number
of important ways. First, we audit the algorithm for common
measures of statistical unfairness, whereas (Zhang & Neill,
2016) design a new measure compatible with their particular
algorithmic technique. Second, we give a formal analysis
of our algorithm. Most importantly we give actionable
algorithms for learning subgroup fair classifiers, whereas
(Zhang & Neill, 2016) restrict attention to auditing.

Technically, the most closely related piece of work (and
from which we take inspiration for our algorithm in Section
4) is (Agarwal et al., 2017), who show that given access
to an agnostic learning oracle for a class H, there is an
efficient algorithm to find the lowest-error distribution over
classifiers in H subject to equalizing false positive rates
across polynomially many subgroups. Their algorithm can
be viewed as solving the same zero-sum game that we solve,
but in which the “subgroup” player plays gradient descent
over his pure strategies, one for each sub-group. This ceases
to be an efficient or practical algorithm when the number of
subgroups is large, as is our case.

There is also other work showing computational hardness
for fair learning problems. Most notably, (Woodworth et al.,
2017) show that finding a linear threshold classifier that
approximately minimizes hinge loss subject to equalizing
false positive rates across populations is computationally
hard (assuming that refuting a random k-XOR formula is
hard). In contrast, we show that even checking whether
a classifier satisfies a false positive rate constraint on a
particular data set is computationally hard (if the number
of subgroups on which fairness is desired is too large to
enumerate).

2. Model and Preliminaries

We model each individual as being described by a tuple
((z,2"),y), where x € X denotes a vector of protected at-
tributes, ¥’ € X’ denotes a vector of unprotected attributes,
and y € {0, 1} denotes a label. Note that in our formulation,
an auditing algorithm not only may not see the unprotected
attributes x’, it may not even be aware of their existence. For
example, 2’ may represent proprietary features or consumer
data purchased by a credit scoring company.

We will write X = (z,2’) to denote the joint feature vec-
tor. We assume that points (X, y) are drawn i.i.d. from
an unknown distribution P. Let D be a decision making
algorithm, and let D(X) denote the (possibly randomized)
decision induced by D on individual (X,y). We restrict
attention in this paper to the case in which D makes a binary
classification decision: D(X) € {0,1}. Thus we alternately
refer to D as a classifier. When auditing a fixed classifier
D, it will be helpful to make reference to the distribution
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over examples (X, y) together with their induced classifica-
tion D(X). Let Payait (D) denote the induced rarget joint
distribution over the tuple (z,y, D(X)) that results from
sampling (z,2’,y) ~ P, and providing z, the true label y,
and the classification D(X) = D(x,z’) but not the unpro-
tected attributes x’. Note that the randomness here is over
both the randomness of P, and the potential randomness of
the classifier D.

We will be concerned with learning and auditing classifiers
D satisfying two common statistical fairness constraints:
equality of classification rates (also known as statistical
parity), and equality of false positive rates (also known as
equal opportunity). Auditing for equality of false negative
rates is symmetric and so we do not explicitly consider it.
Each fairness constraint is defined with respect to a set of
protected groups. We define sets of protected groups via
a family of indicator functions G for those groups, defined
over protected attributes. Each g : X — {0,1} € G has the
semantics that g(z) = 1 indicates that an individual with
protected features x is in group g.

Definition 2.1 (Statistical Parity (SP) Subgroup Fairness).
Fix any classifier D, distribution P, collection of group
indicators G, and parameter v € [0, 1]. For each g € G,
define

asp(g,P) = Prlg(e) = 1]

BSP(g’D’/P> = ‘SP<D> - SP(D,9)| )

where SP(D) = Prp p[D(X) = 1] and SP(D,g) =
Prp p[D(X) = 1|g(z) = 1] denote the overall accep-
tance rate of D and the acceptance rate of D on group g
respectively. We say that D satisfies ~y-statistical parity (SP)
Fairness with respect to P and G if for every g € G

aSP(g7P) BSP(gvDaP) S Y.

We will sometimes refer to SP(D) as the SP base rate.

Remark 2.2. Note that our definition references two ap-
proximation parameters, both of which are important. We
are allowed to ignore a group g if it (or its complement)
represent only a small fraction of the total probability mass.
The parameter o governs how small a fraction of the popu-
lation we are allowed to ignore. Similarly, we do not require
that the probability of a positive classification in every sub-
group is exactly equal to the base rate, but instead allow
deviations up to 3. Both of these approximation parameters
are necessary from a statistical estimation perspective. We
control both of them with a single parameter 7.

Definition 2.3 (False Positive (FP) Subgroup Fairness). Fix
any classifier D, distribution P, collection of group indica-
tors G, and parameter v € [0, 1]. For each g € G, define

arp(9,P) = Prlg(z) =1,y = 0]

BFP(g’D7P> = ‘FP<D> - FP(D,g)l

where FP(D) = Prpp[D(X) = 1 | y = 0] and
FP(D,g) = Prpp[D(X) =1 g(z) = 1,y = 0] denote
the overall false-positive rate of D and the false-positive
rate of D on group g respectively.

We say D satisfies v-False Positive (FP) Fairness with re-
spect to P and G if for every g € G

OZFP(977)) BFP(g7D7P) S -
We will sometimes refer to FP(D) FP-base rate.

For either SP and FP fairness, if the algorithm D fails to
satisfy the y-fairness condition, then we say that D is -
unfair with respect to P and G. We call any subgroup g
which witnesses this unfairness an ~y-unfair certificate for
(D, P).

An auditing algorithm for a notion of fairness is given sam-
ple access t0 Payait (D) for some classifier D. It will either
deem D to be fair with respect to P, or will else produce a
certificate of unfairness.

Definition 2.4 (Auditing Algorithm). Fix a notion of fair-
ness (either SP or FP fairness), a collection of group indica-
tors G over the protected features, and any 6,~,~" € (0,1)
such that v < 7. A (v,v)-auditing algorithm for G with
respect to distribution P is an algorithm A such that for any
classifier D, when given access the distribution Payai (D),
A runs in time poly(1/+',log(1/6)), and with probability
1 — &, outputs a v'-unfair certificate for D whenever D is
~-unfair with respect to P and G. If D is v'-fair, A will
output “fair”.

As we will show, the notion of auditing is closely related to
weak agnostic learning.

Definition 2.5 (Weak Agnostic Learning (Kearns et al.,
1994; Kalai et al., 2008)). Let Q) be a distribution over
X x {0,1} and let e,&’ € (0,1/2) such thate > &'. We
say that the function class G is (e, e’)-weakly agnostically
learnable under distribution Q) if there exists an algorithm
L such that when given sample access to ), L runs in time
poly(1/e’,1/9), and with probability 1 — 6, outputs a hy-
pothesis h € G such that

I}leigeTT(f,Q) <1/2—¢ = err(h,Q) <1/2—¢".

where err(h, Q) = Pre, y~olh(x) # yl.

Cost-Sensitive Classification. In this paper, we will also
give reductions to cost-sensitive classification (CSC) prob-
lems. Formally, an instance of a CSC problem for the class
H is given by a set of n tuples {(X;, ¢y, c})}? ; such that
ct corresponds to the cost for predicting label ¢ on point
X;. Given such an instance as input, a CSC oracle finds a
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hypothesis h € H that minimizes the total cost:

he argminZ[h(Xi)C% + (1 = h(X3))e] (D
heH i=1

Remark 2.6. Cost-sensitive classification is polynomially
equivalent to agnostic learning (Zadrozny et al., 2003).
Sometimes one definition will be more convenient to work
with than the other:

3. Auditing < Weak Agnostic Learning

In this section, we give a reduction from the problem of
auditing both statistical parity and false positive rate fairness,
to the problem of agnostic learning, and vice versa. This has
two implications. The main implication is that, from a worst-
case analysis point of view, auditing is computationally hard
in almost every case (since it inherits this pessimistic state
of affairs from agnostic learning). However, worst-case
hardness results in learning theory have not prevented the
successful practice of machine learning, and there are many
heuristic algorithms that in real-world cases successfully
solve “hard” agnostic learning problems. Our reductions
also imply that these heuristics can be used successfully as
auditing algorithms, and we exploit this in the development
of our algorithmic results and their experimental evaluation.

We will think about these as the target distributions for a
learning problem: i.e. the problem of learning to predict
D(X) from only the protected features x. We will relate
the ability to agnostically learn on these distributions, to the
ability to audit D given access to the original distribution
Paudit (-D ) .

Statistical Parity Fairness We give our reduction first
for SP subgroup fairness. The reduction for FP subgroup
fairness will follow as a corollary, since auditing for FP
subgroup fairness can be viewed as auditing for statistical
parity fairness on the subset of the data restricted to y = 0.

Theorem 3.1. Fix any distribution P, and any set of group
indicators G. Then for any v, e > 0, the following relation-
ships hold:

o [fthereisa (v/2,(v/2 — ¢€)) auditing algorithm for G
for all D such that SP(D) = 1/2, then the class G is
(7,7/2 — €)-weakly agnostically learnable under PP.

e IfGis (y,y — €)-weakly agnostically learnable under
marginal distribution PP on (z, D(X)) for all D such
that SP(D) = 1/2, then there is a (v,(y — €)/2)
auditing algorithm for G for SP fairness under P.

False Positive Fairness A corollary of the above reduc-
tion is an analogous equivalence between auditing for FP
subgroup fairness and agnostic learning. This is because a

FP fairness constraint can be viewed as a statistical parity
fairness constraint on the subset of the data such that y = 0.
Therefore, Theorem 3.1 implies the following:

Corollary 3.2. Fix any distribution P, and any set of group
indicators G. The following two relationships hold:

o Ifthereisa (v/2,(v/2 — ¢)) auditing algorithm for G
forall D with FP(D) = 1/2, then G is (v,7/2 — €)-
weakly agnostically learnable under 73??:0.

o If G is (v, — €)-weakly agnostically learnable un-
der the conditional distribution P,L of (X,y) con-
ditioned on the event that D(X) = 1 for all D with
FP(D) = 1/2, then there is a (v, (v — €)/2) audit-
ing algorithm for FP subgroup fairness for G under
distribution P.

Worst-Case Intractability of Auditing While we shall
see in subsequent sections that the equivalence given above
has positive algorithmic and experimental consequences,
from a purely theoretical perspective the reduction of ag-
nostic learning to auditing has strong negative worst-case
implications. More precisely, we can import a long sequence
of intractability results for agnostic learning to obtain:

Theorem 3.3. Under standard complexity-theoretic in-
tractability assumptions, for G the classes of conjunctions of
boolean attributes, linear threshold functions, or bounded-
degree polynomial threshold functions, there exist distribu-
tions P such that the auditing problem cannot be solved in
polynomial time, for either SP or FP fairness.

While Theorem 3.3 shows that certain natural subgroup
classes G yield intractable auditing problems in the worst
case, in the rest of the paper we demonstrate that effective
heuristics for this problem on specific (non-worst case) dis-
tributions can be used to derive an effective and practical
learning algorithm for subgroup fairness.

4. ERM Subject to Fairness Constraints §

In this section, we present an algorithm for training a clas-
sifier that satisfies false-positive subgroup fairness simulta-
neously for all protected subgroups specified by a family
of group indicator functions G. All of our techniques also
apply to a statistical parity or false negative rate constraint.

Let S denote a set of n labeled examples {7z =
(x4, 2%),y:)} 4, and let P denote the empirical distribution
over this set of examples. Let H be a hypothesis class de-
fined over both the protected and unprotected attributes, and
let G be a collection of group indicators over the protected
attributes. We assume that 7{ contains a constant classifier
(which implies that there is at least one fair classifier to be
found, for any distribution).
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Our goal will be to find the distribution over classifiers from
‘H that minimizes classification error subject to the fairness
constraint over G. We will design an iterative algorithm that,
when given access to a CSC oracle, computes an optimal
randomized classifier in polynomial time.

Let D denote a probability distribution over H. Consider the
following Fair ERM (Empirical Risk Minimization) prob-
lem:

min  Eferr(h,P) @)

arp(9,P) Brp(g,D,P) <v.  (3)

where err(h, P) = Prp[h(z,2’) # y], and the quantities
arp and Spp are defined in Definition 2.3. We will write
OPT to denote the objective value at the optimum for the
Fair ERM problem, that is the minimum error achieved by
a y-fair distribution over the class .

st.Vge g

Our main theoretical result is a computationally efficient
oracle-based algorithm for solving the Fair ERM problem.

Theorem 4.1. Fix any v, € (0,1). Then given an input
of n data points and accuracy parameters v, and access
to oracles CSC(H) and CSC(G), there exists an algorithm
runs in time poly(1/v,log(1/9)), and with probability at
least 1 — 6, output a randomized classifier D such that
err(f),P) < OPT +v, and for any g € G, the fairness
constraint violations satisfies

aFP(gap) ﬁFP(g7ﬁ7P) S ’V+O(V)

Overview of our solution.

First, we rewrite the Fair ERM problem as a linear program
with finitely many decision variables and constraints even
when H and G are infinite. To do this, we take advantage
of the fact that Sauer’s Lemma lets us bound the number
of labellings that any hypothesis class H of bounded VC
dimension can induce on any fixed dataset. The LP has
one variable for each of these possible labellings, rather
than one variable for each hypothesis. Moreover, again
by Sauer’s Lemma, we have one constraint for each of the
finitely many possible subgroups induced by G on the fixed
dataset, rather than one for each of the (possibly infinitely
many) subgroups definable over arbitrary datasets. This step
is important — it will guarantee that strong duality holds.

We then derive the partial Lagrangian of the LP, and note that
computing an approximately optimal solution to this LP is
equivalent to finding an approximate minmax solution for a
corresponding zero-sum game, in which the payoff function
U is the value of the Lagrangian. The pure strategies of
the primal or “Learner” player correspond to classifiers
h € H, and the pure strategies of the dual or “Auditor”
player correspond to subgroups g € G. Intuitively, the
Learner is trying to minimize the sum of the prediction error

and a fairness penalty term (given by the Lagrangian), and
the Auditor is trying to penalize the fairness violation of the
Learner by first identifying the subgroup with the greatest
fairness violation and putting all the weight on the dual
variable corresponding to this subgroup. In order to reason
about convergence, we restrict the set of dual variables to
lie in a bounded set: C' times the probability simplex. C'is
a parameter that we have to set in the proof of our theorem
to give the best theoretical guarantees — but it is also a
parameter that we will vary in the experimental section.

We observe that given a mixed strategy for the Auditor, the
best response problem of the Learner corresponds to a CSC
problem. Similarly, given a mixed strategy for the Learner,
the best response problem of the Auditor corresponds to an
auditing problem (which can be represented as a CSC prob-
lem). Hence, if we have oracles for solving CSC problems,
we can compute best responses for both players, in response
to arbitrary mixed strategies of their opponents.

Finally, we show that the ability to compute best responses
for each player is sufficient to implement dynamics known
to converge quickly to equilibrium in zero-sum games. Our
algorithm has the Learner play Follow the Perturbed Leader
(FTPL) (Kalai & Vempala, 2005), which is a no-regret algo-
rithm, against an Auditor who at every round best responds
to the learner’s mixed strategy. By the seminal result of
Freund & Schapire (1996), the average plays of both players
converge to an approximate equilibrium. In order to imple-
ment this in polynomial time, we need to represent the loss
of the learner as a low-dimensional linear optimization prob-
lem. To do so, we first define an appropriately translated
CSC problem for any mixed strategy A by the Auditor, and
cast it as a linear optimization problem.

5. Experimental Evaluation

We now describe an experimental evaluation of our proposed
algorithmic framework on a dataset in which fairness is
a concern, due to the preponderance of racial and other
sensitive features. We also demonstrate that for this dataset,
our methods are empirically necessary to avoid fairness
gerrymandering.

While the no-regret-based algorithm described in the last
section enjoys provably polynomial time convergence, for
the experiments we instead implemented a simpler yet ef-
fective algorithm based on Fictitious Play dynamics. We
first describe and discuss this modified algorithm.

5.1. Solving the Game with Fictitious Play

Like the algorithm given in the last section, the algorithm
we implemented works by simulating a game dynamic that
converges to Nash equilibrium in the zero-sum game that
we derived, corresponding to the Fair ERM problem. Rather
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than using a no-regret dynamic, we instead use a simple
iterative procedure known as Fictitious Play (Brown, 1949).
Fictitious Play dynamics has the benefit of being more prac-
tical to implement: at each round, both players simply need
to compute a single best response to the empirical play of
their opponents, and this optimization requires only a single
call to a CSC oracle. In contrast, the FTPL dynamic we
gave in the previous section requires making many calls
to a CSC oracle per round — a computationally expensive
process — in order to find a sparse approximation to the
Learner’s mixed strategy at that round. Fictitious Play also
has the benefit of being deterministic, unlike the random-
ized sampling required in the FTPL no-regret dynamic, thus
eliminating a source of experimental variance.

The disadvantage is that Fictitious Play is only known to
converge to equilibrium in the limit (Robinson, 1951), rather
than in a polynomial number of rounds (though it is con-
jectured to converge quickly under rather general circum-
stances; see (Daskalakis & Pan, 2014) for a recent discus-
sion). As we will show, it performs well on real data, despite
the fact that it has weaker theoretical guarantees.

Fictitious play proceeds in rounds, and in every round each
player chooses a best response to his opponent’s empirical
history of play across previous rounds, by treating it as the
mixed strategy that randomizes uniformly over the empirical
history. Pseudocode for the implemented algorithm is given
in the full version.

5.2. Description of Data

The dataset we use is known as the “Communities and
Crime” (C&C) dataset, available at the UC Irvine Data
Repository.! Each record in this dataset describes the aggre-
gate demographic properties of a different U.S. community;
the data combines socio-economic data from the 1990 US
Census, law enforcement data from the 1990 US LEMAS
survey, and crime data from the 1995 FBI UCR. The total
number of records is 1994, and the number of features is
122. The variable to be predicted is the rate of violent crime
in the community.

While there are larger and more recent datasets in which
subgroup fairness is a potential concern, there are properties
of the C&C dataset that make it particularly appealing for
our experimental evaluation. Foremost among these is the
relatively high number of sensitive or protected attributes,
and the fact that they are real-valued (since they represent
aggregates in a community rather than specific individuals).
This means there is a very large number of protected sub-
groups that can be defined over them. We obtain a set 18
real-valued protected attributes, most of which are related

'http://archive.ics.uci.edu/ml/datasets/
Communities+and+Crime

to race (e.g. the percentage and the average per capita in-
comes of multiple racial groups in the communities). We
note that the C&C dataset has numerous other features that
arguably could or should be protected as well (such as gen-
der features), which would raise the dimensionality of the
protected subgroups even further.

We convert the real-valued rate of violent crime in each
community to a binary label indicating whether the commu-
nity is in the 70th percentile of that value, indicating that
it is a relatively high-crime community. Thus the straw-
man baseline that always predicts O (lower crime) has error
approximately 30% or 0.3 on this classification problem.
We chose the 70th percentile since it seems most natural to
predict the highest crime rates.

As in the theoretical sections of the paper, our main inter-
est and emphasis is on the effectiveness of our proposed
algorithm FairFictPlay on a given dataset, including:?

e Whether the algorithm in fact converges, and does so in
a feasible amount of computation. Recall that formal
convergence is only guaranteed under the assumption
of oracles that do not exist in practice, and even then is
only guaranteed asymptotically.

e Whether the classifier learned by the algorithm has
nontrivial accuracy, as well as strong subgroup fairness
properties.

e Whether the algorithm and dataset permits nontrivial
tuning of the trade-off between accuracy and subgroup
fairness.

5.3. Algorithm Implementation

The main details in the implementation of FairFictPlay are
the identification of the model classes for Learner and Audi-
tor, the implementation of the cost sensitive classification
oracle and auditing oracle, and the identification of the pro-
tected features for Auditor. For our experiments, at each
round Learner chooses a linear threshold function over all
122 features. We implement the cost sensitive classification
oracle via a two stage regression procedure. In particular,
the inputs to the cost sensitive classification oracle are cost
vectors cg, c1, where the it" element of ¢y, is the cost of
predicting k on datapoint . We train two linear regression
models 7o, r; to predict ¢y and c; respectively, using all
122 features. Given a new point x, we predict the cost of

2Ongoing experiments on other datasets where fairness is a
concern will be reported on in a forthcoming experimental paper.

3 In the full version, we provide a generalization error bound
on the fairness violations as a function of the VC dimensions of
the Learner’s hypothesis class H and the Auditor’s subgroup class
G. Thus for simplicity, we report all results here on the full C&C
dataset of 1994 points, treating it as the true distribution of interest.
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classifying = as 0 and 1 using our regression models: these
predictions are ro(x) and r1 () respectively. Finally we
output the prediction ¢ corresponding to lower predicted
cost: § = argmin, ¢ o, 137i(2).

Auditor’s model class consists of all linear threshold func-
tions over just the 18 aforementioned protected race-based
attributes. As per the algorithm, at each iteration ¢ Audi-
tor attempts to find a subgroup on which the false positive
rate is substantially different than the base rate, given the
Learner’s randomized classifier so far. We implement the
auditing oracle by treating it as a weighted regression prob-
lem in which the goal is find a linear function (which will be
taken to define the subgroup) that on the negative examples,
can predict the Learner’s probabilistic classification on each
point. We use the same regression subroutine as Learner
does, except that Auditor only has access to the 18 sensitive
features, rather than all 122.

5.4. Results

Particularly in light of the gaps between the idealized theory
and the actual implementation, the most basic questions
about FairFictPlay are whether it converges at all, and if
so, whether it converges to “interesting” with both nontrivial
classification error (much better than the 30% or 0.3 baser-
ate), and nontrivial subgroup fairness (much better than
ignoring fairness altogether). We shall see that at least for
the C&C dataset, the answers to these questions is strongly
affirmative.

We begin by examining the evolution of the error and un-
fairness of Learner’s model. In the left panel of Figure 1 we
show the error of the model found by Learner vs. iteration
for values of y ranging from 0 to 0.029. Several comments
are in order.

First, after an intial period in which there is a fair amount of
oscillatory behavior, by 6,000 iterations most of the curves
have largely flattened out, and by 8,000 iterations it appears
most but not all have reached approximate convergence.
Second, while the top-to-bottom ordering of these error
curves is approximately aligned with decreasing v — so
larger vy generally results in lower error, as expected — there
are many violations of this for small ¢, and even a few at
large ¢. Third, and as we will examine more closely shortly,
the converged values at large ¢ do indeed exhibit a range of
errors.

In the right panel of Figure 1, we show the corresponding
unfairness y; of the subgroup found by the Auditor at each
iteration ¢ for the same runs and values of the parameter
v (indicated by horizontal dashed lines), with the same
color-coding as for the left panel. Now the ordering is
generally reversed — larger values of  generally lead to
higher v, curves, since the fairness constraint on the Learner
is weaker. We again see a great deal of early oscillatory

behavior, with most 7, curves then eventually settling at
or near their corresponding input ~ value, as Learner and
Auditor engage in a back-and-forth struggle for lower error
for Learner and y-subgroup fairness for Auditor.

For any choice of the parameter v, and each iteration ¢,
the two panels of Figure 1 yield a pair of realized values
(e¢,7:) from the experiment, corresponding to a Learner
model whose error is €, and for which the worst subgroup
the Auditor was able to find had unfairness ;. The set of
all (e¢,7) pairs across all runs or -y values thus represents
the different trade-offs between error and unfairness found
by our algorithm on the data. Most of these pairs are of
course Pareto-dominated by other pairs, so we are primarily
interested in the undominated frontier.

In the left panel of Figure 2, for each value of ¥ we show the
Pareto-optimal pairs, color-coded for the value of . Each
value of ~y yields a set or cloud of undominated pairs that
are usually fairly close to each other, and as expected, as
« is increased, these clouds generally move leftwards and
upwards (lower error and higher unfairness).

We anticipate that the practical use of our algorithm would,
as we have done, explore many values of  and then pick
a model corresponding to a point on the aggregated Pareto
frontier across all v, which represents the collection of all
undominated models and the overall error-unfairness trade-
off. This aggregate frontier is shown in the right panel of
Figure 2, and shows a relatively smooth menu of options,
ranging from error about 0.21 and no unfairness at one ex-
treme, to error about 0.12 and unfairness 0.025 at the other,
and an appealing assortment of intermediate trade-offs. Of
course, in a real application the selection of a particular
point on the frontier should be made in a domain-specific
manner by the stakeholders or policymakers in question.

5.5. Protecting Marginal Subgroups is Not Sufficient

It is intuitive that one can construct (as we did in the in-
troduction) artificial examples in which classifiers which
equalize false positive rates across groups defined only with
respect to individual protected binary features can exhibit
unfairness in more complicated subgroups. However, it
might be the case that on real-world datasets, enforcing
false positive rate fairness only in marginal subgroups, using
previously known algorithms (like (Agarwal et al., 2017)),
would already provide at least approximate fairness in the
combinatorially many subgroups defined by a simple (e.g.
linear threshold) function over the protected features.

To explore this possibility, we implemented the algorithm
of (Agarwal et al., 2017), which employs a similar opti-
mization framework. We used the same Communities and
Crime dataset with the same 18 protected features. Our 18
protected attributes are real valued. In order to come up with
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Figure 1. Evolution of the error and unfairness of Learner’s classifier across iterations, for varying choices of ~. (a) Error € of Learner’s
model vs iteration ¢. (b) Unfairness 7; of subgroup found by Auditor vs. iteration ¢, as measured by Definition 2.3. See text for details.
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details.

a small number of protected groups, we threshold each real-
valued attribute at its mean, and define 36 protected groups:
each one corresponding to one of the protected attributes
lying either above or below its mean.

We then ran the algorithm from (Agarwal et al., 2017).The
algorithm converges to a lowest achieved marginal false pos-
itive rate of 0.0249, meaning that each marginal-only sub-
group was rather well-protected, as intended by the (heuris-
tic) optimization.

However, upon auditing the resulting classifier with re-

spect to the richer class of linear threshold functions on
the continuously-valued protected features, we find that
there is a subgroup whose ~y value is 0.007 a significant
multiple of the value of 0.002 achieved by our algorithm at
the same error. This demonstrates empirically that merely
minimizing marginal unfairness will not generally result in
more refined subgroup fairness “for free, and in fact may
fail badly in this regard. While perhaps not surprising from
a theoretical perspective, since the two methods are attempt-
ing to optimize different objectives, it is reassuring to see
on a data set with a large number of protected features.
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